brindosch 4c2b75b45a Python 3.4 (#479)
* Python 3

* fix travis osx

* try fix

* get info

* digging in the dirt

* .

* .

* cleanup

* .

* .

* finalize, add multi threaded python support
2017-10-13 17:49:29 +02:00

1310 lines
35 KiB
C++

// stl includes
#include <iostream>
#include <sstream>
#include <cmath>
// Qt includes
#include <QDateTime>
#include <QFile>
#include <Qt>
#include <QLinearGradient>
#include <QConicalGradient>
#include <QRadialGradient>
#include <QRect>
#include <QImageReader>
#include <QResource>
// effect engin eincludes
#include "Effect.h"
#include <utils/Logger.h>
#include <hyperion/Hyperion.h>
// Python method table
PyMethodDef Effect::effectMethods[] = {
{"setColor" , Effect::wrapSetColor , METH_VARARGS, "Set a new color for the leds."},
{"setImage" , Effect::wrapSetImage , METH_VARARGS, "Set a new image to process and determine new led colors."},
{"getImage" , Effect::wrapGetImage , METH_VARARGS, "get image data from file."},
{"abort" , Effect::wrapAbort , METH_NOARGS, "Check if the effect should abort execution."},
{"imageShow" , Effect::wrapImageShow , METH_VARARGS, "set current effect image to hyperion core."},
{"imageLinearGradient" , Effect::wrapImageLinearGradient , METH_VARARGS, ""},
{"imageConicalGradient" , Effect::wrapImageConicalGradient , METH_VARARGS, ""},
{"imageRadialGradient" , Effect::wrapImageRadialGradient , METH_VARARGS, ""},
{"imageSolidFill" , Effect::wrapImageSolidFill , METH_VARARGS, ""},
{"imageDrawLine" , Effect::wrapImageDrawLine , METH_VARARGS, ""},
{"imageDrawPoint" , Effect::wrapImageDrawPoint , METH_VARARGS, ""},
{"imageDrawRect" , Effect::wrapImageDrawRect , METH_VARARGS, ""},
{"imageDrawPolygon" , Effect::wrapImageDrawPolygon , METH_VARARGS, ""},
{"imageDrawPie" , Effect::wrapImageDrawPie , METH_VARARGS, ""},
{"imageSetPixel" , Effect::wrapImageSetPixel , METH_VARARGS, "set pixel color of image"},
{"imageGetPixel" , Effect::wrapImageGetPixel , METH_VARARGS, "get pixel color of image"},
{"imageSave" , Effect::wrapImageSave , METH_NOARGS, "adds a new background image"},
{"imageMinSize" , Effect::wrapImageMinSize , METH_VARARGS, "sets minimal dimension of background image"},
{"imageWidth" , Effect::wrapImageWidth , METH_NOARGS, "gets image width"},
{"imageHeight" , Effect::wrapImageHeight , METH_NOARGS, "gets image height"},
{"imageCRotate" , Effect::wrapImageCRotate , METH_VARARGS, "rotate the coordinate system by given angle"},
{"imageCOffset" , Effect::wrapImageCOffset , METH_VARARGS, "Add offset to the coordinate system"},
{"imageCShear" , Effect::wrapImageCShear , METH_VARARGS, "Shear of coordinate system by the given horizontal/vertical axis"},
{"imageResetT" , Effect::wrapImageResetT , METH_NOARGS, "Resets all coords modifications (rotate,offset,shear)"},
{NULL, NULL, 0, NULL}
};
// create the hyperion module
struct PyModuleDef Effect::moduleDef = {
PyModuleDef_HEAD_INIT,
"hyperion", /* m_name */
"Hyperion module", /* m_doc */
-1, /* m_size */
Effect::effectMethods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
PyObject* Effect::PyInit_hyperion()
{
return PyModule_Create(&moduleDef);
}
void Effect::registerHyperionExtensionModule()
{
PyImport_AppendInittab("hyperion", &PyInit_hyperion);
}
Effect::Effect(PyThreadState* mainThreadState, int priority, int timeout, const QString & script, const QString & name, const QJsonObject & args, const QString & origin, unsigned smoothCfg)
: QThread()
, _mainThreadState(mainThreadState)
, _priority(priority)
, _timeout(timeout)
, _script(script)
, _name(name)
, _smoothCfg(smoothCfg)
, _args(args)
, _endTime(-1)
, _imageProcessor(ImageProcessorFactory::getInstance().newImageProcessor())
, _colors()
, _origin(origin)
, _imageSize(Hyperion::getInstance()->getLedGridSize())
, _image(_imageSize,QImage::Format_ARGB32_Premultiplied)
{
_colors.resize(_imageProcessor->getLedCount());
_colors.fill(ColorRgb::BLACK);
_log = Logger::getInstance("EFFECTENGINE");
// disable the black border detector for effects
_imageProcessor->enableBlackBorderDetector(false);
// init effect image for image based effects, size is based on led layout
_image.fill(Qt::black);
_painter = new QPainter(&_image);
Q_INIT_RESOURCE(EffectEngine);
}
Effect::~Effect()
{
delete _painter;
_imageStack.clear();
}
void Effect::run()
{
// get global lock
PyEval_RestoreThread(_mainThreadState);
// Initialize a new thread state
PyThreadState* tstate = Py_NewInterpreter();
if(tstate == nullptr)
{
PyEval_ReleaseLock();
Error(_log, "Failed to get thread state for %s",QSTRING_CSTR(_name));
return;
}
PyThreadState_Swap(tstate);
// import the buildtin Hyperion module
PyObject * module = PyImport_ImportModule("hyperion");
// add a capsule containing 'this' to the module to be able to retrieve the effect from the callback function
PyObject_SetAttrString(module, "__effectObj", PyCapsule_New(this, nullptr, nullptr));
// add ledCount variable to the interpreter
PyObject_SetAttrString(module, "ledCount", Py_BuildValue("i", _imageProcessor->getLedCount()));
// add minimumWriteTime variable to the interpreter
PyObject_SetAttrString(module, "latchTime", Py_BuildValue("i", Hyperion::getInstance()->getLatchTime()));
// add a args variable to the interpreter
PyObject_SetAttrString(module, "args", json2python(_args));
// decref the module
Py_XDECREF(module);
// Set the end time if applicable
if (_timeout > 0)
{
_endTime = QDateTime::currentMSecsSinceEpoch() + _timeout;
}
// Run the effect script
QFile file (_script);
QByteArray python_code;
if (file.open(QIODevice::ReadOnly))
{
python_code = file.readAll();
}
else
{
Error(_log, "Unable to open script file %s.", QSTRING_CSTR(_script));
}
file.close();
if (!python_code.isEmpty())
{
PyObject *main_module = PyImport_ImportModule("__main__"); // New Reference
PyObject *main_dict = PyModule_GetDict(main_module); // Borrowed reference
Py_INCREF(main_dict); // Incref "main_dict" to use it in PyRun_String(), because PyModule_GetDict() has decref "main_dict"
Py_DECREF(main_module); // // release "main_module" when done
PyObject *result = PyRun_String(python_code.constData(), Py_file_input, main_dict, main_dict); // New Reference
if (!result)
{
if (PyErr_Occurred()) // Nothing needs to be done for a borrowed reference
{
Error(_log,"###### PYTHON EXCEPTION ######");
Error(_log,"## In effect '%s'", QSTRING_CSTR(_name));
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *errorType = NULL, *errorValue = NULL, *errorTraceback = NULL;
PyErr_Fetch(&errorType, &errorValue, &errorTraceback); // New Reference or NULL
PyErr_NormalizeException(&errorType, &errorValue, &errorTraceback);
// Extract exception message from "errorValue"
if(errorValue)
{
QString message;
if(PyObject_HasAttrString(errorValue, "__class__"))
{
PyObject *classPtr = PyObject_GetAttrString(errorValue, "__class__"); // New Reference
PyObject *class_name = NULL; /* Object "class_name" initialized to NULL for Py_XDECREF */
class_name = PyObject_GetAttrString(classPtr, "__name__"); // New Reference or NULL
if(class_name && PyUnicode_Check(class_name))
message.append(PyUnicode_AsUTF8(class_name));
Py_DECREF(classPtr); // release "classPtr" when done
Py_XDECREF(class_name); // Use Py_XDECREF() to ignore NULL references
}
// Object "class_name" initialized to NULL for Py_XDECREF
PyObject *valueString = NULL;
valueString = PyObject_Str(errorValue); // New Reference or NULL
if(valueString && PyUnicode_Check(valueString))
{
if(!message.isEmpty())
message.append(": ");
message.append(PyUnicode_AsUTF8(valueString));
}
Py_XDECREF(valueString); // Use Py_XDECREF() to ignore NULL references
Error(_log, "## %s", QSTRING_CSTR(message));
}
// Extract exception message from "errorTraceback"
if(errorTraceback)
{
// Object "tracebackList" initialized to NULL for Py_XDECREF
PyObject *tracebackModule = NULL, *methodName = NULL, *tracebackList = NULL;
QString tracebackMsg;
tracebackModule = PyImport_ImportModule("traceback"); // New Reference or NULL
methodName = PyUnicode_FromString("format_exception"); // New Reference or NULL
tracebackList = PyObject_CallMethodObjArgs(tracebackModule, methodName, errorType, errorValue, errorTraceback, NULL); // New Reference or NULL
if(tracebackList)
{
PyObject* iterator = PyObject_GetIter(tracebackList); // New Reference
PyObject* item;
while( (item = PyIter_Next(iterator)) ) // New Reference
{
Error(_log, "## %s",QSTRING_CSTR(QString(PyUnicode_AsUTF8(item)).trimmed()));
Py_DECREF(item); // release "item" when done
}
Py_DECREF(iterator); // release "iterator" when done
}
// Use Py_XDECREF() to ignore NULL references
Py_XDECREF(tracebackModule);
Py_XDECREF(methodName);
Py_XDECREF(tracebackList);
// Give the exception back to python and print it to stderr in case anyone else wants it.
Py_XINCREF(errorType);
Py_XINCREF(errorValue);
Py_XINCREF(errorTraceback);
PyErr_Restore(errorType, errorValue, errorTraceback);
//PyErr_PrintEx(0); // Remove this line to switch off stderr output
}
Error(_log,"###### EXCEPTION END ######");
}
}
else
{
Py_DECREF(result); // release "result" when done
}
Py_DECREF(main_dict); // release "main_dict" when done
}
// stop sub threads if needed
for (PyThreadState* s = tstate->interp->tstate_head, *old = nullptr; s;)
{
if (s == tstate)
{
s = s->next;
continue;
}
if (old != s)
{
Debug(_log,"ID %s: Waiting on thread %u", QSTRING_CSTR(_name), s->thread_id);
old = s;
}
Py_BEGIN_ALLOW_THREADS;
msleep(100);
Py_END_ALLOW_THREADS;
s = tstate->interp->tstate_head;
}
// Clean up the thread state
Py_EndInterpreter(tstate);
PyEval_ReleaseLock();
}
PyObject *Effect::json2python(const QJsonValue &jsonData) const
{
switch (jsonData.type())
{
case QJsonValue::Null:
return Py_BuildValue("");
case QJsonValue::Undefined:
return Py_BuildValue("");
case QJsonValue::Double:
{
if (std::rint(jsonData.toDouble()) != jsonData.toDouble())
{
return Py_BuildValue("d", jsonData.toDouble());
}
return Py_BuildValue("i", jsonData.toInt());
}
case QJsonValue::Bool:
return Py_BuildValue("i", jsonData.toBool() ? 1 : 0);
case QJsonValue::String:
return Py_BuildValue("s", jsonData.toString().toUtf8().constData());
case QJsonValue::Object:
{
PyObject * dict= PyDict_New();
QJsonObject objectData = jsonData.toObject();
for (QJsonObject::iterator i = objectData.begin(); i != objectData.end(); ++i)
{
PyObject * obj = json2python(*i);
PyDict_SetItemString(dict, i.key().toStdString().c_str(), obj);
Py_XDECREF(obj);
}
return dict;
}
case QJsonValue::Array:
{
QJsonArray arrayData = jsonData.toArray();
PyObject * list = PyList_New(arrayData.size());
int index = 0;
for (QJsonArray::iterator i = arrayData.begin(); i != arrayData.end(); ++i, ++index)
{
PyObject * obj = json2python(*i);
Py_INCREF(obj);
PyList_SetItem(list, index, obj);
Py_XDECREF(obj);
}
return list;
}
}
assert(false);
return nullptr;
}
PyObject* Effect::wrapSetColor(PyObject *self, PyObject *args)
{
// get the effect
Effect * effect = getEffect();
// check if we have aborted already
if (effect->isInterruptionRequested())
{
return Py_BuildValue("");
}
// determine the timeout
int timeout = effect->_timeout;
if (timeout > 0)
{
timeout = effect->_endTime - QDateTime::currentMSecsSinceEpoch();
// we are done if the time has passed
if (timeout <= 0)
{
return Py_BuildValue("");
}
}
// check the number of arguments
int argCount = PyTuple_Size(args);
if (argCount == 3)
{
// three seperate arguments for red, green, and blue
ColorRgb color;
if (PyArg_ParseTuple(args, "bbb", &color.red, &color.green, &color.blue))
{
effect->_colors.fill(color);
effect->setColors(effect->_priority, effect->_colors.toStdVector(), timeout, false, hyperion::COMP_EFFECT, effect->_origin, effect->_smoothCfg);
return Py_BuildValue("");
}
return nullptr;
}
else if (argCount == 1)
{
// bytearray of values
PyObject * bytearray = nullptr;
if (PyArg_ParseTuple(args, "O", &bytearray))
{
if (PyByteArray_Check(bytearray))
{
size_t length = PyByteArray_Size(bytearray);
if (length == 3 * effect->_imageProcessor->getLedCount())
{
char * data = PyByteArray_AS_STRING(bytearray);
memcpy(effect->_colors.data(), data, length);
effect->setColors(effect->_priority, effect->_colors.toStdVector(), timeout, false, hyperion::COMP_EFFECT, effect->_origin, effect->_smoothCfg);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should be 3*ledCount");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument is not a bytearray");
return nullptr;
}
}
else
{
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Function expect 1 or 3 arguments");
return nullptr;
}
// error
PyErr_SetString(PyExc_RuntimeError, "Unknown error");
return nullptr;
}
PyObject* Effect::wrapSetImage(PyObject *self, PyObject *args)
{
// get the effect
Effect * effect = getEffect();
// check if we have aborted already
if (effect->isInterruptionRequested())
{
return Py_BuildValue("");
}
// determine the timeout
int timeout = effect->_timeout;
if (timeout > 0)
{
timeout = effect->_endTime - QDateTime::currentMSecsSinceEpoch();
// we are done if the time has passed
if (timeout <= 0)
{
return Py_BuildValue("");
}
}
// bytearray of values
int width, height;
PyObject * bytearray = nullptr;
if (PyArg_ParseTuple(args, "iiO", &width, &height, &bytearray))
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length == 3 * width * height)
{
Image<ColorRgb> image(width, height);
char * data = PyByteArray_AS_STRING(bytearray);
memcpy(image.memptr(), data, length);
std::vector<ColorRgb> v = effect->_colors.toStdVector();
effect->_imageProcessor->process(image, v);
effect->setColors(effect->_priority, v, timeout, false, hyperion::COMP_EFFECT, effect->_origin, effect->_smoothCfg);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should be 3*width*height");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 3 is not a bytearray");
return nullptr;
}
}
else
{
return nullptr;
}
// error
PyErr_SetString(PyExc_RuntimeError, "Unknown error");
return nullptr;
}
PyObject* Effect::wrapGetImage(PyObject *self, PyObject *args)
{
Q_INIT_RESOURCE(EffectEngine);
char *source;
if(!PyArg_ParseTuple(args, "s", &source))
{
PyErr_SetString(PyExc_TypeError, "String required");
return NULL;
}
QString file = QString::fromUtf8(source);
if (file.mid(0, 1) == ":")
file = ":/effects/"+file.mid(1);
QImageReader reader(file);
if (reader.canRead())
{
PyObject* result = PyList_New(reader.imageCount());
for (int i = 0; i < reader.imageCount(); ++i)
{
reader.jumpToImage(i);
if (reader.canRead())
{
QImage qimage = reader.read();
int width = qimage.width();
int height = qimage.height();
QByteArray binaryImage;
for (int i = 0; i<height; ++i)
{
const QRgb * scanline = reinterpret_cast<const QRgb *>(qimage.scanLine(i));
for (int j = 0; j< width; ++j)
{
binaryImage.append((char) qRed(scanline[j]));
binaryImage.append((char) qGreen(scanline[j]));
binaryImage.append((char) qBlue(scanline[j]));
}
}
PyList_SET_ITEM(result, i, Py_BuildValue("{s:i,s:i,s:O}", "imageWidth", width, "imageHeight", height, "imageData", PyByteArray_FromStringAndSize(binaryImage.constData(),binaryImage.size())));
}
else
{
PyErr_SetString(PyExc_TypeError, reader.errorString().toUtf8().constData());
return NULL;
}
}
return result;
}
else
{
PyErr_SetString(PyExc_TypeError, reader.errorString().toUtf8().constData());
return NULL;
}
}
PyObject* Effect::wrapAbort(PyObject *self, PyObject *)
{
Effect * effect = getEffect();
// Test if the effect has reached it end time
if (effect->_timeout > 0 && QDateTime::currentMSecsSinceEpoch() > effect->_endTime)
{
effect->requestInterruption();
}
return Py_BuildValue("i", effect->isInterruptionRequested() ? 1 : 0);
}
PyObject* Effect::wrapImageShow(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
// determine the timeout
int timeout = effect->_timeout;
if (timeout > 0)
{
timeout = effect->_endTime - QDateTime::currentMSecsSinceEpoch();
// we are done if the time has passed
if (timeout <= 0)
{
return Py_BuildValue("");
}
}
int argCount = PyTuple_Size(args);
int imgId = -1;
bool argsOk = (argCount == 0);
if (argCount == 1 && PyArg_ParseTuple(args, "i", &imgId))
{
argsOk = true;
}
if ( ! argsOk || (imgId>-1 && imgId >= effect->_imageStack.size()))
{
return nullptr;
}
QImage * qimage = (imgId<0) ? &(effect->_image) : &(effect->_imageStack[imgId]);
int width = qimage->width();
int height = qimage->height();
Image<ColorRgb> image(width, height);
QByteArray binaryImage;
for (int i = 0; i<height; ++i)
{
const QRgb * scanline = reinterpret_cast<const QRgb *>(qimage->scanLine(i));
for (int j = 0; j< width; ++j)
{
binaryImage.append((char) qRed(scanline[j]));
binaryImage.append((char) qGreen(scanline[j]));
binaryImage.append((char) qBlue(scanline[j]));
}
}
memcpy(image.memptr(), binaryImage.data(), binaryImage.size());
std::vector<ColorRgb> v = effect->_colors.toStdVector();
effect->_imageProcessor->process(image, v);
effect->setColors(effect->_priority, v, timeout, false, hyperion::COMP_EFFECT, effect->_origin, effect->_smoothCfg);
return Py_BuildValue("");
}
PyObject* Effect::wrapImageLinearGradient(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
PyObject * bytearray = nullptr;
int startRX = 0;
int startRY = 0;
int startX = 0;
int startY = 0;
int endX, width = effect->_imageSize.width();
int endY, height = effect->_imageSize.height();
int spread = 0;
bool argsOK = false;
if ( argCount == 10 && PyArg_ParseTuple(args, "iiiiiiiiOi", &startRX, &startRY, &width, &height, &startX, &startY, &endX, &endY, &bytearray, &spread) )
{
argsOK = true;
}
if ( argCount == 6 && PyArg_ParseTuple(args, "iiiiOi", &startX, &startY, &endX, &endY, &bytearray, &spread) )
{
argsOK = true;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
const int length = PyByteArray_Size(bytearray);
const unsigned arrayItemLength = 5;
if (length % arrayItemLength == 0)
{
QRect myQRect(startRX,startRY,width,height);
QLinearGradient gradient(QPoint(startX,startY), QPoint(endX,endY));
char * data = PyByteArray_AS_STRING(bytearray);
for (int idx=0; idx<length; idx+=arrayItemLength)
{
gradient.setColorAt(
((uint8_t)data[idx])/255.0,
QColor(
(uint8_t)(data[idx+1]),
(uint8_t)(data[idx+2]),
(uint8_t)(data[idx+3]),
(uint8_t)(data[idx+4])
));
}
gradient.setSpread(static_cast<QGradient::Spread>(spread));
effect->_painter->fillRect(myQRect, gradient);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "No bytearray properly defined");
return nullptr;
}
}
return nullptr;
}
PyObject* Effect::wrapImageConicalGradient(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
PyObject * bytearray = nullptr;
int centerX, centerY, angle;
int startX = 0;
int startY = 0;
int width = effect->_imageSize.width();
int height = effect->_imageSize.height();
bool argsOK = false;
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiiO", &startX, &startY, &width, &height, &centerX, &centerY, &angle, &bytearray) )
{
argsOK = true;
}
if ( argCount == 4 && PyArg_ParseTuple(args, "iiiO", &centerX, &centerY, &angle, &bytearray) )
{
argsOK = true;
}
angle = qMax(qMin(angle,360),0);
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
const int length = PyByteArray_Size(bytearray);
const unsigned arrayItemLength = 5;
if (length % arrayItemLength == 0)
{
QRect myQRect(startX,startY,width,height);
QConicalGradient gradient(QPoint(centerX,centerY), angle );
char * data = PyByteArray_AS_STRING(bytearray);
for (int idx=0; idx<length; idx+=arrayItemLength)
{
gradient.setColorAt(
((uint8_t)data[idx])/255.0,
QColor(
(uint8_t)(data[idx+1]),
(uint8_t)(data[idx+2]),
(uint8_t)(data[idx+3]),
(uint8_t)(data[idx+4])
));
}
effect->_painter->fillRect(myQRect, gradient);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 8 is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* Effect::wrapImageRadialGradient(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
PyObject * bytearray = nullptr;
int centerX, centerY, radius, focalX, focalY, focalRadius, spread;
int startX = 0;
int startY = 0;
int width = effect->_imageSize.width();
int height = effect->_imageSize.height();
bool argsOK = false;
if ( argCount == 12 && PyArg_ParseTuple(args, "iiiiiiiiiiOi", &startX, &startY, &width, &height, &centerX, &centerY, &radius, &focalX, &focalY, &focalRadius, &bytearray, &spread) )
{
argsOK = true;
}
if ( argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiOi", &startX, &startY, &width, &height, &centerX, &centerY, &radius, &bytearray, &spread) )
{
argsOK = true;
focalX = centerX;
focalY = centerY;
focalRadius = radius;
}
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiOi", &centerX, &centerY, &radius, &focalX, &focalY, &focalRadius, &bytearray, &spread) )
{
argsOK = true;
}
if ( argCount == 5 && PyArg_ParseTuple(args, "iiiOi", &centerX, &centerY, &radius, &bytearray, &spread) )
{
argsOK = true;
focalX = centerX;
focalY = centerY;
focalRadius = radius;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 4 == 0)
{
QRect myQRect(startX,startY,width,height);
QRadialGradient gradient(QPoint(centerX,centerY), qMax(radius,0) );
char * data = PyByteArray_AS_STRING(bytearray);
for (int idx=0; idx<length; idx+=4)
{
gradient.setColorAt(
((uint8_t)data[idx])/255.0,
QColor(
(uint8_t)(data[idx+1]),
(uint8_t)(data[idx+2]),
(uint8_t)(data[idx+3])
));
}
gradient.setSpread(static_cast<QGradient::Spread>(spread));
effect->_painter->fillRect(myQRect, gradient);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 4");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Last argument is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* Effect::wrapImageDrawPolygon(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
PyObject * bytearray = nullptr;
int argCount = PyTuple_Size(args);
int r, g, b;
int a = 255;
bool argsOK = false;
if ( argCount == 5 && PyArg_ParseTuple(args, "Oiiii", &bytearray, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 4 && PyArg_ParseTuple(args, "Oiii", &bytearray, &r, &g, &b) )
{
argsOK = true;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 2 == 0)
{
QVector <QPoint> points;
char * data = PyByteArray_AS_STRING(bytearray);
for (int idx=0; idx<length; idx+=2)
{
points.append(QPoint((int)(data[idx]),(int)(data[idx+1])));
}
QPainter * painter = effect->_painter;
QPen oldPen = painter->pen();
QPen newPen(QColor(r,g,b,a));
painter->setPen(newPen);
painter->setBrush(QBrush(QColor(r,g,b,a), Qt::SolidPattern));
painter->drawPolygon(points);
painter->setPen(oldPen);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 2");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 1 is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* Effect::wrapImageDrawPie(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
PyObject * bytearray = nullptr;
QString brush;
int argCount = PyTuple_Size(args);
int radius, centerX, centerY;
int startAngle = 0;
int spanAngle = 360;
int r = 0;
int g = 0;
int b = 0;
int a = 255;
bool argsOK = false;
if ( argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &centerX, &centerY, &radius, &startAngle, &spanAngle, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &centerX, &centerY, &radius, &startAngle, &spanAngle, &r, &g, &b) )
{
argsOK = true;
}
if ( argCount == 7 && PyArg_ParseTuple(args, "iiiiisO", &centerX, &centerY, &radius, &startAngle, &spanAngle, &brush, &bytearray) )
{
argsOK = true;
}
if ( argCount == 5 && PyArg_ParseTuple(args, "iiisO", &centerX, &centerY, &radius, &brush, &bytearray) )
{
argsOK = true;
}
if (argsOK)
{
QPainter * painter = effect->_painter;
startAngle = qMax(qMin(startAngle,360),0);
spanAngle = qMax(qMin(spanAngle,360),-360);
if( argCount == 7 || argCount == 5 )
{
a = 0;
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 5 == 0)
{
QConicalGradient gradient(QPoint(centerX,centerY), startAngle);
char * data = PyByteArray_AS_STRING(bytearray);
for (int idx=0; idx<length; idx+=5)
{
gradient.setColorAt(
((uint8_t)data[idx])/255.0,
QColor(
(uint8_t)(data[idx+1]),
(uint8_t)(data[idx+2]),
(uint8_t)(data[idx+3]),
(uint8_t)(data[idx+4])
));
}
painter->setBrush(gradient);
return Py_BuildValue("");
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Last argument is not a bytearray");
return nullptr;
}
}
else
{
painter->setBrush(QBrush(QColor(r,g,b,a), Qt::SolidPattern));
}
QPen oldPen = painter->pen();
QPen newPen(QColor(r,g,b,a));
painter->setPen(newPen);
painter->drawPie(centerX - radius, centerY - radius, centerX + radius, centerY + radius, startAngle * 16, spanAngle * 16);
painter->setPen(oldPen);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageSolidFill(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int r, g, b;
int a = 255;
int startX = 0;
int startY = 0;
int width = effect->_imageSize.width();
int height = effect->_imageSize.height();
bool argsOK = false;
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &width, &height, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 7 && PyArg_ParseTuple(args, "iiiiiii", &startX, &startY, &width, &height, &r, &g, &b) )
{
argsOK = true;
}
if ( argCount == 4 && PyArg_ParseTuple(args, "iiii",&r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 3 && PyArg_ParseTuple(args, "iii",&r, &g, &b) )
{
argsOK = true;
}
if (argsOK)
{
QRect myQRect(startX,startY,width,height);
effect->_painter->fillRect(myQRect, QColor(r,g,b,a));
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageDrawLine(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int r, g, b;
int a = 255;
int startX = 0;
int startY = 0;
int thick = 1;
int endX = effect->_imageSize.width();
int endY = effect->_imageSize.height();
bool argsOK = false;
if ( argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &startX, &startY, &endX, &endY, &thick, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &endX, &endY, &thick, &r, &g, &b) )
{
argsOK = true;
}
if (argsOK)
{
QPainter * painter = effect->_painter;
QRect myQRect(startX, startY, endX, endY);
QPen oldPen = painter->pen();
QPen newPen(QColor(r,g,b,a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawLine(startX, startY, endX, endY);
painter->setPen(oldPen);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageDrawPoint(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int r, g, b, x, y;
int a = 255;
int thick = 1;
bool argsOK = false;
if ( argCount == 7 && PyArg_ParseTuple(args, "iiiiiii", &x, &y, &thick, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 6 && PyArg_ParseTuple(args, "iiiiii", &x, &y, &thick, &r, &g, &b) )
{
argsOK = true;
}
if (argsOK)
{
QPainter * painter = effect->_painter;
QPen oldPen = painter->pen();
QPen newPen(QColor(r,g,b,a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawPoint(x, y);
painter->setPen(oldPen);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageDrawRect(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int r, g, b;
int a = 255;
int startX = 0;
int startY = 0;
int thick = 1;
int width = effect->_imageSize.width();
int height = effect->_imageSize.height();
bool argsOK = false;
if ( argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &startX, &startY, &width, &height, &thick, &r, &g, &b, &a) )
{
argsOK = true;
}
if ( argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &width, &height, &thick, &r, &g, &b) )
{
argsOK = true;
}
if (argsOK)
{
QPainter * painter = effect->_painter;
QRect myQRect(startX,startY,width,height);
QPen oldPen = painter->pen();
QPen newPen(QColor(r,g,b,a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawRect(startX, startY, width, height);
painter->setPen(oldPen);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageSetPixel(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int r, g, b, x, y;
if ( argCount == 5 && PyArg_ParseTuple(args, "iiiii", &x, &y, &r, &g, &b ) )
{
effect->_image.setPixel(x,y,qRgb(r,g,b));
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageGetPixel(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int x, y;
if ( argCount == 2 && PyArg_ParseTuple(args, "ii", &x, &y) )
{
QRgb rgb = effect->_image.pixel(x,y);
return Py_BuildValue("iii",qRed(rgb),qGreen(rgb),qBlue(rgb));
}
return nullptr;
}
PyObject* Effect::wrapImageSave(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
QImage img(effect->_image.copy());
effect->_imageStack.append(img);
return Py_BuildValue("i", effect->_imageStack.size()-1);
}
PyObject* Effect::wrapImageMinSize(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int w, h;
int width = effect->_imageSize.width();
int height = effect->_imageSize.height();
if ( argCount == 2 && PyArg_ParseTuple(args, "ii", &w, &h) )
{
if (width<w || height<h)
{
delete effect->_painter;
effect->_image = effect->_image.scaled(qMax(width,w),qMax(height,h), Qt::KeepAspectRatioByExpanding, Qt::SmoothTransformation);
effect->_imageSize = effect->_image.size();
effect->_painter = new QPainter(&(effect->_image));
}
return Py_BuildValue("ii", effect->_image.width(), effect->_image.height());
}
return nullptr;
}
PyObject* Effect::wrapImageWidth(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
return Py_BuildValue("i", effect->_imageSize.width());
}
PyObject* Effect::wrapImageHeight(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
return Py_BuildValue("i", effect->_imageSize.height());
}
PyObject* Effect::wrapImageCRotate(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int argCount = PyTuple_Size(args);
int angle;
if ( argCount == 1 && PyArg_ParseTuple(args, "i", &angle ) )
{
angle = qMax(qMin(angle,360),0);
effect->_painter->rotate(angle);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageCOffset(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int offsetX = 0;
int offsetY = 0;
int argCount = PyTuple_Size(args);
if ( argCount == 2 )
{
PyArg_ParseTuple(args, "ii", &offsetX, &offsetY );
}
effect->_painter->translate(QPoint(offsetX,offsetY));
return Py_BuildValue("");
}
PyObject* Effect::wrapImageCShear(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
int sh,sv;
int argCount = PyTuple_Size(args);
if ( argCount == 2 && PyArg_ParseTuple(args, "ii", &sh, &sv ))
{
effect->_painter->shear(sh,sv);
return Py_BuildValue("");
}
return nullptr;
}
PyObject* Effect::wrapImageResetT(PyObject *self, PyObject *args)
{
Effect * effect = getEffect();
effect->_painter->resetTransform();
return Py_BuildValue("");
}
Effect * Effect::getEffect()
{
// extract the module from the runtime
PyObject * module = PyObject_GetAttrString(PyImport_AddModule("__main__"), "hyperion");
if (!PyModule_Check(module))
{
// something is wrong
Py_XDECREF(module);
Error(Logger::getInstance("EFFECTENGINE"), "Unable to retrieve the effect object from the Python runtime");
return nullptr;
}
// retrieve the capsule with the effect
PyObject * effectCapsule = PyObject_GetAttrString(module, "__effectObj");
Py_XDECREF(module);
if (!PyCapsule_CheckExact(effectCapsule))
{
// something is wrong
Py_XDECREF(effectCapsule);
Error(Logger::getInstance("EFFECTENGINE"), "Unable to retrieve the effect object from the Python runtime");
return nullptr;
}
// Get the effect from the capsule
Effect * effect = reinterpret_cast<Effect *>(PyCapsule_GetPointer(effectCapsule, nullptr));
Py_XDECREF(effectCapsule);
return effect;
}