hyperion.ng/libsrc/hyperion/Hyperion.cpp
brindosch 41671ad82c update adjustments and ui (#384)
* update

* update

* testit

* Revert "testit"

This reverts commit b1cc645161.

* update schema

* update

* add adjustment to serverinfo

* remove Adjustbool

* remove v4l2only

* fix json check for create effect

* update deb

* update

* update remote adjust

* update

* add eff schemas
2017-02-08 14:36:28 +01:00

798 lines
24 KiB
C++

// STL includes
#include <cassert>
#include <exception>
#include <sstream>
// QT includes
#include <QDateTime>
#include <QThread>
#include <QRegExp>
#include <QString>
#include <QStringList>
#include <QCryptographicHash>
#include <QFile>
#include <QFileInfo>
// hyperion include
#include <hyperion/Hyperion.h>
#include <hyperion/ImageProcessorFactory.h>
#include <hyperion/ImageProcessor.h>
#include <hyperion/ColorAdjustment.h>
// Leddevice includes
#include <leddevice/LedDevice.h>
#include <leddevice/LedDeviceFactory.h>
#include "MultiColorAdjustment.h"
#include "LinearColorSmoothing.h"
// effect engine includes
#include <effectengine/EffectEngine.h>
#define CORE_LOGGER Logger::getInstance("Core")
Hyperion* Hyperion::_hyperion = nullptr;
Hyperion* Hyperion::initInstance(const QJsonObject& qjsonConfig, const QString configFile) // REMOVE jsonConfig variable when the conversion from jsonCPP to QtJSON is finished
{
if ( Hyperion::_hyperion != nullptr )
throw std::runtime_error("Hyperion::initInstance can be called only one time");
Hyperion::_hyperion = new Hyperion(qjsonConfig, configFile);
return Hyperion::_hyperion;
}
Hyperion* Hyperion::getInstance()
{
if ( Hyperion::_hyperion == nullptr )
throw std::runtime_error("Hyperion::getInstance used without call of Hyperion::initInstance before");
return Hyperion::_hyperion;
}
ColorOrder Hyperion::createColorOrder(const QJsonObject &deviceConfig)
{
return stringToColorOrder(deviceConfig["colorOrder"].toString("rgb"));
}
ColorAdjustment * Hyperion::createColorAdjustment(const QJsonObject & adjustmentConfig)
{
const std::string id = adjustmentConfig["id"].toString("default").toStdString();
RgbChannelAdjustment * blackAdjustment = createRgbChannelAdjustment(adjustmentConfig, "black" , 0, 0, 0);
RgbChannelAdjustment * whiteAdjustment = createRgbChannelAdjustment(adjustmentConfig, "white" , 255,255,255);
RgbChannelAdjustment * redAdjustment = createRgbChannelAdjustment(adjustmentConfig, "red" , 255, 0, 0);
RgbChannelAdjustment * greenAdjustment = createRgbChannelAdjustment(adjustmentConfig, "green" , 0,255, 0);
RgbChannelAdjustment * blueAdjustment = createRgbChannelAdjustment(adjustmentConfig, "blue" , 0, 0,255);
RgbChannelAdjustment * cyanAdjustment = createRgbChannelAdjustment(adjustmentConfig, "cyan" , 0,255,255);
RgbChannelAdjustment * magentaAdjustment = createRgbChannelAdjustment(adjustmentConfig, "magenta", 255, 0,255);
RgbChannelAdjustment * yellowAdjustment = createRgbChannelAdjustment(adjustmentConfig, "yellow" , 255,255, 0);
RgbTransform * rgbTransform = createRgbTransform(adjustmentConfig);
ColorAdjustment * adjustment = new ColorAdjustment();
adjustment->_id = id;
adjustment->_rgbBlackAdjustment = *blackAdjustment;
adjustment->_rgbWhiteAdjustment = *whiteAdjustment;
adjustment->_rgbRedAdjustment = *redAdjustment;
adjustment->_rgbGreenAdjustment = *greenAdjustment;
adjustment->_rgbBlueAdjustment = *blueAdjustment;
adjustment->_rgbCyanAdjustment = *cyanAdjustment;
adjustment->_rgbMagentaAdjustment = *magentaAdjustment;
adjustment->_rgbYellowAdjustment = *yellowAdjustment;
adjustment->_rgbTransform = *rgbTransform;
// Cleanup the allocated individual adjustments
delete blackAdjustment;
delete whiteAdjustment;
delete redAdjustment;
delete greenAdjustment;
delete blueAdjustment;
delete cyanAdjustment;
delete magentaAdjustment;
delete yellowAdjustment;
delete rgbTransform;
return adjustment;
}
MultiColorAdjustment * Hyperion::createLedColorsAdjustment(const unsigned ledCnt, const QJsonObject & colorConfig)
{
// Create the result, the transforms are added to this
MultiColorAdjustment * adjustment = new MultiColorAdjustment(ledCnt);
const QJsonValue adjustmentConfig = colorConfig["channelAdjustment"];
const QRegExp overallExp("([0-9]+(\\-[0-9]+)?)(,[ ]*([0-9]+(\\-[0-9]+)?))*");
const QJsonArray & adjustmentConfigArray = adjustmentConfig.toArray();
for (signed i = 0; i < adjustmentConfigArray.size(); ++i)
{
const QJsonObject & config = adjustmentConfigArray.at(i).toObject();
ColorAdjustment * colorAdjustment = createColorAdjustment(config);
adjustment->addAdjustment(colorAdjustment);
const QString ledIndicesStr = config["leds"].toString("").trimmed();
if (ledIndicesStr.compare("*") == 0)
{
// Special case for indices '*' => all leds
adjustment->setAdjustmentForLed(colorAdjustment->_id, 0, ledCnt-1);
Info(CORE_LOGGER, "ColorAdjustment '%s' => [0; %d]", colorAdjustment->_id.c_str(), ledCnt-1);
continue;
}
if (!overallExp.exactMatch(ledIndicesStr))
{
Error(CORE_LOGGER, "Given led indices %d not correct format: %s", i, ledIndicesStr.toStdString().c_str());
continue;
}
std::stringstream ss;
const QStringList ledIndexList = ledIndicesStr.split(",");
for (int i=0; i<ledIndexList.size(); ++i) {
if (i > 0)
{
ss << ", ";
}
if (ledIndexList[i].contains("-"))
{
QStringList ledIndices = ledIndexList[i].split("-");
int startInd = ledIndices[0].toInt();
int endInd = ledIndices[1].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, startInd, endInd);
ss << startInd << "-" << endInd;
}
else
{
int index = ledIndexList[i].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, index, index);
ss << index;
}
}
Info(CORE_LOGGER, "ColorAdjustment '%s' => [%s]", colorAdjustment->_id.c_str(), ss.str().c_str());
}
return adjustment;
}
RgbTransform* Hyperion::createRgbTransform(const QJsonObject& colorConfig)
{
const double brightnessMin = colorConfig["brightnessMin"].toDouble(0.0);
const double brightness = colorConfig["brightness"].toDouble(0.5);
const double gammaR = colorConfig["gammaRed"].toDouble(1.0);
const double gammaG = colorConfig["gammaGreen"].toDouble(1.0);
const double gammaB = colorConfig["gammaBlue"].toDouble(1.0);
RgbTransform* transform = new RgbTransform(gammaR, gammaG, gammaB, brightnessMin, brightness);
return transform;
}
RgbChannelAdjustment* Hyperion::createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString channelName, const int defaultR, const int defaultG, const int defaultB)
{
const QJsonArray& channelConfig = colorConfig[channelName].toArray();
RgbChannelAdjustment* adjustment = new RgbChannelAdjustment(
channelConfig[0].toInt(defaultR),
channelConfig[1].toInt(defaultG),
channelConfig[2].toInt(defaultB),
"ChannelAdjust_"+channelName.toUpper());
return adjustment;
}
LedString Hyperion::createLedString(const QJsonValue& ledsConfig, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
const QJsonArray & ledConfigArray = ledsConfig.toArray();
int maxLedId = ledConfigArray.size();
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
Led led;
led.index = index["index"].toInt();
led.clone = index["clone"].toInt(-1);
if ( led.clone < -1 || led.clone >= maxLedId )
{
Warning(CORE_LOGGER, "LED %d: clone index of %d is out of range, clone ignored", led.index, led.clone);
led.clone = -1;
}
if ( led.clone < 0 )
{
const QJsonObject& hscanConfig = ledConfigArray[i].toObject()["hscan"].toObject();
const QJsonObject& vscanConfig = ledConfigArray[i].toObject()["vscan"].toObject();
led.minX_frac = std::max(0.0, std::min(1.0, hscanConfig["minimum"].toDouble()));
led.maxX_frac = std::max(0.0, std::min(1.0, hscanConfig["maximum"].toDouble()));
led.minY_frac = std::max(0.0, std::min(1.0, vscanConfig["minimum"].toDouble()));
led.maxY_frac = std::max(0.0, std::min(1.0, vscanConfig["maximum"].toDouble()));
// Fix if the user swapped min and max
if (led.minX_frac > led.maxX_frac)
{
std::swap(led.minX_frac, led.maxX_frac);
}
if (led.minY_frac > led.maxY_frac)
{
std::swap(led.minY_frac, led.maxY_frac);
}
// Get the order of the rgb channels for this led (default is device order)
led.colorOrder = stringToColorOrder(index["colorOrder"].toString(deviceOrderStr));
ledString.leds().push_back(led);
}
}
// Make sure the leds are sorted (on their indices)
std::sort(ledString.leds().begin(), ledString.leds().end(), [](const Led& lhs, const Led& rhs){ return lhs.index < rhs.index; });
return ledString;
}
LedString Hyperion::createLedStringClone(const QJsonValue& ledsConfig, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
const QJsonArray & ledConfigArray = ledsConfig.toArray();
int maxLedId = ledConfigArray.size();
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
Led led;
led.index = index["index"].toInt();
led.clone = index["clone"].toInt(-1);
if ( led.clone < -1 || led.clone >= maxLedId )
{
Warning(CORE_LOGGER, "LED %d: clone index of %d is out of range, clone ignored", led.index, led.clone);
led.clone = -1;
}
if ( led.clone >= 0 )
{
Debug(CORE_LOGGER, "LED %d: clone from led %d", led.index, led.clone);
led.minX_frac = 0;
led.maxX_frac = 0;
led.minY_frac = 0;
led.maxY_frac = 0;
// Get the order of the rgb channels for this led (default is device order)
led.colorOrder = stringToColorOrder(index["colorOrder"].toString(deviceOrderStr));
ledString.leds().push_back(led);
}
}
// Make sure the leds are sorted (on their indices)
std::sort(ledString.leds().begin(), ledString.leds().end(), [](const Led& lhs, const Led& rhs){ return lhs.index < rhs.index; });
return ledString;
}
QSize Hyperion::getLedLayoutGridSize(const QJsonValue& ledsConfig)
{
std::vector<int> midPointsX;
std::vector<int> midPointsY;
const QJsonArray & ledConfigArray = ledsConfig.toArray();
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
if (index["clone"].toInt(-1) < 0 )
{
const QJsonObject& hscanConfig = ledConfigArray[i].toObject()["hscan"].toObject();
const QJsonObject& vscanConfig = ledConfigArray[i].toObject()["vscan"].toObject();
double minX_frac = std::max(0.0, std::min(1.0, hscanConfig["minimum"].toDouble()));
double maxX_frac = std::max(0.0, std::min(1.0, hscanConfig["maximum"].toDouble()));
double minY_frac = std::max(0.0, std::min(1.0, vscanConfig["minimum"].toDouble()));
double maxY_frac = std::max(0.0, std::min(1.0, vscanConfig["maximum"].toDouble()));
// Fix if the user swapped min and max
if (minX_frac > maxX_frac)
{
std::swap(minX_frac, maxX_frac);
}
if (minY_frac > maxY_frac)
{
std::swap(minY_frac, maxY_frac);
}
// calculate mid point and make grid calculation
midPointsX.push_back( int(1000.0*(minX_frac + maxX_frac) / 2.0) );
midPointsY.push_back( int(1000.0*(minY_frac + maxY_frac) / 2.0) );
}
}
// remove duplicates
std::sort(midPointsX.begin(), midPointsX.end());
midPointsX.erase(std::unique(midPointsX.begin(), midPointsX.end()), midPointsX.end());
std::sort(midPointsY.begin(), midPointsY.end());
midPointsY.erase(std::unique(midPointsY.begin(), midPointsY.end()), midPointsY.end());
QSize gridSize( midPointsX.size(), midPointsY.size() );
Debug(CORE_LOGGER, "led layout grid: %dx%d", gridSize.width(), gridSize.height());
return gridSize;
}
LinearColorSmoothing * Hyperion::createColorSmoothing(const QJsonObject & smoothingConfig, LedDevice* leddevice)
{
std::string type = smoothingConfig["type"].toString("linear").toStdString();
std::transform(type.begin(), type.end(), type.begin(), ::tolower);
LinearColorSmoothing * device = nullptr;
type = "linear"; // TODO currently hardcoded type, delete it if we have more types
if (type == "linear")
{
Info( CORE_LOGGER, "Creating linear smoothing");
device = new LinearColorSmoothing(
leddevice,
smoothingConfig["updateFrequency"].toDouble(25.0),
smoothingConfig["time_ms"].toInt(200),
smoothingConfig["updateDelay"].toInt(0),
smoothingConfig["continuousOutput"].toBool(true)
);
}
else
{
Error(CORE_LOGGER, "Smoothing disabled, because of unknown type '%s'.", type.c_str());
}
device->setEnable(smoothingConfig["enable"].toBool(true));
InfoIf(!device->enabled(), CORE_LOGGER,"Smoothing disabled");
assert(device != nullptr);
return device;
}
MessageForwarder * Hyperion::createMessageForwarder(const QJsonObject & forwarderConfig)
{
MessageForwarder * forwarder = new MessageForwarder();
if ( !forwarderConfig.isEmpty() && forwarderConfig["enable"].toBool(true) )
{
if ( !forwarderConfig["json"].isNull() && forwarderConfig["json"].isArray() )
{
const QJsonArray & addr = forwarderConfig["json"].toArray();
for (signed i = 0; i < addr.size(); ++i)
{
Info(CORE_LOGGER, "Json forward to %s", addr.at(i).toString().toStdString().c_str());
forwarder->addJsonSlave(addr[i].toString().toStdString());
}
}
if ( !forwarderConfig["proto"].isNull() && forwarderConfig["proto"].isArray() )
{
const QJsonArray & addr = forwarderConfig["proto"].toArray();
for (signed i = 0; i < addr.size(); ++i)
{
Info(CORE_LOGGER, "Proto forward to %s", addr.at(i).toString().toStdString().c_str());
forwarder->addProtoSlave(addr[i].toString().toStdString());
}
}
}
return forwarder;
}
MessageForwarder * Hyperion::getForwarder()
{
return _messageForwarder;
}
Hyperion::Hyperion(const QJsonObject &qjsonConfig, const QString configFile)
: _ledString(createLedString(qjsonConfig["leds"], createColorOrder(qjsonConfig["device"].toObject())))
, _ledStringClone(createLedStringClone(qjsonConfig["leds"], createColorOrder(qjsonConfig["device"].toObject())))
, _muxer(_ledString.leds().size())
, _raw2ledAdjustment(createLedColorsAdjustment(_ledString.leds().size(), qjsonConfig["color"].toObject()))
, _effectEngine(nullptr)
, _messageForwarder(createMessageForwarder(qjsonConfig["forwarder"].toObject()))
, _qjsonConfig(qjsonConfig)
, _configFile(configFile)
, _timer()
, _log(CORE_LOGGER)
, _hwLedCount(_ledString.leds().size())
, _sourceAutoSelectEnabled(true)
, _configHash()
, _ledGridSize(getLedLayoutGridSize(qjsonConfig["leds"]))
{
registerPriority("Off", PriorityMuxer::LOWEST_PRIORITY);
if (!_raw2ledAdjustment->verifyAdjustments())
{
throw std::runtime_error("Color adjustment incorrectly set");
}
// set color correction activity state
const QJsonObject& color = qjsonConfig["color"].toObject();
// initialize the image processor factory
_ledMAppingType = ImageProcessor::mappingTypeToInt(color["imageToLedMappingType"].toString());
ImageProcessorFactory::getInstance().init(_ledString, qjsonConfig["blackborderdetector"].toObject(),_ledMAppingType );
getComponentRegister().componentStateChanged(hyperion::COMP_FORWARDER, _messageForwarder->forwardingEnabled());
// initialize leddevices
_device = LedDeviceFactory::construct(qjsonConfig["device"].toObject(),_hwLedCount);
_deviceSmooth = createColorSmoothing(qjsonConfig["smoothing"].toObject(), _device);
getComponentRegister().componentStateChanged(hyperion::COMP_SMOOTHING, _deviceSmooth->componentState());
// setup the timer
_timer.setSingleShot(true);
QObject::connect(&_timer, SIGNAL(timeout()), this, SLOT(update()));
// create the effect engine
_effectEngine = new EffectEngine(this,qjsonConfig["effects"].toObject());
const QJsonObject& device = qjsonConfig["device"].toObject();
unsigned int hwLedCount = device["ledCount"].toInt(getLedCount());
_hwLedCount = std::max(hwLedCount, getLedCount());
Debug(_log,"configured leds: %d hw leds: %d", getLedCount(), _hwLedCount);
WarningIf(hwLedCount < getLedCount(), _log, "more leds configured than available. check 'ledCount' in 'device' section");
WarningIf(!configWriteable(), _log, "Your config is not writeable - you won't be able to use the web ui for configuration.");
// initialize hash of current config
configModified();
const QJsonObject & generalConfig = qjsonConfig["general"].toObject();
_configVersionId = generalConfig["configVersion"].toInt(-1);
// initialize the leds
update();
}
void Hyperion::freeObjects(bool emitCloseSignal)
{
if (emitCloseSignal)
{
emit closing();
}
// switch off all leds
clearall();
_device->switchOff();
// delete components on exit of hyperion core
delete _effectEngine;
delete _device;
delete _raw2ledAdjustment;
delete _messageForwarder;
}
Hyperion::~Hyperion()
{
freeObjects(false);
}
unsigned Hyperion::getLedCount() const
{
return _ledString.leds().size();
}
bool Hyperion::configModified()
{
bool isModified = false;
QFile f(_configFile);
if (f.open(QFile::ReadOnly))
{
QCryptographicHash hash(QCryptographicHash::Sha1);
if (hash.addData(&f))
{
if (_configHash.size() == 0)
{
_configHash = hash.result();
}
else
{
isModified = _configHash != hash.result();
}
}
}
f.close();
return isModified;
}
bool Hyperion::configWriteable()
{
QFile file(_configFile);
QFileInfo fileInfo(file);
return fileInfo.isWritable() && fileInfo.isReadable();
}
void Hyperion::registerPriority(const std::string name, const int priority)
{
Info(_log, "Register new input source named '%s' for priority channel '%d'", name.c_str(), priority );
for(auto const &entry : _priorityRegister)
{
WarningIf( ( entry.first != name && entry.second == priority), _log,
"Input source '%s' uses same priority channel (%d) as '%s'.", name.c_str(), priority, entry.first.c_str());
}
_priorityRegister.emplace(name,priority);
}
void Hyperion::unRegisterPriority(const std::string name)
{
Info(_log, "Unregister input source named '%s' from priority register", name.c_str());
_priorityRegister.erase(name);
}
void Hyperion::setSourceAutoSelectEnabled(bool enabled)
{
_sourceAutoSelectEnabled = enabled;
if (! _sourceAutoSelectEnabled)
{
setCurrentSourcePriority(_muxer.getCurrentPriority());
}
update();
DebugIf( !_sourceAutoSelectEnabled, _log, "source auto select is disabled");
InfoIf(_sourceAutoSelectEnabled, _log, "set current input source to auto select");
}
bool Hyperion::setCurrentSourcePriority(int priority )
{
bool priorityValid = _muxer.hasPriority(priority);
if (priorityValid)
{
DebugIf(_sourceAutoSelectEnabled, _log, "source auto select is disabled");
_sourceAutoSelectEnabled = false;
_currentSourcePriority = priority;
Info(_log, "set current input source to priority channel %d", _currentSourcePriority);
}
return priorityValid;
}
void Hyperion::setComponentState(const hyperion::Components component, const bool state)
{
if (component == hyperion::COMP_SMOOTHING)
{
_deviceSmooth->setEnable(state);
getComponentRegister().componentStateChanged(hyperion::COMP_SMOOTHING, _deviceSmooth->componentState());
}
else
{
emit componentStateChanged(component, state);
}
}
void Hyperion::setColor(int priority, const ColorRgb &color, const int timeout_ms, bool clearEffects)
{
// create led output
std::vector<ColorRgb> ledColors(_ledString.leds().size(), color);
// set colors
setColors(priority, ledColors, timeout_ms, clearEffects, hyperion::COMP_COLOR);
}
void Hyperion::setColors(int priority, const std::vector<ColorRgb>& ledColors, const int timeout_ms, bool clearEffects, hyperion::Components component)
{
// clear effects if this call does not come from an effect
if (clearEffects)
{
_effectEngine->channelCleared(priority);
}
if (timeout_ms > 0)
{
const uint64_t timeoutTime = QDateTime::currentMSecsSinceEpoch() + timeout_ms;
_muxer.setInput(priority, ledColors, timeoutTime, component);
}
else
{
_muxer.setInput(priority, ledColors, -1, component);
}
if (! _sourceAutoSelectEnabled || priority == _muxer.getCurrentPriority())
{
update();
}
}
void Hyperion::setImage(int priority, const Image<ColorRgb> & image, int duration_ms)
{
if (priority == getCurrentPriority())
{
emit emitImage(priority, image, duration_ms);
}
}
const std::vector<std::string> & Hyperion::getAdjustmentIds() const
{
return _raw2ledAdjustment->getAdjustmentIds();
}
ColorAdjustment * Hyperion::getAdjustment(const std::string& id)
{
return _raw2ledAdjustment->getAdjustment(id);
}
void Hyperion::adjustmentsUpdated()
{
update();
}
void Hyperion::clear(int priority)
{
if (_muxer.hasPriority(priority))
{
_muxer.clearInput(priority);
if (!_sourceAutoSelectEnabled && _currentSourcePriority == priority )
{
setSourceAutoSelectEnabled(true);
}
// update leds if necessary
if (priority < _muxer.getCurrentPriority())
{
update();
}
}
// send clear signal to the effect engine
// (outside the check so the effect gets cleared even when the effect is not sending colors)
_effectEngine->channelCleared(priority);
}
void Hyperion::clearall()
{
_muxer.clearAll();
setSourceAutoSelectEnabled(true);
// update leds
update();
// send clearall signal to the effect engine
_effectEngine->allChannelsCleared();
}
int Hyperion::getCurrentPriority() const
{
return _sourceAutoSelectEnabled || !_muxer.hasPriority(_currentSourcePriority) ? _muxer.getCurrentPriority() : _currentSourcePriority;
}
QList<int> Hyperion::getActivePriorities() const
{
return _muxer.getPriorities();
}
const Hyperion::InputInfo &Hyperion::getPriorityInfo(const int priority) const
{
return _muxer.getInputInfo(priority);
}
void Hyperion::reloadEffects()
{
_effectEngine->readEffects();
}
const std::list<EffectDefinition> & Hyperion::getEffects() const
{
return _effectEngine->getEffects();
}
const std::list<ActiveEffectDefinition> & Hyperion::getActiveEffects()
{
return _effectEngine->getActiveEffects();
}
const std::list<EffectSchema> & Hyperion::getEffectSchemas()
{
return _effectEngine->getEffectSchemas();
}
int Hyperion::setEffect(const QString &effectName, int priority, int timeout)
{
return _effectEngine->runEffect(effectName, priority, timeout);
}
int Hyperion::setEffect(const QString &effectName, const QJsonObject &args, int priority, int timeout, QString pythonScript)
{
return _effectEngine->runEffect(effectName, args, priority, timeout, pythonScript);
}
void Hyperion::setLedMappingType(int mappingType)
{
_ledMAppingType = mappingType;
emit imageToLedsMappingChanged(mappingType);
}
void Hyperion::update()
{
// Update the muxer, cleaning obsolete priorities
_muxer.setCurrentTime(QDateTime::currentMSecsSinceEpoch());
// Obtain the current priority channel
int priority = _sourceAutoSelectEnabled || !_muxer.hasPriority(_currentSourcePriority) ? _muxer.getCurrentPriority() : _currentSourcePriority;
const PriorityMuxer::InputInfo & priorityInfo = _muxer.getInputInfo(priority);
// copy ledcolors to local buffer
_ledBuffer.reserve(_hwLedCount);
_ledBuffer = priorityInfo.ledColors;
if ( priority < PriorityMuxer::LOWEST_PRIORITY)
{
_raw2ledAdjustment->applyAdjustment(_ledBuffer);
}
// init colororder vector, if empty
if (_ledStringColorOrder.empty())
{
for (Led& led : _ledString.leds())
{
_ledStringColorOrder.push_back(led.colorOrder);
}
for (Led& led : _ledStringClone.leds())
{
_ledStringColorOrder.insert(_ledStringColorOrder.begin() + led.index, led.colorOrder);
}
}
// insert cloned leds into buffer
for (Led& led : _ledStringClone.leds())
{
_ledBuffer.insert(_ledBuffer.begin() + led.index, _ledBuffer.at(led.clone));
}
int i = 0;
for (ColorRgb& color : _ledBuffer)
{
//const ColorOrder ledColorOrder = leds.at(i).colorOrder;
// correct the color byte order
switch (_ledStringColorOrder.at(i))
{
case ORDER_RGB:
// leave as it is
break;
case ORDER_BGR:
std::swap(color.red, color.blue);
break;
case ORDER_RBG:
std::swap(color.green, color.blue);
break;
case ORDER_GRB:
std::swap(color.red, color.green);
break;
case ORDER_GBR:
std::swap(color.red, color.green);
std::swap(color.green, color.blue);
break;
case ORDER_BRG:
std::swap(color.red, color.blue);
std::swap(color.green, color.blue);
break;
}
i++;
}
if ( _hwLedCount > _ledBuffer.size() )
{
_ledBuffer.resize(_hwLedCount, ColorRgb::BLACK);
}
// Write the data to the device
if (_deviceSmooth->enabled())
_deviceSmooth->setLedValues(_ledBuffer);
else
_device->setLedValues(_ledBuffer);
// Start the timeout-timer
if (priorityInfo.timeoutTime_ms == -1)
{
_timer.stop();
}
else
{
int timeout_ms = std::max(0, int(priorityInfo.timeoutTime_ms - QDateTime::currentMSecsSinceEpoch()));
_timer.start(timeout_ms);
}
}