hyperion.ng/libsrc/leddevice/dev_net/LedDeviceFadeCandy.cpp
2020-08-08 00:21:19 +02:00

233 lines
5.5 KiB
C++

#include "LedDeviceFadeCandy.h"
// https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types#ssize-t
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
// Constants
namespace {
const signed MAX_NUM_LEDS = 10000; // OPC can handle 21845 LEDs - in theory, fadecandy device should handle 10000 LEDs
const unsigned OPC_SET_PIXELS = 0; // OPC command codes
const unsigned OPC_SYS_EX = 255; // OPC command codes
const unsigned OPC_HEADER_SIZE = 4; // OPC header size
} //End of constants
// TCP elements
const quint16 STREAM_DEFAULT_PORT = 7890;
LedDeviceFadeCandy::LedDeviceFadeCandy(const QJsonObject &deviceConfig)
: LedDevice(deviceConfig)
, _client(nullptr)
,_host()
,_port(STREAM_DEFAULT_PORT)
{
}
LedDeviceFadeCandy::~LedDeviceFadeCandy()
{
delete _client;
}
LedDevice* LedDeviceFadeCandy::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceFadeCandy(deviceConfig);
}
bool LedDeviceFadeCandy::init(const QJsonObject &deviceConfig)
{
bool isInitOK = false;
if ( LedDevice::init(deviceConfig) )
{
if (getLedCount() > MAX_NUM_LEDS)
{
QString errortext = QString ("More LED configured than allowed (%1)").arg(MAX_NUM_LEDS);
this->setInError(errortext);
isInitOK = false;
}
else
{
_host = deviceConfig["output"].toString("127.0.0.1");
_port = deviceConfig["port"].toInt(STREAM_DEFAULT_PORT);
//If host not configured the init fails
if ( _host.isEmpty() )
{
this->setInError("No target hostname nor IP defined");
}
else
{
_channel = deviceConfig["channel"].toInt(0);
_gamma = deviceConfig["gamma"].toDouble(1.0);
_noDither = ! deviceConfig["dither"].toBool(false);
_noInterp = ! deviceConfig["interpolation"].toBool(false);
_manualLED = deviceConfig["manualLed"].toBool(false);
_ledOnOff = deviceConfig["ledOn"].toBool(false);
_setFcConfig = deviceConfig["setFcConfig"].toBool(false);
_whitePoint_r = 1.0;
_whitePoint_g = 1.0;
_whitePoint_b = 1.0;
const QJsonArray whitePointConfig = deviceConfig["whitePoint"].toArray();
if ( !whitePointConfig.isEmpty() && whitePointConfig.size() == 3 )
{
_whitePoint_r = whitePointConfig[0].toDouble() / 255.0;
_whitePoint_g = whitePointConfig[1].toDouble() / 255.0;
_whitePoint_b = whitePointConfig[2].toDouble() / 255.0;
}
_opc_data.resize( _ledRGBCount + OPC_HEADER_SIZE );
_opc_data[0] = _channel;
_opc_data[1] = OPC_SET_PIXELS;
_opc_data[2] = _ledRGBCount >> 8;
_opc_data[3] = _ledRGBCount & 0xff;
if ( initNetwork() )
{
isInitOK = true;
}
}
}
}
return isInitOK;
}
bool LedDeviceFadeCandy::initNetwork()
{
bool isInitOK = false;
if ( _client == nullptr )
{
_client = new QTcpSocket(this);
isInitOK = true;
}
return isInitOK;
}
int LedDeviceFadeCandy::open()
{
int retval = -1;
QString errortext;
_isDeviceReady = false;
// Try to open the LedDevice
if ( !tryConnect() )
{
errortext = QString ("Failed to open device.");
this->setInError( errortext );
}
else
{
// Everything is OK, device is ready
_isDeviceReady = true;
retval = 0;
}
return retval;
}
int LedDeviceFadeCandy::close()
{
int retval = 0;
_isDeviceReady = false;
// LedDevice specific closing activities
if ( _client != nullptr )
{
_client->close();
// Everything is OK -> device is closed
}
return retval;
}
bool LedDeviceFadeCandy::isConnected()
{
bool connected = false;
if ( _client != nullptr )
{
connected = _client->state() == QAbstractSocket::ConnectedState;
}
return connected;
}
bool LedDeviceFadeCandy::tryConnect()
{
if ( _client != nullptr )
{
if ( _client->state() == QAbstractSocket::UnconnectedState ) {
_client->connectToHost( _host, _port);
if ( _client->waitForConnected(1000) )
{
Info(_log,"fadecandy/opc: connected to %s:%i on channel %i", QSTRING_CSTR(_host), _port, _channel);
if (_setFcConfig)
{
sendFadeCandyConfiguration();
}
}
}
}
return isConnected();
}
int LedDeviceFadeCandy::write( const std::vector<ColorRgb> & ledValues )
{
uint idx = OPC_HEADER_SIZE;
for (const ColorRgb& color : ledValues)
{
_opc_data[idx ] = unsigned( color.red );
_opc_data[idx+1] = unsigned( color.green );
_opc_data[idx+2] = unsigned( color.blue );
idx += 3;
}
int retval = transferData()<0 ? -1 : 0;
return retval;
}
int LedDeviceFadeCandy::transferData()
{
if ( isConnected() || tryConnect() )
{
return _client->write( _opc_data, _opc_data.size() );
}
return -2;
}
int LedDeviceFadeCandy::sendSysEx(uint8_t systemId, uint8_t commandId, QByteArray msg)
{
if ( isConnected() )
{
QByteArray sysExData;
uint data_size = msg.size() + 4;
sysExData.resize( 4 + OPC_HEADER_SIZE );
sysExData[0] = 0;
sysExData[1] = OPC_SYS_EX;
sysExData[2] = data_size >>8;
sysExData[3] = data_size &0xff;
sysExData[4] = systemId >>8;
sysExData[5] = systemId &0xff;
sysExData[6] = commandId >>8;
sysExData[7] = commandId &0xff;
sysExData += msg;
return _client->write( sysExData, sysExData.size() );
}
return -1;
}
void LedDeviceFadeCandy::sendFadeCandyConfiguration()
{
Debug(_log, "send configuration to fadecandy");
QString data = "{\"gamma\": "+QString::number(_gamma,'g',4)+", \"whitepoint\": ["+QString::number(_whitePoint_r,'g',4)+", "+QString::number(_whitePoint_g,'g',4)+", "+QString::number(_whitePoint_b,'g',4)+"]}";
sendSysEx(1, 1, data.toLocal8Bit() );
char firmware_data = ((uint8_t)_noDither | ((uint8_t)_noInterp << 1) | ((uint8_t)_manualLED << 2) | ((uint8_t)_ledOnOff << 3) );
sendSysEx(1, 2, QByteArray(1,firmware_data) );
}