LordGrey 0fce43840c
Corrections (#1662)
* Address "SyntaxWarning: invalid escape sequence"

* Correcttypo for CEC Blue button

* Fix enablement when already open

* Icons path corrected

* Correct path and simplify command

* Have enum class generalised

* Address compile warnings

* Update tinkerforce led_strip

* Address compiler waring

* Fix Install/Uninstall desktop- and icon file handling

* Address "fatal: detected dubious ownership in repository"

* platform fix

* Test  "fatal: detected dubious ownership in repository"

* Update "fatal: detected dubious ownership in repository"

* Update to Protobuf 25.1

* Update cmds with sudo

* Update SEDU default baud rates

* Replace deprecated Py_NoSiteFlag

* Correct default config

---------

Co-authored-by: Paulchen-Panther <16664240+Paulchen-Panther@users.noreply.github.com>
2023-12-03 21:23:31 +01:00

2718 lines
69 KiB
C

/*
* Copyright (C) 2012-2016, 2019-2020 Matthias Bolte <matthias@tinkerforge.com>
* Copyright (C) 2011 Olaf Lüke <olaf@tinkerforge.com>
*
* Redistribution and use in source and binary forms of this file,
* with or without modification, are permitted. See the Creative
* Commons Zero (CC0 1.0) License for more details.
*/
#ifndef _WIN32
#ifndef _BSD_SOURCE
#define _BSD_SOURCE // for usleep from unistd.h
#endif
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE
#endif
#endif
#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wincrypt.h>
#include <process.h>
#else
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h> // connect
#include <sys/select.h>
#include <sys/stat.h>
#include <netinet/tcp.h> // TCP_NO_DELAY
#include <netdb.h> // gethostbyname
#include <netinet/in.h> // struct sockaddr_in
#endif
#ifdef _MSC_VER
// replace getpid with GetCurrentProcessId
#define getpid GetCurrentProcessId
// avoid warning from MSVC about deprecated POSIX name
#define strdup _strdup
#else
#include <sys/time.h> // gettimeofday
#endif
#if defined _MSC_VER && _MSC_VER < 1900
// snprintf is not available in older MSVC versions
#define snprintf _snprintf
#endif
#define IPCON_EXPOSE_INTERNALS
#define IPCON_EXPOSE_MILLISLEEP
#include "ip_connection.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined _MSC_VER || defined __BORLANDC__
#pragma pack(push)
#pragma pack(1)
#define ATTRIBUTE_PACKED
#elif defined __GNUC__
#ifdef _WIN32
// workaround struct packing bug in GCC 4.7 on Windows
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52991
#define ATTRIBUTE_PACKED __attribute__((gcc_struct, packed))
#else
#define ATTRIBUTE_PACKED __attribute__((packed))
#endif
#else
#error unknown compiler, do not know how to enable struct packing
#endif
typedef struct {
PacketHeader header;
} ATTRIBUTE_PACKED DeviceEnumerate_Broadcast;
typedef struct {
PacketHeader header;
char uid[8];
char connected_uid[8];
char position;
uint8_t hardware_version[3];
uint8_t firmware_version[3];
uint16_t device_identifier;
uint8_t enumeration_type;
} ATTRIBUTE_PACKED DeviceEnumerate_Callback;
typedef struct {
PacketHeader header;
} ATTRIBUTE_PACKED DeviceGetIdentity_Request;
typedef struct {
PacketHeader header;
char uid[8];
char connected_uid[8];
char position;
uint8_t hardware_version[3];
uint8_t firmware_version[3];
uint16_t device_identifier;
} ATTRIBUTE_PACKED DeviceGetIdentity_Response;
typedef struct {
PacketHeader header;
} ATTRIBUTE_PACKED BrickDaemonGetAuthenticationNonce_Request;
typedef struct {
PacketHeader header;
uint8_t server_nonce[4];
} ATTRIBUTE_PACKED BrickDaemonGetAuthenticationNonce_Response;
typedef struct {
PacketHeader header;
uint8_t client_nonce[4];
uint8_t digest[20];
} ATTRIBUTE_PACKED BrickDaemonAuthenticate_Request;
#if defined _MSC_VER || defined __BORLANDC__
#pragma pack(pop)
#endif
#undef ATTRIBUTE_PACKED
#ifndef __cplusplus
#ifdef __GNUC__
#ifndef __GNUC_PREREQ
#define __GNUC_PREREQ(major, minor) \
((((__GNUC__) << 16) + (__GNUC_MINOR__)) >= (((major) << 16) + (minor)))
#endif
#if __GNUC_PREREQ(4, 6)
#define STATIC_ASSERT(condition, message) \
_Static_assert(condition, message);
#else
#define STATIC_ASSERT(condition, message) // FIXME
#endif
#else
#define STATIC_ASSERT(condition, message) // FIXME
#endif
STATIC_ASSERT(sizeof(PacketHeader) == 8, "PacketHeader has invalid size")
STATIC_ASSERT(sizeof(Packet) == 80, "Packet has invalid size")
STATIC_ASSERT(sizeof(DeviceEnumerate_Broadcast) == 8, "DeviceEnumerate_Broadcast has invalid size")
STATIC_ASSERT(sizeof(DeviceEnumerate_Callback) == 34, "DeviceEnumerate_Callback has invalid size")
STATIC_ASSERT(sizeof(DeviceGetIdentity_Request) == 8, "DeviceGetIdentity_Request has invalid size")
STATIC_ASSERT(sizeof(DeviceGetIdentity_Response) == 33, "DeviceGetIdentity_Response has invalid size")
STATIC_ASSERT(sizeof(BrickDaemonGetAuthenticationNonce_Request) == 8, "BrickDaemonGetAuthenticationNonce_Request has invalid size")
STATIC_ASSERT(sizeof(BrickDaemonGetAuthenticationNonce_Response) == 12, "BrickDaemonGetAuthenticationNonce_Response has invalid size")
STATIC_ASSERT(sizeof(BrickDaemonAuthenticate_Request) == 32, "BrickDaemonAuthenticate_Request has invalid size")
#endif
void millisleep(uint32_t msec) {
#ifdef _WIN32
Sleep(msec);
#else
if (msec >= 1000) {
sleep(msec / 1000);
msec %= 1000;
}
usleep(msec * 1000);
#endif
}
/*****************************************************************************
*
* SHA1
*
*****************************************************************************/
/*
* Based on the SHA-1 C implementation by Steve Reid <steve@edmweb.com>
* 100% Public Domain
*
* Test Vectors (from FIPS PUB 180-1)
* "abc"
* A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
* A million repetitions of "a"
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#define SHA1_BLOCK_LENGTH 64
#define SHA1_DIGEST_LENGTH 20
typedef struct {
uint32_t state[5];
uint64_t count;
uint8_t buffer[SHA1_BLOCK_LENGTH];
} SHA1;
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
// blk0() and blk() perform the initial expand. blk0() deals with host endianess
#define blk0(i) (block[i] = htonl(block[i]))
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15]^block[(i+2)&15]^block[i&15],1))
// (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30)
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30)
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30)
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30)
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30)
// hash a single 512-bit block. this is the core of the algorithm
static uint32_t sha1_transform(SHA1 *sha1, const uint8_t buffer[SHA1_BLOCK_LENGTH]) {
uint32_t a, b, c, d, e;
uint32_t block[SHA1_BLOCK_LENGTH / 4];
memcpy(&block, buffer, SHA1_BLOCK_LENGTH);
// copy sha1->state[] to working variables
a = sha1->state[0];
b = sha1->state[1];
c = sha1->state[2];
d = sha1->state[3];
e = sha1->state[4];
// 4 rounds of 20 operations each (loop unrolled)
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
// add the working variables back into sha1->state[]
sha1->state[0] += a;
sha1->state[1] += b;
sha1->state[2] += c;
sha1->state[3] += d;
sha1->state[4] += e;
// wipe variables
a = b = c = d = e = 0;
return a + b + c + d + e; // return to avoid dead-store warning from clang static analyzer
}
static void sha1_init(SHA1 *sha1) {
sha1->state[0] = 0x67452301;
sha1->state[1] = 0xEFCDAB89;
sha1->state[2] = 0x98BADCFE;
sha1->state[3] = 0x10325476;
sha1->state[4] = 0xC3D2E1F0;
sha1->count = 0;
}
static void sha1_update(SHA1 *sha1, const uint8_t *data, size_t length) {
size_t i, j;
j = (size_t)((sha1->count >> 3) & 63);
sha1->count += (uint64_t)length << 3;
if ((j + length) > 63) {
i = 64 - j;
memcpy(&sha1->buffer[j], data, i);
sha1_transform(sha1, sha1->buffer);
for (; i + 63 < length; i += 64) {
sha1_transform(sha1, &data[i]);
}
j = 0;
} else {
i = 0;
}
memcpy(&sha1->buffer[j], &data[i], length - i);
}
static void sha1_final(SHA1 *sha1, uint8_t digest[SHA1_DIGEST_LENGTH]) {
uint32_t i;
uint8_t count[8];
for (i = 0; i < 8; i++) {
// this is endian independent
count[i] = (uint8_t)((sha1->count >> ((7 - (i & 7)) * 8)) & 255);
}
sha1_update(sha1, (uint8_t *)"\200", 1);
while ((sha1->count & 504) != 448) {
sha1_update(sha1, (uint8_t *)"\0", 1);
}
sha1_update(sha1, count, 8);
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
digest[i] = (uint8_t)((sha1->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
memset(sha1, 0, sizeof(*sha1));
}
#undef rol
#undef blk0
#undef blk
#undef R0
#undef R1
#undef R2
#undef R3
#undef R4
/*****************************************************************************
*
* Utils
*
*****************************************************************************/
static int string_length(const char *s, int max_length) {
const char *p = s;
int n = 0;
while (*p != '\0' && n < max_length) {
++p;
++n;
}
return n;
}
#ifdef _MSC_VER
// difference between Unix epoch and January 1, 1601 in 100-nanoseconds
#define DELTA_EPOCH 116444736000000000ULL
typedef void (WINAPI *GETSYSTEMTIMEPRECISEASFILETIME)(LPFILETIME);
// implement gettimeofday based on GetSystemTime(Precise)AsFileTime
static int gettimeofday(struct timeval *tv, struct timezone *tz) {
GETSYSTEMTIMEPRECISEASFILETIME ptr_GetSystemTimePreciseAsFileTime = NULL;
FILETIME ft;
uint64_t t;
(void)tz;
if (tv != NULL) {
#pragma warning(push)
#pragma warning(disable: 4191) // stop MSVC from warning about casting FARPROC
ptr_GetSystemTimePreciseAsFileTime =
(GETSYSTEMTIMEPRECISEASFILETIME)GetProcAddress(GetModuleHandleA("kernel32"),
"GetSystemTimePreciseAsFileTime");
#pragma warning(pop)
if (ptr_GetSystemTimePreciseAsFileTime != NULL) {
ptr_GetSystemTimePreciseAsFileTime(&ft);
} else {
GetSystemTimeAsFileTime(&ft);
}
t = ((uint64_t)ft.dwHighDateTime << 32) | (uint64_t)ft.dwLowDateTime;
t = (t - DELTA_EPOCH) / 10; // 100-nanoseconds to microseconds
tv->tv_sec = (long)(t / 1000000UL);
tv->tv_usec = (long)(t % 1000000UL);
}
return 0;
}
#endif
#ifndef _WIN32
static int read_uint32_non_blocking(const char *filename, uint32_t *value) {
int fd = open(filename, O_NONBLOCK);
int rc;
if (fd < 0) {
return -1;
}
rc = (int)read(fd, value, sizeof(uint32_t));
close(fd);
return rc != sizeof(uint32_t) ? -1 : 0;
}
#endif
// this function is not meant to be called often,
// this function is meant to provide a good random seed value
static uint32_t get_random_uint32(void) {
uint32_t r = 0;
struct timeval tv;
uint32_t seconds;
uint32_t microseconds;
#ifdef _WIN32
HCRYPTPROV hprovider;
if (!CryptAcquireContext(&hprovider, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) {
goto fallback;
}
if (!CryptGenRandom(hprovider, sizeof(r), (BYTE *)&r)) {
CryptReleaseContext(hprovider, 0);
goto fallback;
}
CryptReleaseContext(hprovider, 0);
#else
// try /dev/urandom first, if not available or a read would
// block then fall back to /dev/random
if (read_uint32_non_blocking("/dev/urandom", &r) < 0) {
if (read_uint32_non_blocking("/dev/random", &r) < 0) {
goto fallback;
}
}
#endif
return r;
fallback:
// if no other random source is available fall back to the current time
if (gettimeofday(&tv, NULL) < 0) {
seconds = (uint32_t)time(NULL);
microseconds = 0;
} else {
seconds = (uint32_t)tv.tv_sec;
microseconds = tv.tv_usec;
}
return (seconds << 26 | seconds >> 6) + microseconds + getpid(); // overflow is intended
}
static void hmac_sha1(uint8_t *secret, int secret_length,
uint8_t *data, int data_length,
uint8_t digest[SHA1_DIGEST_LENGTH]) {
SHA1 sha1;
uint8_t secret_digest[SHA1_DIGEST_LENGTH];
uint8_t inner_digest[SHA1_DIGEST_LENGTH];
uint8_t ipad[SHA1_BLOCK_LENGTH];
uint8_t opad[SHA1_BLOCK_LENGTH];
int i;
if (secret_length > SHA1_BLOCK_LENGTH) {
sha1_init(&sha1);
sha1_update(&sha1, secret, secret_length);
sha1_final(&sha1, secret_digest);
secret = secret_digest;
secret_length = SHA1_DIGEST_LENGTH;
}
// inner digest
for (i = 0; i < secret_length; ++i) {
ipad[i] = secret[i] ^ 0x36;
}
for (i = secret_length; i < SHA1_BLOCK_LENGTH; ++i) {
ipad[i] = 0x36;
}
sha1_init(&sha1);
sha1_update(&sha1, ipad, SHA1_BLOCK_LENGTH);
sha1_update(&sha1, data, data_length);
sha1_final(&sha1, inner_digest);
// outer digest
for (i = 0; i < secret_length; ++i) {
opad[i] = secret[i] ^ 0x5C;
}
for (i = secret_length; i < SHA1_BLOCK_LENGTH; ++i) {
opad[i] = 0x5C;
}
sha1_init(&sha1);
sha1_update(&sha1, opad, SHA1_BLOCK_LENGTH);
sha1_update(&sha1, inner_digest, SHA1_DIGEST_LENGTH);
sha1_final(&sha1, digest);
}
/*****************************************************************************
*
* BASE58
*
*****************************************************************************/
static const char BASE58_ALPHABET[] = \
"123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ";
#if 0
#define BASE58_MAX_STR_SIZE 13
static void base58_encode(uint64_t value, char *str) {
uint32_t mod;
char reverse_str[BASE58_MAX_STR_SIZE] = {'\0'};
int i = 0;
int k = 0;
while (value >= 58) {
mod = value % 58;
reverse_str[i] = BASE58_ALPHABET[mod];
value = value / 58;
++i;
}
reverse_str[i] = BASE58_ALPHABET[value];
for (k = 0; k <= i; k++) {
str[k] = reverse_str[i - k];
}
for (; k < BASE58_MAX_STR_SIZE; k++) {
str[k] = '\0';
}
}
#endif
// https://www.fefe.de/intof.html
static bool uint64_add(uint64_t a, uint64_t b, uint64_t *c) {
if (UINT64_MAX - a < b) {
return false;
}
*c = a + b;
return true;
}
static bool uint64_multiply(uint64_t a, uint64_t b, uint64_t *c) {
uint64_t a0 = a & UINT32_MAX;
uint64_t a1 = a >> 32;
uint64_t b0 = b & UINT32_MAX;
uint64_t b1 = b >> 32;
uint64_t c0;
uint64_t c1;
if (a1 > 0 && b1 > 0) {
return false;
}
c1 = a1 * b0 + a0 * b1;
if (c1 > UINT32_MAX) {
return false;
}
c0 = a0 * b0;
c1 <<= 32;
return uint64_add(c1, c0, c);
}
static bool base58_decode(const char *str, uint64_t *ret_value) {
int i = strlen(str) - 1;
int k;
uint64_t next;
uint64_t value = 0;
uint64_t base = 1;
*ret_value = 0;
for (; i >= 0; --i) {
for (k = 0; k < 58; ++k) {
if (BASE58_ALPHABET[k] == str[i]) {
break;
}
}
if (k == 58) {
return false; // invalid char
}
if (!uint64_multiply(k, base, &next)) {
return false; // overflow
}
if (!uint64_add(value, next, &value)) {
return false; // overflow
}
if (i > 0 && !uint64_multiply(base, 58, &base)) {
return false; // overflow
}
}
*ret_value = value;
return true;
}
/*****************************************************************************
*
* Socket
*
*****************************************************************************/
struct _Socket {
#ifdef _WIN32
SOCKET handle;
#else
int handle;
#endif
Mutex send_mutex; // used to serialize socket_send calls
};
#ifdef _WIN32
static int socket_create(Socket *socket_, int domain, int type, int protocol) {
BOOL flag = 1;
socket_->handle = socket(domain, type, protocol);
if (socket_->handle == INVALID_SOCKET) {
return -1;
}
if (setsockopt(socket_->handle, IPPROTO_TCP, TCP_NODELAY,
(const char *)&flag, sizeof(flag)) == SOCKET_ERROR) {
closesocket(socket_->handle);
return -1;
}
mutex_create(&socket_->send_mutex);
return 0;
}
static void socket_destroy(Socket *socket) {
mutex_destroy(&socket->send_mutex);
closesocket(socket->handle);
}
static int socket_connect(Socket *socket, struct sockaddr *address, int length) {
return connect(socket->handle, address, length) == SOCKET_ERROR ? -1 : 0;
}
static void socket_shutdown(Socket *socket) {
shutdown(socket->handle, SD_BOTH);
}
static int socket_receive(Socket *socket, void *buffer, int length) {
length = recv(socket->handle, (char *)buffer, length, 0);
if (length == SOCKET_ERROR) {
length = -1;
if (WSAGetLastError() == WSAEINTR) {
errno = EINTR;
} else {
errno = EFAULT;
}
}
return length;
}
static int socket_send(Socket *socket, const void *buffer, int length) {
mutex_lock(&socket->send_mutex);
length = send(socket->handle, (const char *)buffer, length, 0);
mutex_unlock(&socket->send_mutex);
if (length == SOCKET_ERROR) {
length = -1;
}
return length;
}
#else
static int socket_create(Socket *socket_, int domain, int type, int protocol) {
int flag = 1;
socket_->handle = socket(domain, type, protocol);
if (socket_->handle < 0) {
return -1;
}
if (setsockopt(socket_->handle, IPPROTO_TCP, TCP_NODELAY, (void *)&flag,
sizeof(flag)) < 0) {
close(socket_->handle);
return -1;
}
mutex_create(&socket_->send_mutex);
return 0;
}
static void socket_destroy(Socket *socket) {
mutex_destroy(&socket->send_mutex);
close(socket->handle);
}
static int socket_connect(Socket *socket, struct sockaddr *address, int length) {
return connect(socket->handle, address, length);
}
static void socket_shutdown(Socket *socket) {
shutdown(socket->handle, SHUT_RDWR);
}
static int socket_receive(Socket *socket, void *buffer, int length) {
return (int)recv(socket->handle, buffer, length, 0);
}
static int socket_send(Socket *socket, const void *buffer, int length) {
int rc;
mutex_lock(&socket->send_mutex);
rc = (int)send(socket->handle, buffer, length, 0);
mutex_unlock(&socket->send_mutex);
return rc;
}
#endif
/*****************************************************************************
*
* Mutex
*
*****************************************************************************/
#ifdef _WIN32
void mutex_create(Mutex *mutex) {
InitializeCriticalSection(&mutex->handle);
}
void mutex_destroy(Mutex *mutex) {
DeleteCriticalSection(&mutex->handle);
}
void mutex_lock(Mutex *mutex) {
EnterCriticalSection(&mutex->handle);
}
void mutex_unlock(Mutex *mutex) {
LeaveCriticalSection(&mutex->handle);
}
#else
void mutex_create(Mutex *mutex) {
pthread_mutex_init(&mutex->handle, NULL);
}
void mutex_destroy(Mutex *mutex) {
pthread_mutex_destroy(&mutex->handle);
}
void mutex_lock(Mutex *mutex) {
pthread_mutex_lock(&mutex->handle);
}
void mutex_unlock(Mutex *mutex) {
pthread_mutex_unlock(&mutex->handle);
}
#endif
/*****************************************************************************
*
* Event
*
*****************************************************************************/
#ifdef _WIN32
static void event_create(Event *event) {
event->handle = CreateEvent(NULL, TRUE, FALSE, NULL);
}
static void event_destroy(Event *event) {
CloseHandle(event->handle);
}
static void event_set(Event *event) {
SetEvent(event->handle);
}
static void event_reset(Event *event) {
ResetEvent(event->handle);
}
static int event_wait(Event *event, uint32_t timeout) { // in msec
return WaitForSingleObject(event->handle, timeout) == WAIT_OBJECT_0 ? 0 : -1;
}
#else
static void event_create(Event *event) {
pthread_mutex_init(&event->mutex, NULL);
pthread_cond_init(&event->condition, NULL);
event->flag = false;
}
static void event_destroy(Event *event) {
pthread_mutex_destroy(&event->mutex);
pthread_cond_destroy(&event->condition);
}
static void event_set(Event *event) {
pthread_mutex_lock(&event->mutex);
event->flag = true;
pthread_cond_broadcast(&event->condition);
pthread_mutex_unlock(&event->mutex);
}
static void event_reset(Event *event) {
pthread_mutex_lock(&event->mutex);
event->flag = false;
pthread_mutex_unlock(&event->mutex);
}
static int event_wait(Event *event, uint32_t timeout) { // in msec
struct timeval tp;
struct timespec ts;
int ret = E_OK;
gettimeofday(&tp, NULL);
ts.tv_sec = tp.tv_sec + timeout / 1000;
ts.tv_nsec = (tp.tv_usec + (timeout % 1000) * 1000) * 1000;
while (ts.tv_nsec >= 1000000000L) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000L;
}
pthread_mutex_lock(&event->mutex);
while (!event->flag) {
ret = pthread_cond_timedwait(&event->condition, &event->mutex, &ts);
if (ret != 0) {
ret = E_TIMEOUT;
break;
}
}
pthread_mutex_unlock(&event->mutex);
return ret;
}
#endif
/*****************************************************************************
*
* Semaphore
*
*****************************************************************************/
#ifdef _WIN32
static void semaphore_create(Semaphore *semaphore) {
semaphore->handle = CreateSemaphore(NULL, 0, INT32_MAX, NULL);
}
static void semaphore_destroy(Semaphore *semaphore) {
CloseHandle(semaphore->handle);
}
static int semaphore_acquire(Semaphore *semaphore) {
return WaitForSingleObject(semaphore->handle, INFINITE) != WAIT_OBJECT_0 ? -1 : 0;
}
static void semaphore_release(Semaphore *semaphore) {
ReleaseSemaphore(semaphore->handle, 1, NULL);
}
#else
static void semaphore_create(Semaphore *semaphore) {
#ifdef __APPLE__
// Mac OS X does not support unnamed semaphores, so we fake them. Unlink
// first to ensure that there is no existing semaphore with that name.
// Then open the semaphore to create a new one. Finally unlink it again to
// avoid leaking the name. The semaphore will work fine without a name.
char name[100];
snprintf(name, sizeof(name), "tf-ipcon-%p", semaphore);
sem_unlink(name);
semaphore->pointer = sem_open(name, O_CREAT | O_EXCL, S_IRWXU, 0);
sem_unlink(name);
#else
semaphore->pointer = &semaphore->object;
sem_init(semaphore->pointer, 0, 0);
#endif
}
static void semaphore_destroy(Semaphore *semaphore) {
#ifdef __APPLE__
sem_close(semaphore->pointer);
#else
sem_destroy(semaphore->pointer);
#endif
}
static int semaphore_acquire(Semaphore *semaphore) {
return sem_wait(semaphore->pointer) < 0 ? -1 : 0;
}
static void semaphore_release(Semaphore *semaphore) {
sem_post(semaphore->pointer);
}
#endif
/*****************************************************************************
*
* Thread
*
*****************************************************************************/
#ifdef _WIN32
static DWORD WINAPI thread_wrapper(void *opaque) {
Thread *thread = (Thread *)opaque;
thread->function(thread->opaque);
return 0;
}
static int thread_create(Thread *thread, ThreadFunction function, void *opaque) {
thread->function = function;
thread->opaque = opaque;
thread->handle = CreateThread(NULL, 0, thread_wrapper, thread, 0, &thread->id);
return thread->handle == NULL ? -1 : 0;
}
static void thread_destroy(Thread *thread) {
CloseHandle(thread->handle);
}
static bool thread_is_current(Thread *thread) {
return thread->id == GetCurrentThreadId();
}
static void thread_join(Thread *thread) {
WaitForSingleObject(thread->handle, INFINITE);
}
#else
static void *thread_wrapper(void *opaque) {
Thread *thread = (Thread *)opaque;
thread->function(thread->opaque);
return NULL;
}
static int thread_create(Thread *thread, ThreadFunction function, void *opaque) {
thread->function = function;
thread->opaque = opaque;
return pthread_create(&thread->handle, NULL, thread_wrapper, thread);
}
static void thread_destroy(Thread *thread) {
(void)thread;
}
static bool thread_is_current(Thread *thread) {
return pthread_equal(thread->handle, pthread_self()) ? true : false;
}
static void thread_join(Thread *thread) {
pthread_join(thread->handle, NULL);
}
#endif
/*****************************************************************************
*
* Table
*
*****************************************************************************/
static void table_create(Table *table) {
mutex_create(&table->mutex);
table->used = 0;
table->allocated = 16;
table->keys = (uint32_t *)malloc(sizeof(uint32_t) * table->allocated);
table->values = (void **)malloc(sizeof(void *) * table->allocated);
}
static void table_destroy(Table *table) {
free(table->keys);
free(table->values);
mutex_destroy(&table->mutex);
}
static void *table_insert(Table *table, uint32_t key, void *value) {
int i;
void *replaced_value;
mutex_lock(&table->mutex);
for (i = 0; i < table->used; ++i) {
if (table->keys[i] == key) {
replaced_value = table->values[i];
table->values[i] = value;
mutex_unlock(&table->mutex);
return replaced_value;
}
}
if (table->allocated <= table->used) {
table->allocated += 16;
table->keys = (uint32_t *)realloc(table->keys, sizeof(uint32_t) * table->allocated);
table->values = (void **)realloc(table->values, sizeof(void *) * table->allocated);
}
table->keys[table->used] = key;
table->values[table->used] = value;
++table->used;
mutex_unlock(&table->mutex);
return NULL;
}
static void table_remove(Table *table, uint32_t key) {
int i;
int tail;
mutex_lock(&table->mutex);
for (i = 0; i < table->used; ++i) {
if (table->keys[i] == key) {
tail = table->used - i - 1;
if (tail > 0) {
memmove(table->keys + i, table->keys + i + 1, sizeof(uint32_t) * tail);
memmove(table->values + i, table->values + i + 1, sizeof(void *) * tail);
}
--table->used;
break;
}
}
mutex_unlock(&table->mutex);
}
static void *table_get(Table *table, uint32_t key) {
int i;
void *value = NULL;
mutex_lock(&table->mutex);
for (i = 0; i < table->used; ++i) {
if (table->keys[i] == key) {
value = table->values[i];
break;
}
}
mutex_unlock(&table->mutex);
return value;
}
/*****************************************************************************
*
* Queue
*
*****************************************************************************/
enum {
QUEUE_KIND_EXIT = 0,
QUEUE_KIND_DESTROY_AND_EXIT,
QUEUE_KIND_META,
QUEUE_KIND_PACKET
};
typedef struct {
uint8_t function_id;
uint8_t parameter;
uint64_t socket_id;
} Meta;
static void queue_create(Queue *queue) {
queue->head = NULL;
queue->tail = NULL;
mutex_create(&queue->mutex);
semaphore_create(&queue->semaphore);
}
static void queue_destroy(Queue *queue) {
QueueItem *item = queue->head;
QueueItem *next;
while (item != NULL) {
next = item->next;
free(item->data);
free(item);
item = next;
}
mutex_destroy(&queue->mutex);
semaphore_destroy(&queue->semaphore);
}
static void queue_put(Queue *queue, int kind, void *data) {
QueueItem *item = (QueueItem *)malloc(sizeof(QueueItem));
item->next = NULL;
item->kind = kind;
item->data = data;
mutex_lock(&queue->mutex);
if (queue->tail == NULL) {
queue->head = item;
queue->tail = item;
} else {
queue->tail->next = item;
queue->tail = item;
}
mutex_unlock(&queue->mutex);
semaphore_release(&queue->semaphore);
}
static int queue_get(Queue *queue, int *kind, void **data) {
QueueItem *item;
if (semaphore_acquire(&queue->semaphore) < 0) {
return -1;
}
mutex_lock(&queue->mutex);
if (queue->head == NULL) {
mutex_unlock(&queue->mutex);
return -1;
}
item = queue->head;
queue->head = item->next;
item->next = NULL;
if (queue->tail == item) {
queue->head = NULL;
queue->tail = NULL;
}
mutex_unlock(&queue->mutex);
*kind = item->kind;
*data = item->data;
free(item);
return 0;
}
/*****************************************************************************
*
* Device
*
*****************************************************************************/
enum {
DEVICE_FUNCTION_ENUMERATE = 254,
DEVICE_FUNCTION_GET_IDENTITY = 255
};
static int ipcon_send_request(IPConnectionPrivate *ipcon_p, Packet *request);
// NOTE: assumes device_p->ref_count == 0
static void device_destroy(DevicePrivate *device_p) {
int i;
if (!device_p->replaced && device_p->uid_valid) {
table_remove(&device_p->ipcon_p->devices, device_p->uid);
}
for (i = 0; i < DEVICE_NUM_FUNCTION_IDS; i++) {
free(device_p->high_level_callbacks[i].data);
}
mutex_destroy(&device_p->stream_mutex);
event_destroy(&device_p->response_event);
mutex_destroy(&device_p->response_mutex);
mutex_destroy(&device_p->request_mutex);
mutex_destroy(&device_p->device_identifier_mutex);
free(device_p);
}
void device_create(Device *device, const char *uid_str,
IPConnectionPrivate *ipcon_p, uint8_t api_version_major,
uint8_t api_version_minor, uint8_t api_version_release,
uint16_t device_identifier) {
DevicePrivate *device_p;
uint64_t uid;
uint32_t value1;
uint32_t value2;
int i;
device_p = (DevicePrivate *)malloc(sizeof(DevicePrivate));
device->p = device_p;
device_p->replaced = false;
device_p->uid_valid = base58_decode(uid_str, &uid);
if (device_p->uid_valid && uid > 0xFFFFFFFF) {
// convert from 64bit to 32bit
value1 = uid & 0xFFFFFFFF;
value2 = (uid >> 32) & 0xFFFFFFFF;
uid = (value1 & 0x00000FFF);
uid |= (value1 & 0x0F000000) >> 12;
uid |= (value2 & 0x0000003F) << 16;
uid |= (value2 & 0x000F0000) << 6;
uid |= (value2 & 0x3F000000) << 2;
}
if (uid == 0) {
device_p->uid_valid = false; // broadcast UID is forbidden
}
device_p->ref_count = 1;
device_p->uid = (uint32_t)uid;
device_p->ipcon_p = ipcon_p;
device_p->api_version[0] = api_version_major;
device_p->api_version[1] = api_version_minor;
device_p->api_version[2] = api_version_release;
// device identifier
device_p->device_identifier = device_identifier;
mutex_create(&device_p->device_identifier_mutex);
device_p->device_identifier_check = DEVICE_IDENTIFIER_CHECK_PENDING;
// request
mutex_create(&device_p->request_mutex);
// response
device_p->expected_response_function_id = 0;
device_p->expected_response_sequence_number = 0;
mutex_create(&device_p->response_mutex);
memset(&device_p->response_packet, 0, sizeof(Packet));
event_create(&device_p->response_event);
for (i = 0; i < DEVICE_NUM_FUNCTION_IDS; i++) {
device_p->response_expected[i] = DEVICE_RESPONSE_EXPECTED_INVALID_FUNCTION_ID;
}
// stream
mutex_create(&device_p->stream_mutex);
// callbacks
for (i = 0; i < DEVICE_NUM_FUNCTION_IDS * 2; i++) {
device_p->registered_callbacks[i] = NULL;
device_p->registered_callback_user_data[i] = NULL;
}
for (i = 0; i < DEVICE_NUM_FUNCTION_IDS; i++) {
device_p->callback_wrappers[i] = NULL;
device_p->high_level_callbacks[i].exists = false;
device_p->high_level_callbacks[i].data = NULL;
device_p->high_level_callbacks[i].length = 0;
}
}
void device_release(DevicePrivate *device_p) {
IPConnectionPrivate *ipcon_p = device_p->ipcon_p;
mutex_lock(&ipcon_p->devices_ref_mutex);
--device_p->ref_count;
if (device_p->ref_count == 0) {
device_destroy(device_p);
}
mutex_unlock(&ipcon_p->devices_ref_mutex);
}
int device_get_response_expected(DevicePrivate *device_p, uint8_t function_id,
bool *ret_response_expected) {
int flag = device_p->response_expected[function_id];
if (flag == DEVICE_RESPONSE_EXPECTED_INVALID_FUNCTION_ID) {
return E_INVALID_PARAMETER;
}
if (flag == DEVICE_RESPONSE_EXPECTED_ALWAYS_TRUE ||
flag == DEVICE_RESPONSE_EXPECTED_TRUE) {
*ret_response_expected = true;
} else {
*ret_response_expected = false;
}
return E_OK;
}
int device_set_response_expected(DevicePrivate *device_p, uint8_t function_id,
bool response_expected) {
int current_flag = device_p->response_expected[function_id];
if (current_flag != DEVICE_RESPONSE_EXPECTED_TRUE &&
current_flag != DEVICE_RESPONSE_EXPECTED_FALSE) {
return E_INVALID_PARAMETER;
}
device_p->response_expected[function_id] =
response_expected ? DEVICE_RESPONSE_EXPECTED_TRUE
: DEVICE_RESPONSE_EXPECTED_FALSE;
return E_OK;
}
int device_set_response_expected_all(DevicePrivate *device_p, bool response_expected) {
int flag = response_expected ? DEVICE_RESPONSE_EXPECTED_TRUE
: DEVICE_RESPONSE_EXPECTED_FALSE;
int i;
for (i = 0; i < DEVICE_NUM_FUNCTION_IDS; ++i) {
if (device_p->response_expected[i] == DEVICE_RESPONSE_EXPECTED_TRUE ||
device_p->response_expected[i] == DEVICE_RESPONSE_EXPECTED_FALSE) {
device_p->response_expected[i] = flag;
}
}
return E_OK;
}
void device_register_callback(DevicePrivate *device_p, int16_t callback_id,
void (*function)(void), void *user_data) {
if (callback_id <= -DEVICE_NUM_FUNCTION_IDS || callback_id >= DEVICE_NUM_FUNCTION_IDS) {
return;
}
device_p->registered_callbacks[DEVICE_NUM_FUNCTION_IDS + callback_id] = function;
device_p->registered_callback_user_data[DEVICE_NUM_FUNCTION_IDS + callback_id] = user_data;
}
int device_get_api_version(DevicePrivate *device_p, uint8_t ret_api_version[3]) {
ret_api_version[0] = device_p->api_version[0];
ret_api_version[1] = device_p->api_version[1];
ret_api_version[2] = device_p->api_version[2];
return E_OK;
}
// NOTE: assumes that device_check_validity was successful
int device_send_request(DevicePrivate *device_p, Packet *request, Packet *response,
int expected_response_length) {
int ret = E_OK;
uint8_t sequence_number = packet_header_get_sequence_number(&request->header);
uint8_t response_expected = packet_header_get_response_expected(&request->header);
uint8_t error_code;
if (response_expected) {
mutex_lock(&device_p->request_mutex);
event_reset(&device_p->response_event);
device_p->expected_response_function_id = request->header.function_id;
device_p->expected_response_sequence_number = sequence_number;
}
ret = ipcon_send_request(device_p->ipcon_p, request);
if (ret != E_OK) {
if (response_expected) {
mutex_unlock(&device_p->request_mutex);
}
return ret;
}
if (response_expected) {
if (event_wait(&device_p->response_event, device_p->ipcon_p->timeout) < 0) {
ret = E_TIMEOUT;
}
device_p->expected_response_function_id = 0;
device_p->expected_response_sequence_number = 0;
event_reset(&device_p->response_event);
if (ret == E_OK) {
mutex_lock(&device_p->response_mutex);
error_code = packet_header_get_error_code(&device_p->response_packet.header);
if (device_p->response_packet.header.function_id != request->header.function_id ||
packet_header_get_sequence_number(&device_p->response_packet.header) != sequence_number) {
ret = E_TIMEOUT;
} else if (error_code == 0) {
if (expected_response_length == 0) {
// setter with response-expected enabled
expected_response_length = sizeof(PacketHeader);
}
if (device_p->response_packet.header.length != expected_response_length) {
ret = E_WRONG_RESPONSE_LENGTH;
} else if (response != NULL) {
memcpy(response, &device_p->response_packet,
device_p->response_packet.header.length);
}
} else if (error_code == 1) {
ret = E_INVALID_PARAMETER;
} else if (error_code == 2) {
ret = E_NOT_SUPPORTED;
} else {
ret = E_UNKNOWN_ERROR_CODE;
}
mutex_unlock(&device_p->response_mutex);
}
mutex_unlock(&device_p->request_mutex);
}
return ret;
}
int device_check_validity(DevicePrivate *device_p) {
DeviceGetIdentity_Request request;
DeviceGetIdentity_Response response;
uint16_t device_identifier;
int ret;
if (device_p->replaced) {
return E_DEVICE_REPLACED;
}
if (!device_p->uid_valid) {
return E_INVALID_UID;
}
if (device_p->device_identifier_check == DEVICE_IDENTIFIER_CHECK_PENDING) {
mutex_lock(&device_p->device_identifier_mutex);
if (device_p->device_identifier_check == DEVICE_IDENTIFIER_CHECK_PENDING) {
ret = packet_header_create(&request.header, sizeof(request), DEVICE_FUNCTION_GET_IDENTITY, device_p->ipcon_p, device_p);
if (ret < 0) {
mutex_unlock(&device_p->device_identifier_mutex);
return ret;
}
// initialize to 0 to stop the clang static analyzer from warning about accessing
// uninitialized memory when accessing the device_identifier member later on
memset(&response, 0, sizeof(response));
ret = device_send_request(device_p, (Packet *)&request, (Packet *)&response, sizeof(response));
if (ret < 0) {
mutex_unlock(&device_p->device_identifier_mutex);
return ret;
}
device_identifier = leconvert_uint16_from(response.device_identifier);
if (device_identifier == device_p->device_identifier) {
device_p->device_identifier_check = DEVICE_IDENTIFIER_CHECK_MATCH;
} else {
device_p->device_identifier_check = DEVICE_IDENTIFIER_CHECK_MISMATCH;
}
}
mutex_unlock(&device_p->device_identifier_mutex);
}
if (device_p->device_identifier_check == DEVICE_IDENTIFIER_CHECK_MISMATCH) {
return E_WRONG_DEVICE_TYPE;
}
return E_OK; // DEVICE_IDENTIFIER_CHECK_MATCH
}
/*****************************************************************************
*
* Brick Daemon
*
*****************************************************************************/
enum {
BRICK_DAEMON_FUNCTION_GET_AUTHENTICATION_NONCE = 1,
BRICK_DAEMON_FUNCTION_AUTHENTICATE = 2
};
static void brickd_create(BrickDaemon *brickd, const char *uid, IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p = ipcon->p;
DevicePrivate *device_p;
device_create(brickd, uid, ipcon_p, 2, 0, 0, 0);
device_p = brickd->p;
device_p->response_expected[BRICK_DAEMON_FUNCTION_GET_AUTHENTICATION_NONCE] = DEVICE_RESPONSE_EXPECTED_ALWAYS_TRUE;
device_p->response_expected[BRICK_DAEMON_FUNCTION_AUTHENTICATE] = DEVICE_RESPONSE_EXPECTED_TRUE;
ipcon_add_device(ipcon_p, device_p);
}
static void brickd_destroy(BrickDaemon *brickd) {
device_release(brickd->p);
}
static int brickd_get_authentication_nonce(BrickDaemon *brickd, uint8_t ret_server_nonce[4]) {
DevicePrivate *device_p = brickd->p;
BrickDaemonGetAuthenticationNonce_Request request;
BrickDaemonGetAuthenticationNonce_Response response;
int ret;
ret = packet_header_create(&request.header, sizeof(request), BRICK_DAEMON_FUNCTION_GET_AUTHENTICATION_NONCE, device_p->ipcon_p, device_p);
if (ret < 0) {
return ret;
}
ret = device_send_request(device_p, (Packet *)&request, (Packet *)&response, sizeof(response));
if (ret < 0) {
return ret;
}
memcpy(ret_server_nonce, response.server_nonce, 4 * sizeof(uint8_t));
return ret;
}
static int brickd_authenticate(BrickDaemon *brickd, uint8_t client_nonce[4], uint8_t digest[20]) {
DevicePrivate *device_p = brickd->p;
BrickDaemonAuthenticate_Request request;
int ret;
ret = packet_header_create(&request.header, sizeof(request), BRICK_DAEMON_FUNCTION_AUTHENTICATE, device_p->ipcon_p, device_p);
if (ret < 0) {
return ret;
}
memcpy(request.client_nonce, client_nonce, 4 * sizeof(uint8_t));
memcpy(request.digest, digest, 20 * sizeof(uint8_t));
ret = device_send_request(device_p, (Packet *)&request, NULL, 0);
return ret;
}
/*****************************************************************************
*
* IPConnection
*
*****************************************************************************/
struct _CallbackContext {
IPConnectionPrivate *ipcon_p;
Queue queue;
Mutex mutex;
Thread thread;
bool packet_dispatch_allowed;
};
static int ipcon_connect_unlocked(IPConnectionPrivate *ipcon_p, bool is_auto_reconnect);
static void ipcon_disconnect_unlocked(IPConnectionPrivate *ipcon_p);
static DevicePrivate *ipcon_acquire_device(IPConnectionPrivate *ipcon_p, uint32_t uid) {
DevicePrivate *device_p;
if (uid == 0) {
return NULL;
}
mutex_lock(&ipcon_p->devices_ref_mutex);
device_p = (DevicePrivate *)table_get(&ipcon_p->devices, uid);
if (device_p != NULL) {
++device_p->ref_count;
}
mutex_unlock(&ipcon_p->devices_ref_mutex);
return device_p;
}
static void ipcon_dispatch_meta(IPConnectionPrivate *ipcon_p, Meta *meta) {
ConnectedCallbackFunction connected_callback_function;
DisconnectedCallbackFunction disconnected_callback_function;
void *user_data;
bool retry;
if (meta->function_id == IPCON_CALLBACK_CONNECTED) {
if (ipcon_p->registered_callbacks[IPCON_CALLBACK_CONNECTED] != NULL) {
connected_callback_function = (ConnectedCallbackFunction)ipcon_p->registered_callbacks[IPCON_CALLBACK_CONNECTED];
user_data = ipcon_p->registered_callback_user_data[IPCON_CALLBACK_CONNECTED];
connected_callback_function(meta->parameter, user_data);
}
} else if (meta->function_id == IPCON_CALLBACK_DISCONNECTED) {
// need to do this here, the receive loop is not allowed to
// hold the socket mutex because this could cause a deadlock
// with a concurrent call to the (dis-)connect function
if (meta->parameter != IPCON_DISCONNECT_REASON_REQUEST) {
mutex_lock(&ipcon_p->socket_mutex);
// don't close the socket if it got disconnected or
// reconnected in the meantime
if (ipcon_p->socket != NULL && ipcon_p->socket_id == meta->socket_id) {
// destroy disconnect probe thread
event_set(&ipcon_p->disconnect_probe_event);
thread_join(&ipcon_p->disconnect_probe_thread);
thread_destroy(&ipcon_p->disconnect_probe_thread);
// destroy socket
socket_destroy(ipcon_p->socket);
free(ipcon_p->socket);
ipcon_p->socket = NULL;
}
mutex_unlock(&ipcon_p->socket_mutex);
}
// FIXME: wait a moment here, otherwise the next connect
// attempt will succeed, even if there is no open server
// socket. the first receive will then fail directly
millisleep(100);
if (ipcon_p->registered_callbacks[IPCON_CALLBACK_DISCONNECTED] != NULL) {
disconnected_callback_function = (DisconnectedCallbackFunction)ipcon_p->registered_callbacks[IPCON_CALLBACK_DISCONNECTED];
user_data = ipcon_p->registered_callback_user_data[IPCON_CALLBACK_DISCONNECTED];
disconnected_callback_function(meta->parameter, user_data);
}
if (meta->parameter != IPCON_DISCONNECT_REASON_REQUEST &&
ipcon_p->auto_reconnect && ipcon_p->auto_reconnect_allowed) {
ipcon_p->auto_reconnect_pending = true;
retry = true;
// block here until reconnect. this is okay, there is no
// callback to deliver when there is no connection
while (retry) {
retry = false;
mutex_lock(&ipcon_p->socket_mutex);
if (ipcon_p->auto_reconnect_allowed && ipcon_p->socket == NULL) {
if (ipcon_connect_unlocked(ipcon_p, true) < 0) {
retry = true;
}
} else {
ipcon_p->auto_reconnect_pending = false;
}
mutex_unlock(&ipcon_p->socket_mutex);
if (retry) {
// wait a moment to give another thread a chance to
// interrupt the auto-reconnect
millisleep(100);
}
}
}
}
}
static void ipcon_dispatch_packet(IPConnectionPrivate *ipcon_p, Packet *packet) {
EnumerateCallbackFunction enumerate_callback_function;
void *user_data;
DeviceEnumerate_Callback *enumerate_callback;
DevicePrivate *device_p;
CallbackWrapperFunction callback_wrapper_function;
if (packet->header.function_id == IPCON_CALLBACK_ENUMERATE) {
if (ipcon_p->registered_callbacks[IPCON_CALLBACK_ENUMERATE] != NULL) {
if (packet->header.length != sizeof(DeviceEnumerate_Callback)) {
return; // silently ignoring callback with wrong length
}
enumerate_callback_function = (EnumerateCallbackFunction)ipcon_p->registered_callbacks[IPCON_CALLBACK_ENUMERATE];
user_data = ipcon_p->registered_callback_user_data[IPCON_CALLBACK_ENUMERATE];
enumerate_callback = (DeviceEnumerate_Callback *)packet;
enumerate_callback_function(enumerate_callback->uid,
enumerate_callback->connected_uid,
enumerate_callback->position,
enumerate_callback->hardware_version,
enumerate_callback->firmware_version,
leconvert_uint16_from(enumerate_callback->device_identifier),
enumerate_callback->enumeration_type,
user_data);
}
} else {
device_p = ipcon_acquire_device(ipcon_p, packet->header.uid);
if (device_p == NULL) {
return;
}
callback_wrapper_function = device_p->callback_wrappers[packet->header.function_id];
if (callback_wrapper_function == NULL) {
device_release(device_p);
return;
}
if (device_check_validity(device_p) < 0) {
device_release(device_p);
return; // silently ignoring callback for invalid device
}
callback_wrapper_function(device_p, packet);
device_release(device_p);
}
}
static void ipcon_destroy_callback_context(CallbackContext *callback) {
thread_destroy(&callback->thread);
mutex_destroy(&callback->mutex);
queue_destroy(&callback->queue);
free(callback);
}
static void ipcon_exit_callback_thread(CallbackContext *callback) {
if (!thread_is_current(&callback->thread)) {
queue_put(&callback->queue, QUEUE_KIND_EXIT, NULL);
thread_join(&callback->thread);
ipcon_destroy_callback_context(callback);
} else {
queue_put(&callback->queue, QUEUE_KIND_DESTROY_AND_EXIT, NULL);
}
}
static void ipcon_callback_loop(void *opaque) {
CallbackContext *callback = (CallbackContext *)opaque;
int kind;
void *data;
while (true) {
if (queue_get(&callback->queue, &kind, &data) < 0) {
// FIXME: what to do here? try again? exit? -> yes try again, see https://github.com/Tinkerforge/brickd/issues/21
break;
}
if (kind == QUEUE_KIND_EXIT) {
break;
} else if (kind == QUEUE_KIND_DESTROY_AND_EXIT) {
ipcon_destroy_callback_context(callback);
break;
}
// FIXME: cannot lock callback mutex here because this can
// deadlock due to an ordering problem with the socket mutex
//mutex_lock(&callback->mutex);
if (kind == QUEUE_KIND_META) {
ipcon_dispatch_meta(callback->ipcon_p, (Meta *)data);
} else if (kind == QUEUE_KIND_PACKET) {
// don't dispatch callbacks when the receive thread isn't running
if (callback->packet_dispatch_allowed) {
ipcon_dispatch_packet(callback->ipcon_p, (Packet *)data);
}
}
//mutex_unlock(&callback->mutex);
free(data);
}
}
// NOTE: assumes that socket_mutex is locked if disconnect_immediately is true
static void ipcon_handle_disconnect_by_peer(IPConnectionPrivate *ipcon_p,
uint8_t disconnect_reason,
uint64_t socket_id,
bool disconnect_immediately) {
Meta *meta;
ipcon_p->auto_reconnect_allowed = true;
if (disconnect_immediately) {
ipcon_disconnect_unlocked(ipcon_p);
}
meta = (Meta *)malloc(sizeof(Meta));
meta->function_id = IPCON_CALLBACK_DISCONNECTED;
meta->parameter = disconnect_reason;
meta->socket_id = socket_id;
queue_put(&ipcon_p->callback->queue, QUEUE_KIND_META, meta);
}
enum {
IPCON_DISCONNECT_PROBE_INTERVAL = 5000
};
enum {
IPCON_FUNCTION_DISCONNECT_PROBE = 128
};
// NOTE: the disconnect probe loop is not allowed to hold the socket_mutex at any
// time because it is created and joined while the socket_mutex is locked
static void ipcon_disconnect_probe_loop(void *opaque) {
IPConnectionPrivate *ipcon_p = (IPConnectionPrivate *)opaque;
PacketHeader disconnect_probe;
packet_header_create(&disconnect_probe, sizeof(PacketHeader),
IPCON_FUNCTION_DISCONNECT_PROBE, ipcon_p, NULL);
while (event_wait(&ipcon_p->disconnect_probe_event,
IPCON_DISCONNECT_PROBE_INTERVAL) < 0) {
if (ipcon_p->disconnect_probe_flag) {
// FIXME: this might block
if (socket_send(ipcon_p->socket, &disconnect_probe,
disconnect_probe.length) < 0) {
ipcon_handle_disconnect_by_peer(ipcon_p, IPCON_DISCONNECT_REASON_ERROR,
ipcon_p->socket_id, false);
break;
}
} else {
ipcon_p->disconnect_probe_flag = true;
}
}
}
static void ipcon_handle_response(IPConnectionPrivate *ipcon_p, Packet *response) {
DevicePrivate *device_p;
uint8_t sequence_number = packet_header_get_sequence_number(&response->header);
Packet *callback;
ipcon_p->disconnect_probe_flag = false;
response->header.uid = leconvert_uint32_from(response->header.uid);
if (sequence_number == 0 &&
response->header.function_id == IPCON_CALLBACK_ENUMERATE) {
if (ipcon_p->registered_callbacks[IPCON_CALLBACK_ENUMERATE] != NULL) {
callback = (Packet *)malloc(response->header.length);
memcpy(callback, response, response->header.length);
queue_put(&ipcon_p->callback->queue, QUEUE_KIND_PACKET, callback);
}
return;
}
device_p = ipcon_acquire_device(ipcon_p, response->header.uid);
if (device_p == NULL) {
// ignoring response for an unknown device
return;
}
if (sequence_number == 0) {
if (device_p->registered_callbacks[DEVICE_NUM_FUNCTION_IDS + response->header.function_id] != NULL ||
device_p->high_level_callbacks[response->header.function_id].exists) {
callback = (Packet *)malloc(response->header.length);
memcpy(callback, response, response->header.length);
queue_put(&ipcon_p->callback->queue, QUEUE_KIND_PACKET, callback);
}
device_release(device_p);
return;
}
if (device_p->expected_response_function_id == response->header.function_id &&
device_p->expected_response_sequence_number == sequence_number) {
mutex_lock(&device_p->response_mutex);
memcpy(&device_p->response_packet, response, response->header.length);
mutex_unlock(&device_p->response_mutex);
event_set(&device_p->response_event);
device_release(device_p);
return;
}
device_release(device_p);
// response seems to be OK, but can't be handled
}
// NOTE: the receive loop is now allowed to hold the socket_mutex at any time
// because it is created and joined while the socket_mutex is locked
static void ipcon_receive_loop(void *opaque) {
IPConnectionPrivate *ipcon_p = (IPConnectionPrivate *)opaque;
uint64_t socket_id = ipcon_p->socket_id;
Packet pending_data[10];
int pending_length = 0;
int length;
uint8_t disconnect_reason;
while (ipcon_p->receive_flag) {
length = socket_receive(ipcon_p->socket, (uint8_t *)pending_data + pending_length,
sizeof(pending_data) - pending_length);
if (!ipcon_p->receive_flag) {
return;
}
if (length <= 0) {
if (length < 0 && errno == EINTR) {
continue;
}
if (length == 0) {
disconnect_reason = IPCON_DISCONNECT_REASON_SHUTDOWN;
} else {
disconnect_reason = IPCON_DISCONNECT_REASON_ERROR;
}
ipcon_handle_disconnect_by_peer(ipcon_p, disconnect_reason, socket_id, false);
return;
}
pending_length += length;
while (ipcon_p->receive_flag) {
if (pending_length < (int)sizeof(PacketHeader)) {
// wait for complete header
break;
}
length = pending_data[0].header.length;
if (pending_length < length) {
// wait for complete packet
break;
}
ipcon_handle_response(ipcon_p, pending_data);
memmove(pending_data, (uint8_t *)pending_data + length,
pending_length - length);
pending_length -= length;
}
}
}
// NOTE: assumes that socket is NULL and socket_mutex is locked
static int ipcon_connect_unlocked(IPConnectionPrivate *ipcon_p, bool is_auto_reconnect) {
char service[32];
struct addrinfo hints;
struct addrinfo *resolved = NULL;
Socket *tmp;
uint8_t connect_reason;
Meta *meta;
// create callback queue and thread
if (ipcon_p->callback == NULL) {
ipcon_p->callback = (CallbackContext *)malloc(sizeof(CallbackContext));
ipcon_p->callback->ipcon_p = ipcon_p;
ipcon_p->callback->packet_dispatch_allowed = false;
queue_create(&ipcon_p->callback->queue);
mutex_create(&ipcon_p->callback->mutex);
if (thread_create(&ipcon_p->callback->thread, ipcon_callback_loop,
ipcon_p->callback) < 0) {
mutex_destroy(&ipcon_p->callback->mutex);
queue_destroy(&ipcon_p->callback->queue);
free(ipcon_p->callback);
ipcon_p->callback = NULL;
return E_NO_THREAD;
}
}
// create and connect socket
snprintf(service, sizeof(service), "%u", ipcon_p->port);
memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(ipcon_p->host, service, &hints, &resolved) != 0) {
// destroy callback thread
if (!is_auto_reconnect) {
ipcon_exit_callback_thread(ipcon_p->callback);
ipcon_p->callback = NULL;
}
return E_HOSTNAME_INVALID;
}
tmp = (Socket *)malloc(sizeof(Socket));
if (socket_create(tmp, resolved->ai_family, resolved->ai_socktype,
resolved->ai_protocol) < 0) {
// destroy callback thread
if (!is_auto_reconnect) {
ipcon_exit_callback_thread(ipcon_p->callback);
ipcon_p->callback = NULL;
}
// destroy socket
free(tmp);
freeaddrinfo(resolved);
return E_NO_STREAM_SOCKET;
}
if (socket_connect(tmp, resolved->ai_addr, resolved->ai_addrlen) < 0) {
// destroy callback thread
if (!is_auto_reconnect) {
ipcon_exit_callback_thread(ipcon_p->callback);
ipcon_p->callback = NULL;
}
// destroy socket
socket_destroy(tmp);
free(tmp);
freeaddrinfo(resolved);
return E_NO_CONNECT;
}
freeaddrinfo(resolved);
ipcon_p->socket = tmp;
++ipcon_p->socket_id;
// create disconnect probe thread
ipcon_p->disconnect_probe_flag = true;
event_reset(&ipcon_p->disconnect_probe_event);
if (thread_create(&ipcon_p->disconnect_probe_thread,
ipcon_disconnect_probe_loop, ipcon_p) < 0) {
// destroy callback thread
if (!is_auto_reconnect) {
ipcon_exit_callback_thread(ipcon_p->callback);
ipcon_p->callback = NULL;
}
// destroy socket
socket_destroy(ipcon_p->socket);
free(ipcon_p->socket);
ipcon_p->socket = NULL;
return E_NO_THREAD;
}
// create receive thread
ipcon_p->receive_flag = true;
ipcon_p->callback->packet_dispatch_allowed = true;
if (thread_create(&ipcon_p->receive_thread, ipcon_receive_loop, ipcon_p) < 0) {
ipcon_p->receive_flag = false;
// destroy socket
ipcon_disconnect_unlocked(ipcon_p);
// destroy callback thread
if (!is_auto_reconnect) {
ipcon_exit_callback_thread(ipcon_p->callback);
ipcon_p->callback = NULL;
}
return E_NO_THREAD;
}
ipcon_p->auto_reconnect_allowed = false;
ipcon_p->auto_reconnect_pending = false;
// trigger connected callback
if (is_auto_reconnect) {
connect_reason = IPCON_CONNECT_REASON_AUTO_RECONNECT;
} else {
connect_reason = IPCON_CONNECT_REASON_REQUEST;
}
meta = (Meta *)malloc(sizeof(Meta));
meta->function_id = IPCON_CALLBACK_CONNECTED;
meta->parameter = connect_reason;
meta->socket_id = 0;
queue_put(&ipcon_p->callback->queue, QUEUE_KIND_META, meta);
return E_OK;
}
// NOTE: assumes that socket is not NULL and socket_mutex is locked
static void ipcon_disconnect_unlocked(IPConnectionPrivate *ipcon_p) {
// destroy disconnect probe thread
event_set(&ipcon_p->disconnect_probe_event);
thread_join(&ipcon_p->disconnect_probe_thread);
thread_destroy(&ipcon_p->disconnect_probe_thread);
// stop dispatching packet callbacks before ending the receive
// thread to avoid timeout exceptions due to callback functions
// trying to call getters
if (!thread_is_current(&ipcon_p->callback->thread)) {
// FIXME: cannot lock callback mutex here because this can
// deadlock due to an ordering problem with the socket mutex
//mutex_lock(&ipcon->callback->mutex);
ipcon_p->callback->packet_dispatch_allowed = false;
//mutex_unlock(&ipcon->callback->mutex);
} else {
ipcon_p->callback->packet_dispatch_allowed = false;
}
// destroy receive thread
if (ipcon_p->receive_flag) {
ipcon_p->receive_flag = false;
socket_shutdown(ipcon_p->socket);
thread_join(&ipcon_p->receive_thread);
thread_destroy(&ipcon_p->receive_thread);
}
// destroy socket
socket_destroy(ipcon_p->socket);
free(ipcon_p->socket);
ipcon_p->socket = NULL;
}
static int ipcon_send_request(IPConnectionPrivate *ipcon_p, Packet *request) {
int ret = E_OK;
mutex_lock(&ipcon_p->socket_mutex);
if (ipcon_p->socket == NULL) {
ret = E_NOT_CONNECTED;
}
if (ret == E_OK) {
if (socket_send(ipcon_p->socket, request, request->header.length) < 0) {
ipcon_handle_disconnect_by_peer(ipcon_p, IPCON_DISCONNECT_REASON_ERROR, 0, true);
ret = E_NOT_CONNECTED;
} else {
ipcon_p->disconnect_probe_flag = false;
}
}
mutex_unlock(&ipcon_p->socket_mutex);
return ret;
}
void ipcon_create(IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p;
int i;
ipcon_p = (IPConnectionPrivate *)malloc(sizeof(IPConnectionPrivate));
ipcon->p = ipcon_p;
#ifdef _WIN32
ipcon_p->wsa_startup_done = false;
#endif
ipcon_p->host = NULL;
ipcon_p->port = 0;
ipcon_p->timeout = 2500;
ipcon_p->auto_reconnect = true;
ipcon_p->auto_reconnect_allowed = false;
ipcon_p->auto_reconnect_pending = false;
mutex_create(&ipcon_p->sequence_number_mutex);
ipcon_p->next_sequence_number = 0;
mutex_create(&ipcon_p->authentication_mutex);
ipcon_p->next_authentication_nonce = 0;
mutex_create(&ipcon_p->devices_ref_mutex);
table_create(&ipcon_p->devices);
for (i = 0; i < IPCON_NUM_CALLBACK_IDS; ++i) {
ipcon_p->registered_callbacks[i] = NULL;
ipcon_p->registered_callback_user_data[i] = NULL;
}
mutex_create(&ipcon_p->socket_mutex);
ipcon_p->socket = NULL;
ipcon_p->socket_id = 0;
ipcon_p->receive_flag = false;
ipcon_p->callback = NULL;
ipcon_p->disconnect_probe_flag = false;
event_create(&ipcon_p->disconnect_probe_event);
semaphore_create(&ipcon_p->wait);
brickd_create(&ipcon_p->brickd, "2", ipcon);
}
void ipcon_destroy(IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p = ipcon->p;
ipcon_disconnect(ipcon); // FIXME: disable disconnected callback before?
brickd_destroy(&ipcon_p->brickd);
mutex_destroy(&ipcon_p->authentication_mutex);
mutex_destroy(&ipcon_p->sequence_number_mutex);
table_destroy(&ipcon_p->devices); // FIXME: destroy all devices?
mutex_destroy(&ipcon_p->devices_ref_mutex);
mutex_destroy(&ipcon_p->socket_mutex);
event_destroy(&ipcon_p->disconnect_probe_event);
semaphore_destroy(&ipcon_p->wait);
free(ipcon_p->host);
free(ipcon_p);
}
int ipcon_connect(IPConnection *ipcon, const char *host, uint16_t port) {
IPConnectionPrivate *ipcon_p = ipcon->p;
int ret;
#ifdef _WIN32
WSADATA wsa_data;
#endif
mutex_lock(&ipcon_p->socket_mutex);
#ifdef _WIN32
if (!ipcon_p->wsa_startup_done) {
if (WSAStartup(MAKEWORD(2, 2), &wsa_data) != 0) {
mutex_unlock(&ipcon_p->socket_mutex);
return E_NO_STREAM_SOCKET;
}
ipcon_p->wsa_startup_done = true;
}
#endif
if (ipcon_p->socket != NULL) {
mutex_unlock(&ipcon_p->socket_mutex);
return E_ALREADY_CONNECTED;
}
free(ipcon_p->host);
ipcon_p->host = strdup(host);
ipcon_p->port = port;
ret = ipcon_connect_unlocked(ipcon_p, false);
mutex_unlock(&ipcon_p->socket_mutex);
return ret;
}
int ipcon_disconnect(IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p = ipcon->p;
CallbackContext *callback;
Meta *meta;
mutex_lock(&ipcon_p->socket_mutex);
ipcon_p->auto_reconnect_allowed = false;
if (ipcon_p->auto_reconnect_pending) {
// abort pending auto-reconnect
ipcon_p->auto_reconnect_pending = false;
} else {
if (ipcon_p->socket == NULL) {
mutex_unlock(&ipcon_p->socket_mutex);
return E_NOT_CONNECTED;
}
ipcon_disconnect_unlocked(ipcon_p);
}
// destroy callback thread
callback = ipcon_p->callback;
ipcon_p->callback = NULL;
mutex_unlock(&ipcon_p->socket_mutex);
// do this outside of socket_mutex to allow calling (dis-)connect from
// the callbacks while blocking on the join call here
meta = (Meta *)malloc(sizeof(Meta));
meta->function_id = IPCON_CALLBACK_DISCONNECTED;
meta->parameter = IPCON_DISCONNECT_REASON_REQUEST;
meta->socket_id = 0;
queue_put(&callback->queue, QUEUE_KIND_META, meta);
ipcon_exit_callback_thread(callback);
return E_OK;
}
int ipcon_authenticate(IPConnection *ipcon, const char *secret) {
IPConnectionPrivate *ipcon_p = ipcon->p;
int ret;
uint32_t nonces[2]; // server, client
uint8_t digest[SHA1_DIGEST_LENGTH];
int i;
int secret_length;
secret_length = string_length(secret, IPCON_MAX_SECRET_LENGTH);
for (i = 0; i < secret_length; ++i) {
if ((secret[i] & 0x80) != 0) {
return E_NON_ASCII_CHAR_IN_SECRET;
}
}
mutex_lock(&ipcon_p->authentication_mutex);
if (ipcon_p->next_authentication_nonce == 0) {
ipcon_p->next_authentication_nonce = get_random_uint32();
}
ret = brickd_get_authentication_nonce(&ipcon_p->brickd, (uint8_t *)nonces);
if (ret < 0) {
mutex_unlock(&ipcon_p->authentication_mutex);
return ret;
}
nonces[1] = ipcon_p->next_authentication_nonce++;
hmac_sha1((uint8_t *)secret, secret_length,
(uint8_t *)nonces, sizeof(nonces), digest);
ret = brickd_authenticate(&ipcon_p->brickd, (uint8_t *)&nonces[1], digest);
if (ret < 0) {
mutex_unlock(&ipcon_p->authentication_mutex);
return ret;
}
mutex_unlock(&ipcon_p->authentication_mutex);
return E_OK;
}
int ipcon_get_connection_state(IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p = ipcon->p;
if (ipcon_p->socket != NULL) {
return IPCON_CONNECTION_STATE_CONNECTED;
} else if (ipcon_p->auto_reconnect_pending) {
return IPCON_CONNECTION_STATE_PENDING;
} else {
return IPCON_CONNECTION_STATE_DISCONNECTED;
}
}
void ipcon_set_auto_reconnect(IPConnection *ipcon, bool auto_reconnect) {
IPConnectionPrivate *ipcon_p = ipcon->p;
ipcon_p->auto_reconnect = auto_reconnect;
if (!ipcon_p->auto_reconnect) {
// abort potentially pending auto reconnect
ipcon_p->auto_reconnect_allowed = false;
}
}
bool ipcon_get_auto_reconnect(IPConnection *ipcon) {
return ipcon->p->auto_reconnect;
}
void ipcon_set_timeout(IPConnection *ipcon, uint32_t timeout) { // in msec
ipcon->p->timeout = timeout;
}
uint32_t ipcon_get_timeout(IPConnection *ipcon) { // in msec
return ipcon->p->timeout;
}
int ipcon_enumerate(IPConnection *ipcon) {
IPConnectionPrivate *ipcon_p = ipcon->p;
DeviceEnumerate_Broadcast enumerate;
int ret;
ret = packet_header_create(&enumerate.header, sizeof(DeviceEnumerate_Broadcast),
DEVICE_FUNCTION_ENUMERATE, ipcon_p, NULL);
if (ret < 0) {
return ret;
}
return ipcon_send_request(ipcon_p, (Packet *)&enumerate);
}
void ipcon_wait(IPConnection *ipcon) {
semaphore_acquire(&ipcon->p->wait);
}
void ipcon_unwait(IPConnection *ipcon) {
semaphore_release(&ipcon->p->wait);
}
void ipcon_register_callback(IPConnection *ipcon, int16_t callback_id,
void (*function)(void), void *user_data) {
IPConnectionPrivate *ipcon_p = ipcon->p;
if (callback_id <= -1 || callback_id >= IPCON_NUM_CALLBACK_IDS) {
return;
}
ipcon_p->registered_callbacks[callback_id] = function;
ipcon_p->registered_callback_user_data[callback_id] = user_data;
}
void ipcon_add_device(IPConnectionPrivate *ipcon_p, DevicePrivate *device_p) {
DevicePrivate *replaced_device_p;
if (device_p->uid_valid) {
replaced_device_p = (DevicePrivate *)table_insert(&ipcon_p->devices, device_p->uid, device_p);
if (replaced_device_p != NULL) {
replaced_device_p->replaced = true;
}
}
}
int packet_header_create(PacketHeader *header, uint8_t length,
uint8_t function_id, IPConnectionPrivate *ipcon_p,
DevicePrivate *device_p) {
uint8_t sequence_number;
bool response_expected = false;
int ret = E_OK;
mutex_lock(&ipcon_p->sequence_number_mutex);
sequence_number = ipcon_p->next_sequence_number + 1;
ipcon_p->next_sequence_number = sequence_number % 15;
mutex_unlock(&ipcon_p->sequence_number_mutex);
memset(header, 0, sizeof(PacketHeader));
if (device_p != NULL) {
header->uid = leconvert_uint32_to(device_p->uid);
}
header->length = length;
header->function_id = function_id;
packet_header_set_sequence_number(header, sequence_number);
if (device_p != NULL) {
ret = device_get_response_expected(device_p, function_id, &response_expected);
packet_header_set_response_expected(header, response_expected);
}
return ret;
}
uint8_t packet_header_get_sequence_number(PacketHeader *header) {
return (header->sequence_number_and_options >> 4) & 0x0F;
}
void packet_header_set_sequence_number(PacketHeader *header, uint8_t sequence_number) {
header->sequence_number_and_options &= ~0xF0;
header->sequence_number_and_options |= (sequence_number << 4) & 0xF0;
}
uint8_t packet_header_get_response_expected(PacketHeader *header) {
return (header->sequence_number_and_options >> 3) & 0x01;
}
void packet_header_set_response_expected(PacketHeader *header, bool response_expected) {
if (response_expected) {
header->sequence_number_and_options |= 0x01 << 3;
} else {
header->sequence_number_and_options &= ~(0x01 << 3);
}
}
uint8_t packet_header_get_error_code(PacketHeader *header) {
return (header->error_code_and_future_use >> 6) & 0x03;
}
int16_t leconvert_int16_to(int16_t native) {
return leconvert_uint16_to(native);
}
uint16_t leconvert_uint16_to(uint16_t native) {
union {
uint8_t bytes[2];
uint16_t little;
} c;
c.bytes[0] = (native >> 0) & 0xFF;
c.bytes[1] = (native >> 8) & 0xFF;
return c.little;
}
int32_t leconvert_int32_to(int32_t native) {
return leconvert_uint32_to(native);
}
uint32_t leconvert_uint32_to(uint32_t native) {
union {
uint8_t bytes[4];
uint32_t little;
} c;
c.bytes[0] = (native >> 0) & 0xFF;
c.bytes[1] = (native >> 8) & 0xFF;
c.bytes[2] = (native >> 16) & 0xFF;
c.bytes[3] = (native >> 24) & 0xFF;
return c.little;
}
int64_t leconvert_int64_to(int64_t native) {
return leconvert_uint64_to(native);
}
uint64_t leconvert_uint64_to(uint64_t native) {
union {
uint8_t bytes[8];
uint64_t little;
} c;
c.bytes[0] = (native >> 0) & 0xFF;
c.bytes[1] = (native >> 8) & 0xFF;
c.bytes[2] = (native >> 16) & 0xFF;
c.bytes[3] = (native >> 24) & 0xFF;
c.bytes[4] = (native >> 32) & 0xFF;
c.bytes[5] = (native >> 40) & 0xFF;
c.bytes[6] = (native >> 48) & 0xFF;
c.bytes[7] = (native >> 56) & 0xFF;
return c.little;
}
float leconvert_float_to(float native) {
union {
uint32_t u;
float f;
} c;
c.f = native;
c.u = leconvert_uint32_to(c.u);
return c.f;
}
int16_t leconvert_int16_from(int16_t little) {
return leconvert_uint16_from(little);
}
uint16_t leconvert_uint16_from(uint16_t little) {
uint8_t *bytes = (uint8_t *)&little;
return ((uint16_t)bytes[1] << 8) |
(uint16_t)bytes[0];
}
int32_t leconvert_int32_from(int32_t little) {
return leconvert_uint32_from(little);
}
uint32_t leconvert_uint32_from(uint32_t little) {
uint8_t *bytes = (uint8_t *)&little;
return ((uint32_t)bytes[3] << 24) |
((uint32_t)bytes[2] << 16) |
((uint32_t)bytes[1] << 8) |
(uint32_t)bytes[0];
}
int64_t leconvert_int64_from(int64_t little) {
return leconvert_uint64_from(little);
}
uint64_t leconvert_uint64_from(uint64_t little) {
uint8_t *bytes = (uint8_t *)&little;
return ((uint64_t)bytes[7] << 56) |
((uint64_t)bytes[6] << 48) |
((uint64_t)bytes[5] << 40) |
((uint64_t)bytes[4] << 32) |
((uint64_t)bytes[3] << 24) |
((uint64_t)bytes[2] << 16) |
((uint64_t)bytes[1] << 8) |
(uint64_t)bytes[0];
}
float leconvert_float_from(float little) {
union {
uint32_t u;
float f;
} c;
c.f = little;
c.u = leconvert_uint32_from(c.u);
return c.f;
}
char *string_copy(char *dest, const char *src, size_t n) {
size_t idx = 0;
while(src[idx] != '\0' && idx < n) {
dest[idx] = src[idx];
++idx;
}
while (idx < n) {
dest[idx] = '\0';
++idx;
}
return dest;
}
#ifdef __cplusplus
}
#endif