hyperion.ng/libsrc/leddevice/dev_net/LedDevicePhilipsHue.cpp

467 lines
12 KiB
C++

// Local-Hyperion includes
#include "LedDevicePhilipsHue.h"
// qt includes
#include <QtCore/qmath.h>
#include <QNetworkReply>
bool operator ==(CiColor p1, CiColor p2)
{
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
}
bool operator !=(CiColor p1, CiColor p2)
{
return !(p1 == p2);
}
CiColor CiColor::rgbToCiColor(float red, float green, float blue, CiColorTriangle colorSpace)
{
// Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space.
float X = r * 0.664511f + g * 0.154324f + b * 0.162028f;
float Y = r * 0.283881f + g * 0.668433f + b * 0.047685f;
float Z = r * 0.000088f + g * 0.072310f + b * 0.986039f;
// Convert to x,y space.
float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z);
if (std::isnan(cx))
{
cx = 0.0f;
}
if (std::isnan(cy))
{
cy = 0.0f;
}
// RGB to HSV/B Conversion after gamma correction use V for brightness, not Y from XYZ Space.
float bri = fmax(fmax(r, g), b);
CiColor xy =
{ cx, cy, bri };
// Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(xy, colorSpace))
{
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB;
CiColor closestPoint = pAB;
if (dAC < lowest)
{
lowest = dAC;
closestPoint = pAC;
}
if (dBC < lowest)
{
lowest = dBC;
closestPoint = pBC;
}
// Change the xy value to a value which is within the reach of the lamp.
xy.x = closestPoint.x;
xy.y = closestPoint.y;
}
return xy;
}
float CiColor::crossProduct(CiColor p1, CiColor p2)
{
return p1.x * p2.y - p1.y * p2.x;
}
bool CiColor::isPointInLampsReach(CiColor p, CiColorTriangle colorSpace)
{
CiColor v1 =
{ colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
CiColor v2 =
{ colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
CiColor q =
{ p.x - colorSpace.red.x, p.y - colorSpace.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f))
{
return true;
}
return false;
}
CiColor CiColor::getClosestPointToPoint(CiColor a, CiColor b, CiColor p)
{
CiColor AP =
{ p.x - a.x, p.y - a.y };
CiColor AB =
{ b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
if (t < 0.0f)
{
t = 0.0f;
}
else if (t > 1.0f)
{
t = 1.0f;
}
return
{ a.x + AB.x * t, a.y + AB.y * t};
}
float CiColor::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2)
{
// Horizontal difference.
float dx = p1.x - p2.x;
// Vertical difference.
float dy = p1.y - p2.y;
// Absolute value.
return sqrt(dx * dx + dy * dy);
}
PhilipsHueBridge::PhilipsHueBridge(Logger* log, QString host, QString username)
: QObject()
, _log(log)
, host(host)
, username(username)
{
// setup reconnection timer
bTimer.setInterval(5000);
bTimer.setSingleShot(true);
connect(&bTimer, &QTimer::timeout, this, &PhilipsHueBridge::bConnect);
connect(&manager, &QNetworkAccessManager::finished, this, &PhilipsHueBridge::resolveReply);
}
void PhilipsHueBridge::bConnect(void)
{
if(username.isEmpty() || host.isEmpty())
{
Error(_log,"Username or IP Address is empty!");
}
else
{
QString url = QString("http://%1/api/%2").arg(host).arg(username);
Debug(_log, "Connect to bridge %s", QSTRING_CSTR(url));
QNetworkRequest request(url);
manager.get(request);
}
}
void PhilipsHueBridge::resolveReply(QNetworkReply* reply)
{
// TODO use put request also for network error checking with decent threshold
if(reply->operation() == QNetworkAccessManager::GetOperation)
{
if(reply->error() == QNetworkReply::NoError)
{
QByteArray response = reply->readAll();
QJsonParseError error;
QJsonDocument doc = QJsonDocument::fromJson(response, &error);
if (error.error != QJsonParseError::NoError)
{
Error(_log, "Got invalid response from bridge");
return;
}
// check for authorization
if(doc.isArray())
{
Error(_log, "Authorization failed, username invalid");
return;
}
QJsonObject obj = doc.object()["lights"].toObject();
if(obj.isEmpty())
{
Error(_log, "Bridge has no registered bulbs/stripes");
return;
}
// get all available light ids and their values
QStringList keys = obj.keys();
QMap<quint16,QJsonObject> map;
for (int i = 0; i < keys.size(); ++i)
{
map.insert(keys.at(i).toInt(), obj.take(keys.at(i)).toObject());
}
emit newLights(map);
}
else
{
Error(_log,"Network Error: %s", QSTRING_CSTR(reply->errorString()));
bTimer.start();
}
}
reply->deleteLater();
}
void PhilipsHueBridge::post(QString route, QString content)
{
//Debug(_log, "Post %s: %s", QSTRING_CSTR(QString("http://IP/api/USR/%1").arg(route)), QSTRING_CSTR(content));
QNetworkRequest request(QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route));
manager.put(request, content.toLatin1());
}
const std::set<QString> PhilipsHueLight::GAMUT_A_MODEL_IDS =
{ "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012", "LLC013", "LLC014", "LST001" };
const std::set<QString> PhilipsHueLight::GAMUT_B_MODEL_IDS =
{ "LCT001", "LCT002", "LCT003", "LCT007", "LLM001" };
const std::set<QString> PhilipsHueLight::GAMUT_C_MODEL_IDS =
{ "LLC020", "LST002", "LCT011", "LCT012", "LCT010", "LCT014", "LCT015", "LCT016", "LCT024" };
PhilipsHueLight::PhilipsHueLight(Logger* log, PhilipsHueBridge* bridge, unsigned int id, QJsonObject values)
: _log(log)
, bridge(bridge)
, id(id)
{
// Get state object values which are subject to change.
if (!values["state"].toObject().contains("on"))
{
Error(_log, "Got invalid state object from light ID %d", id);
}
QJsonObject state;
state["on"] = values["state"].toObject()["on"];
on = false;
if (values["state"].toObject()["on"].toBool())
{
state["xy"] = values["state"].toObject()["xy"];
state["bri"] = values["state"].toObject()["bri"];
on = true;
color = {
(float) state["xy"].toArray()[0].toDouble(),
(float) state["xy"].toArray()[1].toDouble(),
(float) state["bri"].toDouble() / 255.0f
};
transitionTime = values["state"].toObject()["transitiontime"].toInt();
}
// Determine the model id.
modelId = values["modelid"].toString().trimmed().replace("\"", "");
// Determine the original state.
originalState = QJsonDocument(state).toJson(QJsonDocument::JsonFormat::Compact).trimmed();
// Find id in the sets and set the appropriate color space.
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end())
{
Debug(_log, "Recognized model id %s of light ID %d as gamut A", modelId.toStdString().c_str(), id);
colorSpace.red =
{ 0.704f, 0.296f};
colorSpace.green =
{ 0.2151f, 0.7106f};
colorSpace.blue =
{ 0.138f, 0.08f};
}
else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end())
{
Debug(_log, "Recognized model id %s of light ID %d as gamut B", modelId.toStdString().c_str(), id);
colorSpace.red =
{ 0.675f, 0.322f};
colorSpace.green =
{ 0.409f, 0.518f};
colorSpace.blue =
{ 0.167f, 0.04f};
}
else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_C_MODEL_IDS.end())
{
Debug(_log, "Recognized model id %s of light ID %d as gamut C", modelId.toStdString().c_str(), id);
colorSpace.red =
{ 0.6915f, 0.3083f};
colorSpace.green =
{ 0.17f, 0.7f};
colorSpace.blue =
{ 0.1532f, 0.0475f};
}
else
{
Warning(_log, "Did not recognize model id %s of light ID %d", modelId.toStdString().c_str(), id);
colorSpace.red =
{ 1.0f, 0.0f};
colorSpace.green =
{ 0.0f, 1.0f};
colorSpace.blue =
{ 0.0f, 0.0f};
}
Info(_log,"Light ID %d created", id);
}
PhilipsHueLight::~PhilipsHueLight()
{
// Restore the original state.
set(originalState);
}
void PhilipsHueLight::set(QString state)
{
bridge->post(QString("lights/%1/state").arg(id), state);
}
void PhilipsHueLight::setOn(bool on)
{
if (this->on != on)
{
QString arg = on ? "true" : "false";
set(QString("{ \"on\": %1 }").arg(arg));
}
this->on = on;
}
void PhilipsHueLight::setTransitionTime(unsigned int transitionTime)
{
if (this->transitionTime != transitionTime)
{
set(QString("{ \"transitiontime\": %1 }").arg(transitionTime));
}
this->transitionTime = transitionTime;
}
void PhilipsHueLight::setColor(CiColor color, float brightnessFactor)
{
if (this->color != color)
{
const int bri = qRound(qMin(254.0f, brightnessFactor * qMax(1.0f, color.bri * 254.0f)));
set(QString("{ \"xy\": [%1, %2], \"bri\": %3 }").arg(color.x, 0, 'f', 4).arg(color.y, 0, 'f', 4).arg(bri));
}
this->color = color;
}
CiColor PhilipsHueLight::getColor() const
{
return color;
}
CiColorTriangle PhilipsHueLight::getColorSpace() const
{
return colorSpace;
}
LedDevice* LedDevicePhilipsHue::construct(const QJsonObject &deviceConfig)
{
return new LedDevicePhilipsHue(deviceConfig);
}
LedDevicePhilipsHue::LedDevicePhilipsHue(const QJsonObject& deviceConfig)
: LedDevice(deviceConfig)
, _bridge(nullptr)
{
}
LedDevicePhilipsHue::~LedDevicePhilipsHue()
{
switchOff();
delete _bridge;
}
void LedDevicePhilipsHue::start()
{
_bridge = new PhilipsHueBridge(_log, _devConfig["output"].toString(), _devConfig["username"].toString());
_deviceReady = init(_devConfig);
connect(_bridge, &PhilipsHueBridge::newLights, this, &LedDevicePhilipsHue::newLights);
connect(this, &LedDevice::enableStateChanged, this, &LedDevicePhilipsHue::stateChanged);
}
bool LedDevicePhilipsHue::init(const QJsonObject &deviceConfig)
{
switchOffOnBlack = deviceConfig["switchOffOnBlack"].toBool(true);
brightnessFactor = (float) deviceConfig["brightnessFactor"].toDouble(1.0);
transitionTime = deviceConfig["transitiontime"].toInt(1);
QJsonArray lArray = deviceConfig["lightIds"].toArray();
QJsonObject newDC = deviceConfig;
if(!lArray.empty())
{
for(const auto i : lArray)
{
lightIds.push_back(i.toInt());
}
// get light info from bridge
_bridge->bConnect();
// adapt latchTime to count of user lightIds (bridge 10Hz max overall)
newDC.insert("latchTime",QJsonValue(100*(int)lightIds.size()));
}
else
{
Error(_log,"No light ID provided, abort");
}
LedDevice::init(newDC);
return true;
}
void LedDevicePhilipsHue::newLights(QMap<quint16, QJsonObject> map)
{
if(!lightIds.empty())
{
// search user lightid inside map and create light if found
lights.clear();
for(const auto id : lightIds)
{
if (map.contains(id))
{
lights.push_back(PhilipsHueLight(_log, _bridge, id, map.value(id)));
}
else
{
Error(_log,"Light id %d isn't used on this bridge", id);
}
}
}
}
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues)
{
// lights will be empty sometimes
if(lights.empty()) return -1;
// more lights then leds, stop always
if(ledValues.size() < lights.size())
{
Error(_log,"More LightIDs configured than leds, each LightID requires one led!");
return -1;
}
// Iterate through lights and set colors.
unsigned int idx = 0;
for (PhilipsHueLight& light : lights)
{
// Get color.
ColorRgb color = ledValues.at(idx);
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
CiColor xy = CiColor::rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f,
light.getColorSpace());
if (switchOffOnBlack && xy.bri == 0)
{
light.setOn(false);
}
else
{
light.setOn(true);
// Write color if color has been changed.
light.setTransitionTime(transitionTime);
light.setColor(xy, brightnessFactor);
}
idx++;
}
return 0;
}
void LedDevicePhilipsHue::stateChanged(bool newState)
{
if(newState)
_bridge->bConnect();
else
lights.clear();
}