hyperion.ng/libsrc/leddevice/dev_spi/LedDeviceSk6822SPI.cpp
LordGrey ed5455458b
Disentangle LedDevice/LinearColorSmoothing, Bug Fixes & Test support (#654)
* Handle Exceptions in main & Pythoninit

* Have SSDPDiscover generic again

* Have SSDPDiscover generic again

* Change Info- to Debug logs as technical service messages

* Nanoleaf - When switched on, ensure UDP mode

* Include SQL Database in Cross-Compile instructions

* Fix Clazy (QT code checker) and clang Warnings

* Stop LedDevice:write for disabled device

* Nanoleaf: Fix uint printfs

* NanoLeaf: Fix indents to tabs

* NanoLeaf - Add debug verbosity switches

* Device switchability support, FileDevice with timestamp support

* Nanoleaf Light Panels now support External Control V2

* Enhance LedDeviceFile by Timestamp + fix readyness

* Stop color stream, if LedDevice disabled

* Nanoleaf - remove switchability

* Fix MultiColorAdjustment, if led-range is greater lednum

* Fix logging

* LedFileDevice/LedDevice - add testing support

* New "Led Test" effect

* LedDeviceFile - Add chrono include + Allow Led rewrites for testing

* Stabilize Effects for LedDevices where latchtime = 0

* Update LedDeviceFile, allow latchtime = 0

* Distangle LinearColorSmoothing and LEDDevice, Fix Effect configuration updates

* Updates LedDeviceFile - Initialize via Open

* Updates LedDeviceNanoleaf - Initialize via Open, Remove throwing exceptions

* Updates ProviderUDP - Remove throwing exceptions

* Framebuffer - Use precise timer

* TestSpi - Align to LedDevice updates

* Pretty Print CrossCompileHowTo as markdown-file

* Ensure that output is only written when LedDevice is ready

* Align APA102 Device to new device staging

* Logger - Remove clang warnings on extra semicolon

* Devices SPI - Align to Device stages and methods

* Fix cppcheck and clang findings

* Add Code-Template for new Devices

* Align devices to stages and methods, clean-up some code

* Allow to reopen LedDevice without restart

* Revert change "Remove Connect (PriorityMuxer::visiblePriorityChanged -> Hyperion::update) due to double writes"

* Remove visiblePriorityChanged from LedDevice to decouple LedDevice from hyperion logic

* Expose LedDevice getLedCount and align signedness
2020-02-10 15:21:58 +01:00

120 lines
3.1 KiB
C++

#include "LedDeviceSk6822SPI.h"
/*
From the data sheet:
(TH+TL=1.7μs±600ns)
T0H, 0 code, high level time, 0.35µs ±0.150ns
T0L, 0 code, low level time, 1.36µs ±0.150ns
T1H, 1 code, high level time, 1.36µs ±0.150ns
T1L, 1 code, low level time, 0.35µs ±0.150ns
WT, Wait for the processing time, 12µs ±0.150ns
Trst, Reset code,low level time, 50µs
To normalise the pulse times so they fit in 4 SPI bits:
Use timings at upper end of tolerance:
1.36 -> 1.50 uS
0.35 -> 0.50 uS
A SPI bit time of 0.50uS = 2Mbit/sec
T0 is sent as 1000
T1 is sent as 1110
With a bit of excel testing, we can work out the maximum and minimum speeds:
2000000 MIN
2230000 AVG
2460000 MAX
Wait time:
using the min of 2000000, the bit time is 0.500
Wait time is 12uS = 24 bits = 3 bytes
Reset time:
using the min of 2000000, the bit time is 0.500
Reset time is 50uS = 100 bits = 13 bytes
*/
LedDeviceSk6822SPI::LedDeviceSk6822SPI(const QJsonObject &deviceConfig)
: ProviderSpi()
, SPI_BYTES_PER_COLOUR(4)
, SPI_BYTES_WAIT_TIME(3)
, SPI_FRAME_END_LATCH_BYTES(13)
, bitpair_to_byte {
0b10001000,
0b10001110,
0b11101000,
0b11101110,
}
{
_devConfig = deviceConfig;
_deviceReady = false;
}
LedDevice* LedDeviceSk6822SPI::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceSk6822SPI(deviceConfig);
}
bool LedDeviceSk6822SPI::init(const QJsonObject &deviceConfig)
{
_baudRate_Hz = 2230000;
bool isInitOK = ProviderSpi::init(deviceConfig);
if ( isInitOK )
{
WarningIf(( _baudRate_Hz < 2000000 || _baudRate_Hz > 2460000 ), _log, "SPI rate %d outside recommended range (2000000 -> 2460000)", _baudRate_Hz);
_ledBuffer.resize( (_ledRGBCount * SPI_BYTES_PER_COLOUR) + (_ledCount * SPI_BYTES_WAIT_TIME ) + SPI_FRAME_END_LATCH_BYTES, 0x00);
// Debug(_log, "_ledBuffer.resize(_ledRGBCount:%d * SPI_BYTES_PER_COLOUR:%d) + ( _ledCount:%d * SPI_BYTES_WAIT_TIME:%d ) + SPI_FRAME_END_LATCH_BYTES:%d, 0x00)", _ledRGBCount, SPI_BYTES_PER_COLOUR, _ledCount, SPI_BYTES_WAIT_TIME, SPI_FRAME_END_LATCH_BYTES);
}
return isInitOK;
}
int LedDeviceSk6822SPI::write(const std::vector<ColorRgb> &ledValues)
{
unsigned spi_ptr = 0;
const int SPI_BYTES_PER_LED = sizeof(ColorRgb) * SPI_BYTES_PER_COLOUR;
for (const ColorRgb& color : ledValues)
{
uint32_t colorBits = ((unsigned int)color.red << 16)
| ((unsigned int)color.green << 8)
| color.blue;
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--)
{
_ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
colorBits >>= 2;
}
spi_ptr += SPI_BYTES_PER_LED;
spi_ptr += SPI_BYTES_WAIT_TIME; // the wait between led time is all zeros
}
/*
// debug the whole SPI packet
char debug_line[2048];
int ptr=0;
for (unsigned int i=0; i < _ledBuffer.size(); i++)
{
if (i%16 == 0)
{
ptr += snprintf (ptr+debug_line, sizeof(debug_line)-ptr, "%03x: ", i);
}
ptr += snprintf (ptr+debug_line, sizeof(debug_line)-ptr, "%02x ", _ledBuffer.data()[i]);
if ( (i%16 == 15) || ( i == _ledBuffer.size()-1 ) )
{
Debug(_log, debug_line);
ptr = 0;
}
}
*/
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
}