hyperion.ng/include/hyperion/ImageToLedsMap.h

239 lines
7.1 KiB
C++

#pragma once
// STL includes
#include <cassert>
#include <sstream>
// hyperion-utils includes
#include <utils/Image.h>
#include <utils/Logger.h>
// hyperion includes
#include <hyperion/LedString.h>
namespace hyperion
{
///
/// The ImageToLedsMap holds a mapping of indices into an image to leds. It can be used to
/// calculate the average (or mean) color per led for a specific region.
///
class ImageToLedsMap
{
public:
///
/// Constructs an mapping from the absolute indices in an image to each led based on the border
/// definition given in the list of leds. The map holds absolute indices to any given image,
/// provided that it is row-oriented.
/// The mapping is created purely on size (width and height). The given borders are excluded
/// from indexing.
///
/// @param[in] width The width of the indexed image
/// @param[in] height The width of the indexed image
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
/// @param[in] verticalBorder The size of the vertical border (0=no border)
/// @param[in] leds The list with led specifications
///
ImageToLedsMap(
const unsigned width,
const unsigned height,
const unsigned horizontalBorder,
const unsigned verticalBorder,
const std::vector<Led> & leds);
///
/// Returns the width of the indexed image
///
/// @return The width of the indexed image [pixels]
///
unsigned width() const;
///
/// Returns the height of the indexed image
///
/// @return The height of the indexed image [pixels]
///
unsigned height() const;
unsigned horizontalBorder() const { return _horizontalBorder; }
unsigned verticalBorder() const { return _verticalBorder; }
///
/// Determines the mean color for each led using the mapping the image given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getMeanLedColor(image, colors);
return colors;
}
///
/// Determines the mean color for each led using the mapping the image given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
//assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the mean
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calcMeanColor(image, *colors);
*led = color;
}
}
///
/// Determines the uni color for each led using the mapping the image given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getUniLedColor(image, colors);
return colors;
}
///
/// Determines the uni color for each led using the mapping the image given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
// assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// calculate uni color
const ColorRgb color = calcMeanColor(image);
std::fill(ledColors.begin(),ledColors.end(), color);
}
private:
/// The width of the indexed image
const unsigned _width;
/// The height of the indexed image
const unsigned _height;
const unsigned _horizontalBorder;
const unsigned _verticalBorder;
/// The absolute indices into the image for each led
std::vector<std::vector<unsigned>> _colorsMap;
///
/// Calculates the 'mean color' of the given list. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] colors The list with colors
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<unsigned> & colors) const
{
const auto colorVecSize = colors.size();
if (colorVecSize == 0)
{
return ColorRgb::BLACK;
}
// Accumulate the sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const unsigned colorOffset : colors)
{
const auto& pixel = imgData[colorOffset];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/colorVecSize);
const uint8_t avgGreen = uint8_t(cummGreen/colorVecSize);
const uint8_t avgBlue = uint8_t(cummBlue/colorVecSize);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image) const
{
// Accumulate the sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned imageSize = image.width() * image.height();
const auto& imgData = image.memptr();
for (unsigned idx=0; idx<imageSize; idx++)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/imageSize);
const uint8_t avgGreen = uint8_t(cummGreen/imageSize);
const uint8_t avgBlue = uint8_t(cummBlue/imageSize);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
};
} // end namespace hyperion