hyperion.ng/libsrc/hyperion/LinearColorSmoothing.cpp

710 lines
22 KiB
C++

// Qt includes
#include <QDateTime>
#include <QTimer>
#include "LinearColorSmoothing.h"
#include <hyperion/Hyperion.h>
#include <cmath>
#include <chrono>
#include <thread>
/// The number of microseconds per millisecond = 1000.
const int64_t MS_PER_MICRO = 1000;
#if defined(COMPILER_GCC)
#define ALWAYS_INLINE inline __attribute__((__always_inline__))
#elif defined(COMPILER_MSVC)
#define ALWAYS_INLINE __forceinline
#else
#define ALWAYS_INLINE inline
#endif
/// Clamps the rounded values to the byte-interval of [0, 255].
ALWAYS_INLINE long clampRounded(const floatT x) {
return std::min(255L, std::max(0L, std::lroundf(x)));
}
/// The number of bits that are used for shifting the fixed point values
const int FPShift = (sizeof(uint64_t)*8 - (12 + 9));
/// The number of bits that are reduce the shifting when converting from fixed to floating point. 8 bits = 256 values
const int SmallShiftBis = sizeof(uint8_t)*8;
/// The number of bits that are used for shifting the fixed point values plus SmallShiftBis
const int FPShiftSmall = (sizeof(uint64_t)*8 - (12 + 9 + SmallShiftBis));
const char* SETTINGS_KEY_SMOOTHING_TYPE = "type";
const char* SETTINGS_KEY_INTERPOLATION_RATE = "interpolationRate";
const char* SETTINGS_KEY_OUTPUT_RATE = "outputRate";
const char* SETTINGS_KEY_DITHERING = "dithering";
const char* SETTINGS_KEY_DECAY = "decay";
using namespace hyperion;
const int64_t DEFAUL_SETTLINGTIME = 200; // settlingtime in ms
const int DEFAUL_UPDATEFREQUENCY = 25; // updatefrequncy in hz
constexpr std::chrono::milliseconds DEFAUL_UPDATEINTERVALL{1000/ DEFAUL_UPDATEFREQUENCY};
const unsigned DEFAUL_OUTPUTDEPLAY = 0; // outputdelay in ms
LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument &config, Hyperion *hyperion)
: QObject(hyperion)
, _log(Logger::getInstance("SMOOTHING"))
, _hyperion(hyperion)
, _updateInterval(DEFAUL_UPDATEINTERVALL.count())
, _settlingTime(DEFAUL_SETTLINGTIME)
, _timer(new QTimer(this))
, _outputDelay(DEFAUL_OUTPUTDEPLAY)
, _smoothingType(SmoothingType::Linear)
, _writeToLedsEnable(false)
, _continuousOutput(false)
, _pause(false)
, _currentConfigId(0)
, _enabled(false)
, tempValues(std::vector<uint64_t>(0, 0L))
{
// init cfg 0 (default)
addConfig(DEFAUL_SETTLINGTIME, DEFAUL_UPDATEFREQUENCY, DEFAUL_OUTPUTDEPLAY);
handleSettingsUpdate(settings::SMOOTHING, config);
selectConfig(0, true);
// add pause on cfg 1
SMOOTHING_CFG cfg = {SmoothingType::Linear, false, 0, 0, 0, 0, 0, false, 1};
_cfgList.append(cfg);
// listen for comp changes
connect(_hyperion, &Hyperion::compStateChangeRequest, this, &LinearColorSmoothing::componentStateChange);
// timer
connect(_timer, &QTimer::timeout, this, &LinearColorSmoothing::updateLeds);
//Debug(_log, "LinearColorSmoothing sizeof floatT == %d", (sizeof(floatT)));
}
void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJsonDocument &config)
{
if (type == settings::SMOOTHING)
{
// std::cout << "LinearColorSmoothing::handleSettingsUpdate" << std::endl;
// std::cout << config.toJson().toStdString() << std::endl;
QJsonObject obj = config.object();
if (enabled() != obj["enable"].toBool(true))
{
setEnable(obj["enable"].toBool(true));
}
_continuousOutput = obj["continuousOutput"].toBool(true);
SMOOTHING_CFG cfg = {SmoothingType::Linear,true, 0, 0, 0, 0, 0, false, 1};
const QString typeString = obj[SETTINGS_KEY_SMOOTHING_TYPE].toString();
if(typeString == "linear") {
cfg.smoothingType = SmoothingType::Linear;
} else if(typeString == "decay") {
cfg.smoothingType = SmoothingType::Decay;
}
cfg.pause = false;
cfg.settlingTime = static_cast<int64_t>(obj["time_ms"].toInt(DEFAUL_SETTLINGTIME));
cfg.updateInterval = static_cast<int>(1000.0 / obj["updateFrequency"].toDouble(DEFAUL_UPDATEFREQUENCY));
cfg.outputRate = obj[SETTINGS_KEY_OUTPUT_RATE].toDouble(DEFAUL_UPDATEFREQUENCY);
cfg.interpolationRate = obj[SETTINGS_KEY_INTERPOLATION_RATE].toDouble(DEFAUL_UPDATEFREQUENCY);
cfg.outputDelay = static_cast<unsigned>(obj["updateDelay"].toInt(DEFAUL_OUTPUTDEPLAY));
cfg.dithering = obj[SETTINGS_KEY_DITHERING].toBool(false);
cfg.decay = obj[SETTINGS_KEY_DECAY].toDouble(1.0);
//Debug( _log, "smoothing cfg_id %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _currentConfigId, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay );
_cfgList[0] = cfg;
// if current id is 0, we need to apply the settings (forced)
if (_currentConfigId == 0)
{
//Debug( _log, "_currentConfigId == 0");
selectConfig(0, true);
}
else
{
//Debug( _log, "_currentConfigId != 0");
}
}
}
int LinearColorSmoothing::write(const std::vector<ColorRgb> &ledValues)
{
_targetTime = micros() + (MS_PER_MICRO * _settlingTime);
_targetValues = ledValues;
rememberFrame(ledValues);
// received a new target color
if (_previousValues.empty())
{
// not initialized yet
_previousWriteTime = micros();
_previousValues = ledValues;
_previousInterpolationTime = micros();
//Debug( _log, "Start Smoothing timer: settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _settlingTime, _updateInterval, unsigned(1000.0/_updateInterval), _outputDelay );
QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval));
}
return 0;
}
int LinearColorSmoothing::updateLedValues(const std::vector<ColorRgb> &ledValues)
{
int retval = 0;
if (!_enabled)
{
retval = -1;
}
else
{
retval = write(ledValues);
}
return retval;
}
void LinearColorSmoothing::intitializeComponentVectors(const size_t ledCount)
{
// (Re-)Initialize the color-vectors that store the Mean-Value
if (_ledCount != ledCount)
{
_ledCount = ledCount;
const size_t len = 3 * ledCount;
meanValues = std::vector<floatT>(len, 0.0F);
residualErrors = std::vector<floatT>(len, 0.0F);
tempValues = std::vector<uint64_t>(len, 0L);
}
// Zero the temp vector
std::fill(tempValues.begin(), tempValues.end(), 0L);
}
void LinearColorSmoothing::writeDirect()
{
const int64_t now = micros();
_previousValues = _targetValues;
_previousWriteTime = now;
queueColors(_previousValues);
_writeToLedsEnable = _continuousOutput;
}
void LinearColorSmoothing::writeFrame()
{
const int64_t now = micros();
_previousWriteTime = now;
queueColors(_previousValues);
_writeToLedsEnable = _continuousOutput;
}
ALWAYS_INLINE int64_t LinearColorSmoothing::micros() const
{
const auto now = std::chrono::high_resolution_clock::now();
return (std::chrono::duration_cast<std::chrono::microseconds>(now.time_since_epoch())).count();
}
void LinearColorSmoothing::assembleAndDitherFrame()
{
if (meanValues.empty())
{
return;
}
// The number of leds present in each frame
const size_t N = _targetValues.size();
for (size_t i = 0; i < N; ++i)
{
// Add residuals for error diffusion (temporal dithering)
const floatT fr = meanValues[3 * i + 0] + residualErrors[3 * i + 0];
const floatT fg = meanValues[3 * i + 1] + residualErrors[3 * i + 1];
const floatT fb = meanValues[3 * i + 2] + residualErrors[3 * i + 2];
// Convert to to 8-bit value
const long ir = clampRounded(fr);
const long ig = clampRounded(fg);
const long ib = clampRounded(fb);
// Update the colors
ColorRgb &prev = _previousValues[i];
prev.red = static_cast<uint8_t>(ir);
prev.green = static_cast<uint8_t>(ig);
prev.blue = static_cast<uint8_t>(ib);
// Determine the component errors
residualErrors[3 * i + 0] = fr - ir;
residualErrors[3 * i + 1] = fg - ig;
residualErrors[3 * i + 2] = fb - ib;
}
}
void LinearColorSmoothing::assembleFrame()
{
if (meanValues.empty())
{
return;
}
// The number of leds present in each frame
const size_t N = _targetValues.size();
for (size_t i = 0; i < N; ++i)
{
// Convert to to 8-bit value
const long ir = clampRounded(meanValues[3 * i + 0]);
const long ig = clampRounded(meanValues[3 * i + 1]);
const long ib = clampRounded(meanValues[3 * i + 2]);
// Update the colors
ColorRgb &prev = _previousValues[i];
prev.red = static_cast<uint8_t>(ir);
prev.green = static_cast<uint8_t>(ig);
prev.blue = static_cast<uint8_t>(ib);
}
}
ALWAYS_INLINE void LinearColorSmoothing::aggregateComponents(const std::vector<ColorRgb>& colors, std::vector<uint64_t>& weighted, const floatT weight) {
// Determine the integer-scale by converting the weight to fixed point
const uint64_t scale = (static_cast<uint64_t>(1L)<<FPShift) * static_cast<double>(weight);
const size_t N = colors.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &color = colors[i];
// Scale the colors
const uint64_t red = scale * color.red;
const uint64_t green = scale * color.green;
const uint64_t blue = scale * color.blue;
// Accumulate in the vector
weighted[3 * i + 0] += red;
weighted[3 * i + 1] += green;
weighted[3 * i + 2] += blue;
}
}
void LinearColorSmoothing::interpolateFrame()
{
const int64_t now = micros();
// The number of leds present in each frame
const size_t N = _targetValues.size();
intitializeComponentVectors(N);
/// Time where the frame has been shown
int64_t frameStart;
/// Time where the frame display would have ended
int64_t frameEnd = now;
/// Time where the current window has started
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
/// The total weight of the frames that were included in our window; sum of the individual weights
floatT fs = 0.0F;
// To calculate the mean component we iterate over all relevant frames;
// from the most recent to the oldest frame that still clips our moving-average window given by time (now)
for (auto it = _frameQueue.rbegin(); it != _frameQueue.rend() && frameEnd > windowStart; ++it)
{
// Starting time of a frame in the window is clipped to the window start
frameStart = std::max(windowStart, it->time);
// Weight the current frame relative to the overall window based on start and end times
const floatT weight = _weightFrame(frameStart, frameEnd, windowStart);
fs += weight;
// Aggregate the RGB components of this frame's LED colors using the individual weighting
aggregateComponents(it->colors, tempValues, weight);
// The previous (earlier) frame display has ended when the current frame stared to show,
// so we can use this as the frame-end time for next iteration
frameEnd = frameStart;
}
/// The inverse scaling factor for the color components, clamped to (0, 1.0]; 1.0 for fs < 1, 1 : fs otherwise
const floatT inv_fs = ((fs < 1.0F) ? 1.0F : 1.0F / fs) / (1 << SmallShiftBis);
// Normalize the mean component values for the window (fs)
for (size_t i = 0; i < 3 * N; ++i)
{
meanValues[i] = (tempValues[i] >> FPShiftSmall) * inv_fs;
}
_previousInterpolationTime = now;
}
void LinearColorSmoothing::performDecay(const int64_t now) {
/// The target time when next frame interpolation should be performed
const int64_t interpolationTarget = _previousInterpolationTime + _interpolationIntervalMicros;
/// The target time when next write operation should be performed
const int64_t writeTarget = _previousWriteTime + _outputIntervalMicros;
/// Whether a frame interpolation is pending
const bool interpolatePending = now > interpolationTarget;
/// Whether a write is pending
const bool writePending = now > writeTarget;
// Check whether a new interpolation frame is due
if (interpolatePending)
{
interpolateFrame();
++_interpolationCounter;
// Assemble the frame now when no dithering is applied
if(!_dithering) {
assembleFrame();
}
}
// Check whether to frame output is due
if (writePending)
{
// Dither the frame to diffuse rounding errors
if(_dithering) {
assembleAndDitherFrame();
}
writeFrame();
++_renderedCounter;
}
// Check for sleep when no operation is pending.
// As our QTimer is not capable of sub 1ms timing but instead performs spinning -
// we have to do µsec-sleep to free CPU time; otherwise the thread would consume 100% CPU time.
if(_updateInterval <= 0 && !(interpolatePending || writePending)) {
const int64_t nextActionExpected = std::min(interpolationTarget, writeTarget);
const int64_t microsTillNextAction = nextActionExpected - now;
const int64_t SLEEP_MAX_MICROS = 1000L; // We want to use usleep for up to 1ms
const int64_t SLEEP_RES_MICROS = 100L; // Expected resolution is >= 100µs on stock linux
if(microsTillNextAction > SLEEP_RES_MICROS) {
const int64_t wait = std::min(microsTillNextAction - SLEEP_RES_MICROS, SLEEP_MAX_MICROS);
//usleep(wait);
std::this_thread::sleep_for(std::chrono::microseconds(wait));
}
}
// Write stats every 30 sec
if ((now > (_renderedStatTime + 30 * 1000000)) && (_renderedCounter > _renderedStatCounter))
{
Debug(_log, "decay - rendered frames [%d] (%f/s), interpolated frames [%d] (%f/s) in [%f ms]"
, _renderedCounter - _renderedStatCounter
, (1.0F * (_renderedCounter - _renderedStatCounter) / ((now - _renderedStatTime) / 1000000.0F))
, _interpolationCounter - _interpolationStatCounter
, (1.0F * (_interpolationCounter - _interpolationStatCounter) / ((now - _renderedStatTime) / 1000000.0F))
, (now - _renderedStatTime) / 1000.0F
);
_renderedStatTime = now;
_renderedStatCounter = _renderedCounter;
_interpolationStatCounter = _interpolationCounter;
}
}
void LinearColorSmoothing::performLinear(const int64_t now) {
const int64_t deltaTime = _targetTime - now;
const float k = 1.0F - 1.0F * deltaTime / (_targetTime - _previousWriteTime);
const size_t N = _previousValues.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &target = _targetValues[i];
ColorRgb &prev = _previousValues[i];
const int reddif = target.red - prev.red;
const int greendif = target.green - prev.green;
const int bluedif = target.blue - prev.blue;
prev.red += (reddif < 0 ? -1:1) * std::ceil(k * std::abs(reddif));
prev.green += (greendif < 0 ? -1:1) * std::ceil(k * std::abs(greendif));
prev.blue += (bluedif < 0 ? -1:1) * std::ceil(k * std::abs(bluedif));
}
writeFrame();
}
void LinearColorSmoothing::updateLeds()
{
const int64_t now = micros();
const int64_t deltaTime = _targetTime - now;
//Debug(_log, "elapsed Time [%d], _targetTime [%d] - now [%d], deltaTime [%d]", now -_previousWriteTime, _targetTime, now, deltaTime);
if (deltaTime < 0)
{
writeDirect();
return;
}
switch (_smoothingType)
{
case Decay:
performDecay(now);
break;
case Linear:
// Linear interpolation is default
default:
performLinear(now);
break;
}
}
void LinearColorSmoothing::rememberFrame(const std::vector<ColorRgb> &ledColors)
{
//Debug(_log, "rememberFrame - before _frameQueue.size() [%d]", _frameQueue.size());
const int64_t now = micros();
// Maintain the queue by removing outdated frames
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
int p = -1; // Start with -1 instead of 0, so we keep the last frame at least partially clipping the window
// As the frames are ordered chronologically we scan from the front (oldest) till we find the first fresh frame
for (auto it = _frameQueue.begin(); it != _frameQueue.end() && it->time < windowStart; ++it)
{
++p;
}
if (p > 0)
{
//Debug(_log, "rememberFrame - erasing %d frames", p);
_frameQueue.erase(_frameQueue.begin(), _frameQueue.begin() + p);
}
// Append the latest frame at back of the queue
const REMEMBERED_FRAME frame = REMEMBERED_FRAME(now, ledColors);
_frameQueue.push_back(frame);
//Debug(_log, "rememberFrame - after _frameQueue.size() [%d]", _frameQueue.size());
}
void LinearColorSmoothing::clearRememberedFrames()
{
_frameQueue.clear();
_ledCount = 0;
meanValues.clear();
residualErrors.clear();
tempValues.clear();
}
void LinearColorSmoothing::queueColors(const std::vector<ColorRgb> &ledColors)
{
//Debug(_log, "queueColors - _outputDelay[%d] _outputQueue.size() [%d], _writeToLedsEnable[%d]", _outputDelay, _outputQueue.size(), _writeToLedsEnable);
if (_outputDelay == 0)
{
// No output delay => immediate write
if (_writeToLedsEnable && !_pause)
{
// if ( ledColors.size() == 0 )
// qFatal ("No LedValues! - in LinearColorSmoothing::queueColors() - _outputDelay == 0");
// else
emit _hyperion->ledDeviceData(ledColors);
}
}
else
{
// Push new colors in the delay-buffer
if (_writeToLedsEnable)
{
_outputQueue.push_back(ledColors);
}
// If the delay-buffer is filled pop the front and write to device
if (!_outputQueue.empty())
{
if (_outputQueue.size() > _outputDelay || !_writeToLedsEnable)
{
if (!_pause)
{
emit _hyperion->ledDeviceData(_outputQueue.front());
}
_outputQueue.pop_front();
}
}
}
}
void LinearColorSmoothing::clearQueuedColors()
{
QMetaObject::invokeMethod(_timer, "stop", Qt::QueuedConnection);
_previousValues.clear();
_targetValues.clear();
clearRememberedFrames();
}
void LinearColorSmoothing::componentStateChange(hyperion::Components component, bool state)
{
_writeToLedsEnable = state;
if (component == hyperion::COMP_LEDDEVICE)
{
clearQueuedColors();
}
if (component == hyperion::COMP_SMOOTHING)
{
setEnable(state);
}
}
void LinearColorSmoothing::setEnable(bool enable)
{
_enabled = enable;
if (!_enabled)
{
clearQueuedColors();
}
// update comp register
_hyperion->setNewComponentState(hyperion::COMP_SMOOTHING, enable);
}
void LinearColorSmoothing::setPause(bool pause)
{
_pause = pause;
}
unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{
SMOOTHING_CFG cfg = {
SmoothingType::Linear,
false,
settlingTime_ms,
static_cast<int>(1000.0 / ledUpdateFrequency_hz),
ledUpdateFrequency_hz,
ledUpdateFrequency_hz,
updateDelay,
false,
1
};
_cfgList.append(cfg);
//Debug( _log, "smoothing cfg %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _cfgList.count()-1, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay );
return _cfgList.count() - 1;
}
unsigned LinearColorSmoothing::updateConfig(unsigned cfgID, int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{
unsigned updatedCfgID = cfgID;
if (cfgID < static_cast<unsigned>(_cfgList.count()))
{
SMOOTHING_CFG cfg = {
SmoothingType::Linear,
false,
settlingTime_ms,
static_cast<int>(1000.0 / ledUpdateFrequency_hz),
ledUpdateFrequency_hz,
ledUpdateFrequency_hz,
updateDelay,
false,
1};
_cfgList[updatedCfgID] = cfg;
}
else
{
updatedCfgID = addConfig(settlingTime_ms, ledUpdateFrequency_hz, updateDelay);
}
// Debug( _log, "smoothing updatedCfgID %u: settlingTime: %d ms, "
// "interval: %d ms (%u Hz), updateDelay: %u frames", cfgID, _settlingTime, int64_t(1000.0/ledUpdateFrequency_hz), unsigned(ledUpdateFrequency_hz), updateDelay );
return updatedCfgID;
}
bool LinearColorSmoothing::selectConfig(unsigned cfg, bool force)
{
if (_currentConfigId == cfg && !force)
{
//Debug( _log, "selectConfig SAME as before, not FORCED - _currentConfigId [%u], force [%d]", cfg, force);
//Debug( _log, "current smoothing cfg: %d, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _currentConfigId, _settlingTime, _updateInterval, unsigned(1000.0/_updateInterval), _outputDelay );
return true;
}
//Debug( _log, "selectConfig FORCED - _currentConfigId [%u], force [%d]", cfg, force);
if (cfg < static_cast<uint>(_cfgList.count()) )
{
_smoothingType = _cfgList[cfg].smoothingType;
_settlingTime = _cfgList[cfg].settlingTime;
_outputDelay = _cfgList[cfg].outputDelay;
_pause = _cfgList[cfg].pause;
_outputRate = _cfgList[cfg].outputRate;
_outputIntervalMicros = int64_t(1000000.0 / _outputRate); // 1s = 1e6 µs
_interpolationRate = _cfgList[cfg].interpolationRate;
_interpolationIntervalMicros = int64_t(1000000.0 / _interpolationRate);
_dithering = _cfgList[cfg].dithering;
_decay = _cfgList[cfg].decay;
_invWindow = 1.0F / (MS_PER_MICRO * _settlingTime);
// Set _weightFrame based on the given decay
const float decay = _decay;
const floatT inv_window = _invWindow;
// For decay != 1 use power-based approach for calculating the moving average values
if(std::abs(decay - 1.0F) > std::numeric_limits<float>::epsilon()) {
// Exponential Decay
_weightFrame = [inv_window,decay](const int64_t fs, const int64_t fe, const int64_t ws) {
const floatT s = (fs - ws) * inv_window;
const floatT t = (fe - ws) * inv_window;
return (decay + 1) * (std::pow(t, decay) - std::pow(s, decay));
};
} else {
// For decay == 1 use linear interpolation of the moving average values
// Linear Decay
_weightFrame = [inv_window](const int64_t fs, const int64_t fe, const int64_t /*ws*/) {
// Linear weighting = (end - start) * scale
return static_cast<floatT>((fe - fs) * inv_window);
};
}
_renderedStatTime = micros();
_renderedCounter = 0;
_renderedStatCounter = 0;
_interpolationCounter = 0;
_interpolationStatCounter = 0;
if (_cfgList[cfg].updateInterval != _updateInterval)
{
QMetaObject::invokeMethod(_timer, "stop", Qt::QueuedConnection);
_updateInterval = _cfgList[cfg].updateInterval;
if (this->enabled() && this->_writeToLedsEnable)
{
//Debug( _log, "_cfgList[cfg].updateInterval != _updateInterval - Restart timer - _updateInterval [%d]", _updateInterval);
QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval));
}
else
{
//Debug( _log, "Smoothing disabled, do NOT restart timer");
}
}
_currentConfigId = cfg;
// Debug( _log, "current smoothing cfg: %d, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _currentConfigId, _settlingTime, _updateInterval, unsigned(1000.0/_updateInterval), _outputDelay );
// DebugIf( enabled() && !_pause, _log, "set smoothing cfg: %u settlingTime: %d ms, interval: %d ms, updateDelay: %u frames", _currentConfigId, _settlingTime, _updateInterval, _outputDelay );
// DebugIf( _pause, _log, "set smoothing cfg: %d, pause", _currentConfigId );
const float thalf = (1.0-std::pow(1.0/2, 1.0/_decay))*_settlingTime;
Debug( _log, "cfg [%d]: Type: %s - Time: %d ms, outputRate %f Hz, interpolationRate: %f Hz, timer: %d ms, Dithering: %d, Decay: %f -> HalfTime: %f ms", cfg, _smoothingType == SmoothingType::Decay ? "decay" : "linear", _settlingTime, _outputRate, _interpolationRate, _updateInterval, _dithering ? 1 : 0, _decay, thalf);
return true;
}
// reset to default
_currentConfigId = 0;
return false;
}