hyperion.ng/assets/firmware/esp8266/AtmoOrb/AtmoOrb.ino
LordGrey 7a685185f4
AtmoOrb Fix (#988)
* AtmoOrb UdpSocket-Bind Fix

* Cleanup and update defaults (to work via PowerLan)

* Cleanup and update defaults (to work via PowerLan)

* AtmoOrb identification support, small updates

* AtmoOrb discovery & identification support, fixes and stability updates

* Small clean-ups

* Type fix

* Add missing include

* Adalight - Update default config and levels

* Update Atmoorb sketch

* Yeelight - Update default value
2020-09-14 17:20:00 +02:00

355 lines
9.7 KiB
C++

// AtmoOrb by Lightning303 & Rick164, Additions by Lord-Grey
//
// ESP8266 Standalone Version
//
//
// You may change the settings that are commented
#define FASTLED_ALLOW_INTERRUPTS 0
// To make sure that all leds get changed 100% of the time, we need to allow FastLED to disabled interrupts for a short while.
// If you experience problems, please set this value to 1.
// This is only needed for 3 wire (1 data line + Vcc and GND) chips (e.g. WS2812B). If you are using WS2801, APA102 or similar chipsets, you can set the value back to 1.
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <FastLED.h>
#define NUM_LEDS 24 // Number of leds
#define DATA_PIN 7 // Data pin for leds (the default pin 7 might correspond to pin 13 on some boards)
#define SERIAL_DEBUG 0 // Serial debugging (0=Off, 1=On)
#define ID 1 // Id of this lamp
// Smoothing
#define SMOOTH_STEPS 20 // Steps to take for smoothing colors
#define SMOOTH_DELAY 10 // Delay between smoothing steps
#define SMOOTH_BLOCK 0 // Block incoming colors while smoothing
// Startup color
#define STARTUP_RED 255 // Color shown directly after power on
#define STARTUP_GREEN 175 // Color shown directly after power on
#define STARTUP_BLUE 100 // Color shown directly after power on
// White adjustment
#define RED_CORRECTION 220 // Color Correction
#define GREEN_CORRECTION 255 // Color Correction
#define BLUE_CORRECTION 180 // Color Correction
// RC Switch
#define RC_SWITCH 0 // RF transmitter to swtich remote controlled power sockets (0=Off, 1=On)
#if RC_SWITCH == 1
#include <RCSwitch.h>
#define RC_PIN 2 // Data pin for RF transmitter
#define RC_SLEEP_DELAY 900000 // Delay until RF transmitter send signals
char* rcCode0 = "10001"; // First part of the transmission code
char* rcCode1 = "00010"; // Second part of the transmission code
RCSwitch mySwitch = RCSwitch();
boolean remoteControlled = false;
#endif
// Network settings
const char* ssid = "***"; // WiFi SSID
const char* password = "***"; // WiFi password
const IPAddress multicastIP(239,255,255,250); // Multicast IP address
const int multicastPort = 49692; // Multicast port number
IPAddress ip_null(0,0,0,0);
IPAddress local_IP(0,0,0,0);
WiFiUDP Udp;
int timeout = 20000; // wait 20 sec for successfull login
boolean is_connect = false; // ... not yet connected
CRGB leds[NUM_LEDS];
byte nextColor[3];
byte prevColor[3];
byte currentColor[3];
byte smoothStep = SMOOTH_STEPS;
unsigned long smoothMillis;
void setColor(byte red, byte green, byte blue);
void setSmoothColor(byte red, byte green, byte blue);
void smoothColor();
void clearSmoothColors();
void setup()
{
FastLED.addLeds<WS2812B, DATA_PIN, GRB>(leds, NUM_LEDS);
//FastLED.setCorrection(TypicalSMD5050);
FastLED.setCorrection(CRGB(RED_CORRECTION, GREEN_CORRECTION, BLUE_CORRECTION));
FastLED.showColor(CRGB(STARTUP_RED, STARTUP_GREEN, STARTUP_BLUE));
#if RC_SWITCH == 1
mySwitch.enableTransmit(RC_PIN);
#endif
#if SERIAL_DEBUG == 1
Serial.begin(115200);
#endif
#if SERIAL_DEBUG == 1
Serial.printf("Connecting to %s ", ssid);
#endif
// .... wait for WiFi gets valid !!!
unsigned long tick = millis(); // get start-time for login
WiFi.begin(ssid, password);
while ( (!is_connect) && ((millis() - tick) < timeout) )
{
yield(); // ... for safety
is_connect = WiFi.status(); // connected ?
if (!is_connect) // only if not yet connected !
{
#if SERIAL_DEBUG == 1
Serial.print("."); // print a dot while waiting
#endif
delay(50);
}
}
if (is_connect)
{
#if SERIAL_DEBUG == 1
Serial.print("after ");
Serial.print(millis() - tick);
Serial.println(" ms");
#endif
// .... wait for local_IP becomes valid !!!
is_connect = false;
tick = millis(); // get start-time for login
while ( (!is_connect) && ((millis() - tick) < timeout) )
{
yield(); // ... for safety
local_IP = WiFi.localIP();
is_connect = local_IP != ip_null; // connected ?
if (!is_connect) // only if not yet connected !
{
#if SERIAL_DEBUG == 1
Serial.print("."); // print a dot while waiting
#endif
delay(50);
}
}
if (is_connect)
{
#if SERIAL_DEBUG == 1
Serial.print("local_IP valid after ");
Serial.print(millis() - tick);
Serial.println(" ms");
Serial.println("");
Serial.print(F("Connected to "));
Serial.println(ssid);
#endif
// ... now start UDP and check the result:
is_connect = Udp.beginMulticast(local_IP, multicastIP, multicastPort);
if (is_connect)
{
#if SERIAL_DEBUG == 1
Serial.print("Listening to Multicast at ");
Serial.print(multicastIP);
Serial.println(":" + String(multicastPort));
#endif
}
else
{
#if SERIAL_DEBUG == 1
Serial.println(" - ERROR beginMulticast !");
#endif
}
}
else
{
#if SERIAL_DEBUG == 1
Serial.println("local_IP invalid after timeout !");
#endif
}
}
else
{
#if SERIAL_DEBUG == 1
Serial.println("- invalid after timeout !");
#endif
}
}
void loop()
{
#if SERIAL_DEBUG == 1
if (WiFi.status() != WL_CONNECTED)
{
Serial.print(F("Lost connection to "));
Serial.print(ssid);
Serial.println(F("."));
Serial.println(F("Trying to reconnect."));
while (WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(F("."));
}
Serial.println("");
Serial.println(F("Reconnected."));
}
#endif
if (Udp.parsePacket())
{
byte len = Udp.available();
byte rcvd[len];
Udp.read(rcvd, len);
#if SERIAL_DEBUG == 1
Serial.print(F("UDP Packet from "));
Serial.print(Udp.remoteIP());
Serial.print(F(":"));
Serial.print(Udp.remotePort());
Serial.print(F(" to "));
Serial.println(Udp.destinationIP());
for (byte i = 0; i < len; i++)
{
Serial.print(rcvd[i]);
Serial.print(F(" "));
}
Serial.println("");
#endif
if (len >= 8 && rcvd[0] == 0xC0 && rcvd[1] == 0xFF && rcvd[2] == 0xEE && (rcvd[4] == ID || rcvd[4] == 0))
{
switch (rcvd[3])
{
case 1:
smoothStep = SMOOTH_STEPS;
forceLedsOFF();
break;
case 2:
default:
setSmoothColor(rcvd[5], rcvd[6], rcvd[7]);
break;
case 4:
setColor(rcvd[5], rcvd[6], rcvd[7]);
smoothStep = SMOOTH_STEPS;
break;
case 8:
#if SERIAL_DEBUG == 1
Serial.print(F("Announce myself. OrbID: "));
Serial.println(ID);
#endif
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(ID);
Udp.endPacket();
break;
case 9:
#if SERIAL_DEBUG == 1
Serial.print(F("Identify myself. OrbID: "));
Serial.println(ID);
#endif
identify();
break;
}
}
}
if (smoothStep < SMOOTH_STEPS && millis() >= (smoothMillis + (SMOOTH_DELAY * (smoothStep + 1))))
{
smoothColor();
}
#if RC_SWITCH == 1
if (remoteControlled && currentColor[0] == 0 && currentColor[1] == 0 && currentColor[2] == 0 && millis() >= smoothMillis + RC_SLEEP_DELAY)
{
// Send this signal only once every seconds
smoothMillis += 1000;
mySwitch.switchOff(rcCode0, rcCode1);
}
#endif
}
// Display color on leds
void setColor(byte red, byte green, byte blue)
{
// Is the new color already active?
if (currentColor[0] == red && currentColor[1] == green && currentColor[2] == blue)
{
return;
}
currentColor[0] = red;
currentColor[1] = green;
currentColor[2] = blue;
FastLED.showColor(CRGB(red, green, blue));
}
// Set a new color to smooth to
void setSmoothColor(byte red, byte green, byte blue)
{
if (smoothStep == SMOOTH_STEPS || SMOOTH_BLOCK == 0)
{
// Is the new color the same as the one we already are smoothing towards?
// If so dont do anything.
if (nextColor[0] == red && nextColor[1] == green && nextColor[2] == blue)
{
return;
}
// Is the new color the same as we have right now?
// If so stop smoothing and keep the current color.
else if (currentColor[0] == red && currentColor[1] == green && currentColor[2] == blue)
{
smoothStep = SMOOTH_STEPS;
return;
}
prevColor[0] = currentColor[0];
prevColor[1] = currentColor[1];
prevColor[2] = currentColor[2];
nextColor[0] = red;
nextColor[1] = green;
nextColor[2] = blue;
smoothMillis = millis();
smoothStep = 0;
#if RC_SWITCH == 1
if (!remoteControlled)
{
remoteControlled = true;
}
#endif
}
}
// Display one step to the next color
void smoothColor()
{
smoothStep++;
byte red = prevColor[0] + (((nextColor[0] - prevColor[0]) * smoothStep) / SMOOTH_STEPS);
byte green = prevColor[1] + (((nextColor[1] - prevColor[1]) * smoothStep) / SMOOTH_STEPS);
byte blue = prevColor[2] + (((nextColor[2] - prevColor[2]) * smoothStep) / SMOOTH_STEPS);
setColor(red, green, blue);
}
// Force all leds OFF
void forceLedsOFF()
{
setColor(0,0,0);
clearSmoothColors();
}
// Clear smooth color byte arrays
void clearSmoothColors()
{
memset(prevColor, 0, sizeof(prevColor));
memset(currentColor, 0, sizeof(nextColor));
memset(nextColor, 0, sizeof(nextColor));
}
void identify()
{
for (byte i = 0; i < 3; i++)
{
FastLED.showColor(CRGB::LemonChiffon);
delay(500);
FastLED.showColor(CRGB::Black);
delay(500);
}
}