satip-axe/kernel/fs/fscache/page.c

992 lines
26 KiB
C
Raw Permalink Normal View History

/* Cache page management and data I/O routines
*
* Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define FSCACHE_DEBUG_LEVEL PAGE
#include <linux/module.h>
#include <linux/fscache-cache.h>
#include <linux/buffer_head.h>
#include <linux/pagevec.h>
#include "internal.h"
/*
* check to see if a page is being written to the cache
*/
bool __fscache_check_page_write(struct fscache_cookie *cookie, struct page *page)
{
void *val;
rcu_read_lock();
val = radix_tree_lookup(&cookie->stores, page->index);
rcu_read_unlock();
return val != NULL;
}
EXPORT_SYMBOL(__fscache_check_page_write);
/*
* wait for a page to finish being written to the cache
*/
void __fscache_wait_on_page_write(struct fscache_cookie *cookie, struct page *page)
{
wait_queue_head_t *wq = bit_waitqueue(&cookie->flags, 0);
wait_event(*wq, !__fscache_check_page_write(cookie, page));
}
EXPORT_SYMBOL(__fscache_wait_on_page_write);
/*
* decide whether a page can be released, possibly by cancelling a store to it
* - we're allowed to sleep if __GFP_WAIT is flagged
*/
bool __fscache_maybe_release_page(struct fscache_cookie *cookie,
struct page *page,
gfp_t gfp)
{
struct page *xpage;
void *val;
_enter("%p,%p,%x", cookie, page, gfp);
rcu_read_lock();
val = radix_tree_lookup(&cookie->stores, page->index);
if (!val) {
rcu_read_unlock();
fscache_stat(&fscache_n_store_vmscan_not_storing);
__fscache_uncache_page(cookie, page);
return true;
}
/* see if the page is actually undergoing storage - if so we can't get
* rid of it till the cache has finished with it */
if (radix_tree_tag_get(&cookie->stores, page->index,
FSCACHE_COOKIE_STORING_TAG)) {
rcu_read_unlock();
goto page_busy;
}
/* the page is pending storage, so we attempt to cancel the store and
* discard the store request so that the page can be reclaimed */
spin_lock(&cookie->stores_lock);
rcu_read_unlock();
if (radix_tree_tag_get(&cookie->stores, page->index,
FSCACHE_COOKIE_STORING_TAG)) {
/* the page started to undergo storage whilst we were looking,
* so now we can only wait or return */
spin_unlock(&cookie->stores_lock);
goto page_busy;
}
xpage = radix_tree_delete(&cookie->stores, page->index);
spin_unlock(&cookie->stores_lock);
if (xpage) {
fscache_stat(&fscache_n_store_vmscan_cancelled);
fscache_stat(&fscache_n_store_radix_deletes);
ASSERTCMP(xpage, ==, page);
} else {
fscache_stat(&fscache_n_store_vmscan_gone);
}
wake_up_bit(&cookie->flags, 0);
if (xpage)
page_cache_release(xpage);
__fscache_uncache_page(cookie, page);
return true;
page_busy:
/* we might want to wait here, but that could deadlock the allocator as
* the slow-work threads writing to the cache may all end up sleeping
* on memory allocation */
fscache_stat(&fscache_n_store_vmscan_busy);
return false;
}
EXPORT_SYMBOL(__fscache_maybe_release_page);
/*
* note that a page has finished being written to the cache
*/
static void fscache_end_page_write(struct fscache_object *object,
struct page *page)
{
struct fscache_cookie *cookie;
struct page *xpage = NULL;
spin_lock(&object->lock);
cookie = object->cookie;
if (cookie) {
/* delete the page from the tree if it is now no longer
* pending */
spin_lock(&cookie->stores_lock);
radix_tree_tag_clear(&cookie->stores, page->index,
FSCACHE_COOKIE_STORING_TAG);
if (!radix_tree_tag_get(&cookie->stores, page->index,
FSCACHE_COOKIE_PENDING_TAG)) {
fscache_stat(&fscache_n_store_radix_deletes);
xpage = radix_tree_delete(&cookie->stores, page->index);
}
spin_unlock(&cookie->stores_lock);
wake_up_bit(&cookie->flags, 0);
}
spin_unlock(&object->lock);
if (xpage)
page_cache_release(xpage);
}
/*
* actually apply the changed attributes to a cache object
*/
static void fscache_attr_changed_op(struct fscache_operation *op)
{
struct fscache_object *object = op->object;
int ret;
_enter("{OBJ%x OP%x}", object->debug_id, op->debug_id);
fscache_stat(&fscache_n_attr_changed_calls);
if (fscache_object_is_active(object)) {
fscache_set_op_state(op, "CallFS");
fscache_stat(&fscache_n_cop_attr_changed);
ret = object->cache->ops->attr_changed(object);
fscache_stat_d(&fscache_n_cop_attr_changed);
fscache_set_op_state(op, "Done");
if (ret < 0)
fscache_abort_object(object);
}
_leave("");
}
/*
* notification that the attributes on an object have changed
*/
int __fscache_attr_changed(struct fscache_cookie *cookie)
{
struct fscache_operation *op;
struct fscache_object *object;
_enter("%p", cookie);
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
fscache_stat(&fscache_n_attr_changed);
op = kzalloc(sizeof(*op), GFP_KERNEL);
if (!op) {
fscache_stat(&fscache_n_attr_changed_nomem);
_leave(" = -ENOMEM");
return -ENOMEM;
}
fscache_operation_init(op, NULL);
fscache_operation_init_slow(op, fscache_attr_changed_op);
op->flags = FSCACHE_OP_SLOW | (1 << FSCACHE_OP_EXCLUSIVE);
fscache_set_op_name(op, "Attr");
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects))
goto nobufs;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
if (fscache_submit_exclusive_op(object, op) < 0)
goto nobufs;
spin_unlock(&cookie->lock);
fscache_stat(&fscache_n_attr_changed_ok);
fscache_put_operation(op);
_leave(" = 0");
return 0;
nobufs:
spin_unlock(&cookie->lock);
kfree(op);
fscache_stat(&fscache_n_attr_changed_nobufs);
_leave(" = %d", -ENOBUFS);
return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_attr_changed);
/*
* handle secondary execution given to a retrieval op on behalf of the
* cache
*/
static void fscache_retrieval_work(struct work_struct *work)
{
struct fscache_retrieval *op =
container_of(work, struct fscache_retrieval, op.fast_work);
unsigned long start;
_enter("{OP%x}", op->op.debug_id);
start = jiffies;
op->op.processor(&op->op);
fscache_hist(fscache_ops_histogram, start);
fscache_put_operation(&op->op);
}
/*
* release a retrieval op reference
*/
static void fscache_release_retrieval_op(struct fscache_operation *_op)
{
struct fscache_retrieval *op =
container_of(_op, struct fscache_retrieval, op);
_enter("{OP%x}", op->op.debug_id);
fscache_hist(fscache_retrieval_histogram, op->start_time);
if (op->context)
fscache_put_context(op->op.object->cookie, op->context);
_leave("");
}
/*
* allocate a retrieval op
*/
static struct fscache_retrieval *fscache_alloc_retrieval(
struct address_space *mapping,
fscache_rw_complete_t end_io_func,
void *context)
{
struct fscache_retrieval *op;
/* allocate a retrieval operation and attempt to submit it */
op = kzalloc(sizeof(*op), GFP_NOIO);
if (!op) {
fscache_stat(&fscache_n_retrievals_nomem);
return NULL;
}
fscache_operation_init(&op->op, fscache_release_retrieval_op);
op->op.flags = FSCACHE_OP_MYTHREAD | (1 << FSCACHE_OP_WAITING);
op->mapping = mapping;
op->end_io_func = end_io_func;
op->context = context;
op->start_time = jiffies;
INIT_WORK(&op->op.fast_work, fscache_retrieval_work);
INIT_LIST_HEAD(&op->to_do);
fscache_set_op_name(&op->op, "Retr");
return op;
}
/*
* wait for a deferred lookup to complete
*/
static int fscache_wait_for_deferred_lookup(struct fscache_cookie *cookie)
{
unsigned long jif;
_enter("");
if (!test_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags)) {
_leave(" = 0 [imm]");
return 0;
}
fscache_stat(&fscache_n_retrievals_wait);
jif = jiffies;
if (wait_on_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP,
fscache_wait_bit_interruptible,
TASK_INTERRUPTIBLE) != 0) {
fscache_stat(&fscache_n_retrievals_intr);
_leave(" = -ERESTARTSYS");
return -ERESTARTSYS;
}
ASSERT(!test_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags));
smp_rmb();
fscache_hist(fscache_retrieval_delay_histogram, jif);
_leave(" = 0 [dly]");
return 0;
}
/*
* wait for an object to become active (or dead)
*/
static int fscache_wait_for_retrieval_activation(struct fscache_object *object,
struct fscache_retrieval *op,
atomic_t *stat_op_waits,
atomic_t *stat_object_dead)
{
int ret;
if (!test_bit(FSCACHE_OP_WAITING, &op->op.flags))
goto check_if_dead;
_debug(">>> WT");
fscache_stat(stat_op_waits);
if (wait_on_bit(&op->op.flags, FSCACHE_OP_WAITING,
fscache_wait_bit_interruptible,
TASK_INTERRUPTIBLE) < 0) {
ret = fscache_cancel_op(&op->op);
if (ret == 0)
return -ERESTARTSYS;
/* it's been removed from the pending queue by another party,
* so we should get to run shortly */
wait_on_bit(&op->op.flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
}
_debug("<<< GO");
check_if_dead:
if (unlikely(fscache_object_is_dead(object))) {
fscache_stat(stat_object_dead);
return -ENOBUFS;
}
return 0;
}
/*
* read a page from the cache or allocate a block in which to store it
* - we return:
* -ENOMEM - out of memory, nothing done
* -ERESTARTSYS - interrupted
* -ENOBUFS - no backing object available in which to cache the block
* -ENODATA - no data available in the backing object for this block
* 0 - dispatched a read - it'll call end_io_func() when finished
*/
int __fscache_read_or_alloc_page(struct fscache_cookie *cookie,
struct page *page,
fscache_rw_complete_t end_io_func,
void *context,
gfp_t gfp)
{
struct fscache_retrieval *op;
struct fscache_object *object;
int ret;
_enter("%p,%p,,,", cookie, page);
fscache_stat(&fscache_n_retrievals);
if (hlist_empty(&cookie->backing_objects))
goto nobufs;
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
ASSERTCMP(page, !=, NULL);
if (fscache_wait_for_deferred_lookup(cookie) < 0)
return -ERESTARTSYS;
op = fscache_alloc_retrieval(page->mapping, end_io_func, context);
if (!op) {
_leave(" = -ENOMEM");
return -ENOMEM;
}
fscache_set_op_name(&op->op, "RetrRA1");
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects))
goto nobufs_unlock;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
ASSERTCMP(object->state, >, FSCACHE_OBJECT_LOOKING_UP);
atomic_inc(&object->n_reads);
set_bit(FSCACHE_OP_DEC_READ_CNT, &op->op.flags);
if (fscache_submit_op(object, &op->op) < 0)
goto nobufs_unlock;
spin_unlock(&cookie->lock);
fscache_stat(&fscache_n_retrieval_ops);
/* pin the netfs read context in case we need to do the actual netfs
* read because we've encountered a cache read failure */
fscache_get_context(object->cookie, op->context);
/* we wait for the operation to become active, and then process it
* *here*, in this thread, and not in the thread pool */
ret = fscache_wait_for_retrieval_activation(
object, op,
__fscache_stat(&fscache_n_retrieval_op_waits),
__fscache_stat(&fscache_n_retrievals_object_dead));
if (ret < 0)
goto error;
/* ask the cache to honour the operation */
if (test_bit(FSCACHE_COOKIE_NO_DATA_YET, &object->cookie->flags)) {
fscache_stat(&fscache_n_cop_allocate_page);
ret = object->cache->ops->allocate_page(op, page, gfp);
fscache_stat_d(&fscache_n_cop_allocate_page);
if (ret == 0)
ret = -ENODATA;
} else {
fscache_stat(&fscache_n_cop_read_or_alloc_page);
ret = object->cache->ops->read_or_alloc_page(op, page, gfp);
fscache_stat_d(&fscache_n_cop_read_or_alloc_page);
}
error:
if (ret == -ENOMEM)
fscache_stat(&fscache_n_retrievals_nomem);
else if (ret == -ERESTARTSYS)
fscache_stat(&fscache_n_retrievals_intr);
else if (ret == -ENODATA)
fscache_stat(&fscache_n_retrievals_nodata);
else if (ret < 0)
fscache_stat(&fscache_n_retrievals_nobufs);
else
fscache_stat(&fscache_n_retrievals_ok);
fscache_put_retrieval(op);
_leave(" = %d", ret);
return ret;
nobufs_unlock:
spin_unlock(&cookie->lock);
kfree(op);
nobufs:
fscache_stat(&fscache_n_retrievals_nobufs);
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_read_or_alloc_page);
/*
* read a list of page from the cache or allocate a block in which to store
* them
* - we return:
* -ENOMEM - out of memory, some pages may be being read
* -ERESTARTSYS - interrupted, some pages may be being read
* -ENOBUFS - no backing object or space available in which to cache any
* pages not being read
* -ENODATA - no data available in the backing object for some or all of
* the pages
* 0 - dispatched a read on all pages
*
* end_io_func() will be called for each page read from the cache as it is
* finishes being read
*
* any pages for which a read is dispatched will be removed from pages and
* nr_pages
*/
int __fscache_read_or_alloc_pages(struct fscache_cookie *cookie,
struct address_space *mapping,
struct list_head *pages,
unsigned *nr_pages,
fscache_rw_complete_t end_io_func,
void *context,
gfp_t gfp)
{
struct fscache_retrieval *op;
struct fscache_object *object;
int ret;
_enter("%p,,%d,,,", cookie, *nr_pages);
fscache_stat(&fscache_n_retrievals);
if (hlist_empty(&cookie->backing_objects))
goto nobufs;
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
ASSERTCMP(*nr_pages, >, 0);
ASSERT(!list_empty(pages));
if (fscache_wait_for_deferred_lookup(cookie) < 0)
return -ERESTARTSYS;
op = fscache_alloc_retrieval(mapping, end_io_func, context);
if (!op)
return -ENOMEM;
fscache_set_op_name(&op->op, "RetrRAN");
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects))
goto nobufs_unlock;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
atomic_inc(&object->n_reads);
set_bit(FSCACHE_OP_DEC_READ_CNT, &op->op.flags);
if (fscache_submit_op(object, &op->op) < 0)
goto nobufs_unlock;
spin_unlock(&cookie->lock);
fscache_stat(&fscache_n_retrieval_ops);
/* pin the netfs read context in case we need to do the actual netfs
* read because we've encountered a cache read failure */
fscache_get_context(object->cookie, op->context);
/* we wait for the operation to become active, and then process it
* *here*, in this thread, and not in the thread pool */
ret = fscache_wait_for_retrieval_activation(
object, op,
__fscache_stat(&fscache_n_retrieval_op_waits),
__fscache_stat(&fscache_n_retrievals_object_dead));
if (ret < 0)
goto error;
/* ask the cache to honour the operation */
if (test_bit(FSCACHE_COOKIE_NO_DATA_YET, &object->cookie->flags)) {
fscache_stat(&fscache_n_cop_allocate_pages);
ret = object->cache->ops->allocate_pages(
op, pages, nr_pages, gfp);
fscache_stat_d(&fscache_n_cop_allocate_pages);
} else {
fscache_stat(&fscache_n_cop_read_or_alloc_pages);
ret = object->cache->ops->read_or_alloc_pages(
op, pages, nr_pages, gfp);
fscache_stat_d(&fscache_n_cop_read_or_alloc_pages);
}
error:
if (ret == -ENOMEM)
fscache_stat(&fscache_n_retrievals_nomem);
else if (ret == -ERESTARTSYS)
fscache_stat(&fscache_n_retrievals_intr);
else if (ret == -ENODATA)
fscache_stat(&fscache_n_retrievals_nodata);
else if (ret < 0)
fscache_stat(&fscache_n_retrievals_nobufs);
else
fscache_stat(&fscache_n_retrievals_ok);
fscache_put_retrieval(op);
_leave(" = %d", ret);
return ret;
nobufs_unlock:
spin_unlock(&cookie->lock);
kfree(op);
nobufs:
fscache_stat(&fscache_n_retrievals_nobufs);
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_read_or_alloc_pages);
/*
* allocate a block in the cache on which to store a page
* - we return:
* -ENOMEM - out of memory, nothing done
* -ERESTARTSYS - interrupted
* -ENOBUFS - no backing object available in which to cache the block
* 0 - block allocated
*/
int __fscache_alloc_page(struct fscache_cookie *cookie,
struct page *page,
gfp_t gfp)
{
struct fscache_retrieval *op;
struct fscache_object *object;
int ret;
_enter("%p,%p,,,", cookie, page);
fscache_stat(&fscache_n_allocs);
if (hlist_empty(&cookie->backing_objects))
goto nobufs;
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
ASSERTCMP(page, !=, NULL);
if (fscache_wait_for_deferred_lookup(cookie) < 0)
return -ERESTARTSYS;
op = fscache_alloc_retrieval(page->mapping, NULL, NULL);
if (!op)
return -ENOMEM;
fscache_set_op_name(&op->op, "RetrAL1");
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects))
goto nobufs_unlock;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
if (fscache_submit_op(object, &op->op) < 0)
goto nobufs_unlock;
spin_unlock(&cookie->lock);
fscache_stat(&fscache_n_alloc_ops);
ret = fscache_wait_for_retrieval_activation(
object, op,
__fscache_stat(&fscache_n_alloc_op_waits),
__fscache_stat(&fscache_n_allocs_object_dead));
if (ret < 0)
goto error;
/* ask the cache to honour the operation */
fscache_stat(&fscache_n_cop_allocate_page);
ret = object->cache->ops->allocate_page(op, page, gfp);
fscache_stat_d(&fscache_n_cop_allocate_page);
error:
if (ret == -ERESTARTSYS)
fscache_stat(&fscache_n_allocs_intr);
else if (ret < 0)
fscache_stat(&fscache_n_allocs_nobufs);
else
fscache_stat(&fscache_n_allocs_ok);
fscache_put_retrieval(op);
_leave(" = %d", ret);
return ret;
nobufs_unlock:
spin_unlock(&cookie->lock);
kfree(op);
nobufs:
fscache_stat(&fscache_n_allocs_nobufs);
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_alloc_page);
/*
* release a write op reference
*/
static void fscache_release_write_op(struct fscache_operation *_op)
{
_enter("{OP%x}", _op->debug_id);
}
/*
* perform the background storage of a page into the cache
*/
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
struct fscache_object *object = op->op.object;
struct fscache_cookie *cookie;
struct page *page;
unsigned n;
void *results[1];
int ret;
_enter("{OP%x,%d}", op->op.debug_id, atomic_read(&op->op.usage));
fscache_set_op_state(&op->op, "GetPage");
spin_lock(&object->lock);
cookie = object->cookie;
if (!fscache_object_is_active(object) || !cookie) {
spin_unlock(&object->lock);
_leave("");
return;
}
spin_lock(&cookie->stores_lock);
fscache_stat(&fscache_n_store_calls);
/* find a page to store */
page = NULL;
n = radix_tree_gang_lookup_tag(&cookie->stores, results, 0, 1,
FSCACHE_COOKIE_PENDING_TAG);
if (n != 1)
goto superseded;
page = results[0];
_debug("gang %d [%lx]", n, page->index);
if (page->index > op->store_limit) {
fscache_stat(&fscache_n_store_pages_over_limit);
goto superseded;
}
if (page) {
radix_tree_tag_set(&cookie->stores, page->index,
FSCACHE_COOKIE_STORING_TAG);
radix_tree_tag_clear(&cookie->stores, page->index,
FSCACHE_COOKIE_PENDING_TAG);
}
spin_unlock(&cookie->stores_lock);
spin_unlock(&object->lock);
if (page) {
fscache_set_op_state(&op->op, "Store");
fscache_stat(&fscache_n_store_pages);
fscache_stat(&fscache_n_cop_write_page);
ret = object->cache->ops->write_page(op, page);
fscache_stat_d(&fscache_n_cop_write_page);
fscache_set_op_state(&op->op, "EndWrite");
fscache_end_page_write(object, page);
if (ret < 0) {
fscache_set_op_state(&op->op, "Abort");
fscache_abort_object(object);
} else {
fscache_enqueue_operation(&op->op);
}
}
_leave("");
return;
superseded:
/* this writer is going away and there aren't any more things to
* write */
_debug("cease");
spin_unlock(&cookie->stores_lock);
clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
spin_unlock(&object->lock);
_leave("");
}
/*
* request a page be stored in the cache
* - returns:
* -ENOMEM - out of memory, nothing done
* -ENOBUFS - no backing object available in which to cache the page
* 0 - dispatched a write - it'll call end_io_func() when finished
*
* if the cookie still has a backing object at this point, that object can be
* in one of a few states with respect to storage processing:
*
* (1) negative lookup, object not yet created (FSCACHE_COOKIE_CREATING is
* set)
*
* (a) no writes yet (set FSCACHE_COOKIE_PENDING_FILL and queue deferred
* fill op)
*
* (b) writes deferred till post-creation (mark page for writing and
* return immediately)
*
* (2) negative lookup, object created, initial fill being made from netfs
* (FSCACHE_COOKIE_INITIAL_FILL is set)
*
* (a) fill point not yet reached this page (mark page for writing and
* return)
*
* (b) fill point passed this page (queue op to store this page)
*
* (3) object extant (queue op to store this page)
*
* any other state is invalid
*/
int __fscache_write_page(struct fscache_cookie *cookie,
struct page *page,
gfp_t gfp)
{
struct fscache_storage *op;
struct fscache_object *object;
int ret;
_enter("%p,%x,", cookie, (u32) page->flags);
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
ASSERT(PageFsCache(page));
fscache_stat(&fscache_n_stores);
op = kzalloc(sizeof(*op), GFP_NOIO);
if (!op)
goto nomem;
fscache_operation_init(&op->op, fscache_release_write_op);
fscache_operation_init_slow(&op->op, fscache_write_op);
op->op.flags = FSCACHE_OP_SLOW | (1 << FSCACHE_OP_WAITING);
fscache_set_op_name(&op->op, "Write1");
ret = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
if (ret < 0)
goto nomem_free;
ret = -ENOBUFS;
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects))
goto nobufs;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
if (test_bit(FSCACHE_IOERROR, &object->cache->flags))
goto nobufs;
/* add the page to the pending-storage radix tree on the backing
* object */
spin_lock(&object->lock);
spin_lock(&cookie->stores_lock);
_debug("store limit %llx", (unsigned long long) object->store_limit);
ret = radix_tree_insert(&cookie->stores, page->index, page);
if (ret < 0) {
if (ret == -EEXIST)
goto already_queued;
_debug("insert failed %d", ret);
goto nobufs_unlock_obj;
}
radix_tree_tag_set(&cookie->stores, page->index,
FSCACHE_COOKIE_PENDING_TAG);
page_cache_get(page);
/* we only want one writer at a time, but we do need to queue new
* writers after exclusive ops */
if (test_and_set_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags))
goto already_pending;
spin_unlock(&cookie->stores_lock);
spin_unlock(&object->lock);
op->op.debug_id = atomic_inc_return(&fscache_op_debug_id);
op->store_limit = object->store_limit;
if (fscache_submit_op(object, &op->op) < 0)
goto submit_failed;
spin_unlock(&cookie->lock);
radix_tree_preload_end();
fscache_stat(&fscache_n_store_ops);
fscache_stat(&fscache_n_stores_ok);
/* the slow work queue now carries its own ref on the object */
fscache_put_operation(&op->op);
_leave(" = 0");
return 0;
already_queued:
fscache_stat(&fscache_n_stores_again);
already_pending:
spin_unlock(&cookie->stores_lock);
spin_unlock(&object->lock);
spin_unlock(&cookie->lock);
radix_tree_preload_end();
kfree(op);
fscache_stat(&fscache_n_stores_ok);
_leave(" = 0");
return 0;
submit_failed:
spin_lock(&cookie->stores_lock);
radix_tree_delete(&cookie->stores, page->index);
spin_unlock(&cookie->stores_lock);
page_cache_release(page);
ret = -ENOBUFS;
goto nobufs;
nobufs_unlock_obj:
spin_unlock(&object->lock);
nobufs:
spin_unlock(&cookie->lock);
radix_tree_preload_end();
kfree(op);
fscache_stat(&fscache_n_stores_nobufs);
_leave(" = -ENOBUFS");
return -ENOBUFS;
nomem_free:
kfree(op);
nomem:
fscache_stat(&fscache_n_stores_oom);
_leave(" = -ENOMEM");
return -ENOMEM;
}
EXPORT_SYMBOL(__fscache_write_page);
/*
* remove a page from the cache
*/
void __fscache_uncache_page(struct fscache_cookie *cookie, struct page *page)
{
struct fscache_object *object;
_enter(",%p", page);
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
ASSERTCMP(page, !=, NULL);
fscache_stat(&fscache_n_uncaches);
/* cache withdrawal may beat us to it */
if (!PageFsCache(page))
goto done;
/* get the object */
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects)) {
ClearPageFsCache(page);
goto done_unlock;
}
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
/* there might now be stuff on disk we could read */
clear_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
/* only invoke the cache backend if we managed to mark the page
* uncached here; this deals with synchronisation vs withdrawal */
if (TestClearPageFsCache(page) &&
object->cache->ops->uncache_page) {
/* the cache backend releases the cookie lock */
fscache_stat(&fscache_n_cop_uncache_page);
object->cache->ops->uncache_page(object, page);
fscache_stat_d(&fscache_n_cop_uncache_page);
goto done;
}
done_unlock:
spin_unlock(&cookie->lock);
done:
_leave("");
}
EXPORT_SYMBOL(__fscache_uncache_page);
/**
* fscache_mark_pages_cached - Mark pages as being cached
* @op: The retrieval op pages are being marked for
* @pagevec: The pages to be marked
*
* Mark a bunch of netfs pages as being cached. After this is called,
* the netfs must call fscache_uncache_page() to remove the mark.
*/
void fscache_mark_pages_cached(struct fscache_retrieval *op,
struct pagevec *pagevec)
{
struct fscache_cookie *cookie = op->op.object->cookie;
unsigned long loop;
#ifdef CONFIG_FSCACHE_STATS
atomic_add(pagevec->nr, &fscache_n_marks);
#endif
for (loop = 0; loop < pagevec->nr; loop++) {
struct page *page = pagevec->pages[loop];
_debug("- mark %p{%lx}", page, page->index);
if (TestSetPageFsCache(page)) {
static bool once_only;
if (!once_only) {
once_only = true;
printk(KERN_WARNING "FS-Cache:"
" Cookie type %s marked page %lx"
" multiple times\n",
cookie->def->name, page->index);
}
}
}
if (cookie->def->mark_pages_cached)
cookie->def->mark_pages_cached(cookie->netfs_data,
op->mapping, pagevec);
pagevec_reinit(pagevec);
}
EXPORT_SYMBOL(fscache_mark_pages_cached);