520 lines
13 KiB
C
520 lines
13 KiB
C
|
/*
|
||
|
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* Communication to userspace based on kernel/printk.c
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/poll.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/rtas.h>
|
||
|
#include <asm/prom.h>
|
||
|
#include <asm/nvram.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include <asm/machdep.h>
|
||
|
|
||
|
|
||
|
static DEFINE_SPINLOCK(rtasd_log_lock);
|
||
|
|
||
|
static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
|
||
|
|
||
|
static char *rtas_log_buf;
|
||
|
static unsigned long rtas_log_start;
|
||
|
static unsigned long rtas_log_size;
|
||
|
|
||
|
static int surveillance_timeout = -1;
|
||
|
static unsigned int rtas_error_log_max;
|
||
|
static unsigned int rtas_error_log_buffer_max;
|
||
|
|
||
|
/* RTAS service tokens */
|
||
|
static unsigned int event_scan;
|
||
|
static unsigned int rtas_event_scan_rate;
|
||
|
|
||
|
static int full_rtas_msgs = 0;
|
||
|
|
||
|
/* Stop logging to nvram after first fatal error */
|
||
|
static int logging_enabled; /* Until we initialize everything,
|
||
|
* make sure we don't try logging
|
||
|
* anything */
|
||
|
static int error_log_cnt;
|
||
|
|
||
|
/*
|
||
|
* Since we use 32 bit RTAS, the physical address of this must be below
|
||
|
* 4G or else bad things happen. Allocate this in the kernel data and
|
||
|
* make it big enough.
|
||
|
*/
|
||
|
static unsigned char logdata[RTAS_ERROR_LOG_MAX];
|
||
|
|
||
|
static char *rtas_type[] = {
|
||
|
"Unknown", "Retry", "TCE Error", "Internal Device Failure",
|
||
|
"Timeout", "Data Parity", "Address Parity", "Cache Parity",
|
||
|
"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
|
||
|
};
|
||
|
|
||
|
static char *rtas_event_type(int type)
|
||
|
{
|
||
|
if ((type > 0) && (type < 11))
|
||
|
return rtas_type[type];
|
||
|
|
||
|
switch (type) {
|
||
|
case RTAS_TYPE_EPOW:
|
||
|
return "EPOW";
|
||
|
case RTAS_TYPE_PLATFORM:
|
||
|
return "Platform Error";
|
||
|
case RTAS_TYPE_IO:
|
||
|
return "I/O Event";
|
||
|
case RTAS_TYPE_INFO:
|
||
|
return "Platform Information Event";
|
||
|
case RTAS_TYPE_DEALLOC:
|
||
|
return "Resource Deallocation Event";
|
||
|
case RTAS_TYPE_DUMP:
|
||
|
return "Dump Notification Event";
|
||
|
}
|
||
|
|
||
|
return rtas_type[0];
|
||
|
}
|
||
|
|
||
|
/* To see this info, grep RTAS /var/log/messages and each entry
|
||
|
* will be collected together with obvious begin/end.
|
||
|
* There will be a unique identifier on the begin and end lines.
|
||
|
* This will persist across reboots.
|
||
|
*
|
||
|
* format of error logs returned from RTAS:
|
||
|
* bytes (size) : contents
|
||
|
* --------------------------------------------------------
|
||
|
* 0-7 (8) : rtas_error_log
|
||
|
* 8-47 (40) : extended info
|
||
|
* 48-51 (4) : vendor id
|
||
|
* 52-1023 (vendor specific) : location code and debug data
|
||
|
*/
|
||
|
static void printk_log_rtas(char *buf, int len)
|
||
|
{
|
||
|
|
||
|
int i,j,n = 0;
|
||
|
int perline = 16;
|
||
|
char buffer[64];
|
||
|
char * str = "RTAS event";
|
||
|
|
||
|
if (full_rtas_msgs) {
|
||
|
printk(RTAS_DEBUG "%d -------- %s begin --------\n",
|
||
|
error_log_cnt, str);
|
||
|
|
||
|
/*
|
||
|
* Print perline bytes on each line, each line will start
|
||
|
* with RTAS and a changing number, so syslogd will
|
||
|
* print lines that are otherwise the same. Separate every
|
||
|
* 4 bytes with a space.
|
||
|
*/
|
||
|
for (i = 0; i < len; i++) {
|
||
|
j = i % perline;
|
||
|
if (j == 0) {
|
||
|
memset(buffer, 0, sizeof(buffer));
|
||
|
n = sprintf(buffer, "RTAS %d:", i/perline);
|
||
|
}
|
||
|
|
||
|
if ((i % 4) == 0)
|
||
|
n += sprintf(buffer+n, " ");
|
||
|
|
||
|
n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
|
||
|
|
||
|
if (j == (perline-1))
|
||
|
printk(KERN_DEBUG "%s\n", buffer);
|
||
|
}
|
||
|
if ((i % perline) != 0)
|
||
|
printk(KERN_DEBUG "%s\n", buffer);
|
||
|
|
||
|
printk(RTAS_DEBUG "%d -------- %s end ----------\n",
|
||
|
error_log_cnt, str);
|
||
|
} else {
|
||
|
struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
|
||
|
|
||
|
printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
|
||
|
error_log_cnt, rtas_event_type(errlog->type),
|
||
|
errlog->severity);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int log_rtas_len(char * buf)
|
||
|
{
|
||
|
int len;
|
||
|
struct rtas_error_log *err;
|
||
|
|
||
|
/* rtas fixed header */
|
||
|
len = 8;
|
||
|
err = (struct rtas_error_log *)buf;
|
||
|
if (err->extended_log_length) {
|
||
|
|
||
|
/* extended header */
|
||
|
len += err->extended_log_length;
|
||
|
}
|
||
|
|
||
|
if (rtas_error_log_max == 0)
|
||
|
rtas_error_log_max = rtas_get_error_log_max();
|
||
|
|
||
|
if (len > rtas_error_log_max)
|
||
|
len = rtas_error_log_max;
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First write to nvram, if fatal error, that is the only
|
||
|
* place we log the info. The error will be picked up
|
||
|
* on the next reboot by rtasd. If not fatal, run the
|
||
|
* method for the type of error. Currently, only RTAS
|
||
|
* errors have methods implemented, but in the future
|
||
|
* there might be a need to store data in nvram before a
|
||
|
* call to panic().
|
||
|
*
|
||
|
* XXX We write to nvram periodically, to indicate error has
|
||
|
* been written and sync'd, but there is a possibility
|
||
|
* that if we don't shutdown correctly, a duplicate error
|
||
|
* record will be created on next reboot.
|
||
|
*/
|
||
|
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
|
||
|
{
|
||
|
unsigned long offset;
|
||
|
unsigned long s;
|
||
|
int len = 0;
|
||
|
|
||
|
pr_debug("rtasd: logging event\n");
|
||
|
if (buf == NULL)
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
||
|
|
||
|
/* get length and increase count */
|
||
|
switch (err_type & ERR_TYPE_MASK) {
|
||
|
case ERR_TYPE_RTAS_LOG:
|
||
|
len = log_rtas_len(buf);
|
||
|
if (!(err_type & ERR_FLAG_BOOT))
|
||
|
error_log_cnt++;
|
||
|
break;
|
||
|
case ERR_TYPE_KERNEL_PANIC:
|
||
|
default:
|
||
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Write error to NVRAM */
|
||
|
if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
|
||
|
nvram_write_error_log(buf, len, err_type, error_log_cnt);
|
||
|
|
||
|
/*
|
||
|
* rtas errors can occur during boot, and we do want to capture
|
||
|
* those somewhere, even if nvram isn't ready (why not?), and even
|
||
|
* if rtasd isn't ready. Put them into the boot log, at least.
|
||
|
*/
|
||
|
if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
|
||
|
printk_log_rtas(buf, len);
|
||
|
|
||
|
/* Check to see if we need to or have stopped logging */
|
||
|
if (fatal || !logging_enabled) {
|
||
|
logging_enabled = 0;
|
||
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* call type specific method for error */
|
||
|
switch (err_type & ERR_TYPE_MASK) {
|
||
|
case ERR_TYPE_RTAS_LOG:
|
||
|
offset = rtas_error_log_buffer_max *
|
||
|
((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
|
||
|
|
||
|
/* First copy over sequence number */
|
||
|
memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
|
||
|
|
||
|
/* Second copy over error log data */
|
||
|
offset += sizeof(int);
|
||
|
memcpy(&rtas_log_buf[offset], buf, len);
|
||
|
|
||
|
if (rtas_log_size < LOG_NUMBER)
|
||
|
rtas_log_size += 1;
|
||
|
else
|
||
|
rtas_log_start += 1;
|
||
|
|
||
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
wake_up_interruptible(&rtas_log_wait);
|
||
|
break;
|
||
|
case ERR_TYPE_KERNEL_PANIC:
|
||
|
default:
|
||
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
static int rtas_log_open(struct inode * inode, struct file * file)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int rtas_log_release(struct inode * inode, struct file * file)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* This will check if all events are logged, if they are then, we
|
||
|
* know that we can safely clear the events in NVRAM.
|
||
|
* Next we'll sit and wait for something else to log.
|
||
|
*/
|
||
|
static ssize_t rtas_log_read(struct file * file, char __user * buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
int error;
|
||
|
char *tmp;
|
||
|
unsigned long s;
|
||
|
unsigned long offset;
|
||
|
|
||
|
if (!buf || count < rtas_error_log_buffer_max)
|
||
|
return -EINVAL;
|
||
|
|
||
|
count = rtas_error_log_buffer_max;
|
||
|
|
||
|
if (!access_ok(VERIFY_WRITE, buf, count))
|
||
|
return -EFAULT;
|
||
|
|
||
|
tmp = kmalloc(count, GFP_KERNEL);
|
||
|
if (!tmp)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
||
|
/* if it's 0, then we know we got the last one (the one in NVRAM) */
|
||
|
while (rtas_log_size == 0) {
|
||
|
if (file->f_flags & O_NONBLOCK) {
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
error = -EAGAIN;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!logging_enabled) {
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
error = -ENODATA;
|
||
|
goto out;
|
||
|
}
|
||
|
nvram_clear_error_log();
|
||
|
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
|
||
|
if (error)
|
||
|
goto out;
|
||
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
||
|
}
|
||
|
|
||
|
offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
|
||
|
memcpy(tmp, &rtas_log_buf[offset], count);
|
||
|
|
||
|
rtas_log_start += 1;
|
||
|
rtas_log_size -= 1;
|
||
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
||
|
|
||
|
error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
|
||
|
out:
|
||
|
kfree(tmp);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
|
||
|
{
|
||
|
poll_wait(file, &rtas_log_wait, wait);
|
||
|
if (rtas_log_size)
|
||
|
return POLLIN | POLLRDNORM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct file_operations proc_rtas_log_operations = {
|
||
|
.read = rtas_log_read,
|
||
|
.poll = rtas_log_poll,
|
||
|
.open = rtas_log_open,
|
||
|
.release = rtas_log_release,
|
||
|
};
|
||
|
|
||
|
static int enable_surveillance(int timeout)
|
||
|
{
|
||
|
int error;
|
||
|
|
||
|
error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
|
||
|
|
||
|
if (error == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (error == -EINVAL) {
|
||
|
printk(KERN_DEBUG "rtasd: surveillance not supported\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
printk(KERN_ERR "rtasd: could not update surveillance\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static void do_event_scan(void)
|
||
|
{
|
||
|
int error;
|
||
|
do {
|
||
|
memset(logdata, 0, rtas_error_log_max);
|
||
|
error = rtas_call(event_scan, 4, 1, NULL,
|
||
|
RTAS_EVENT_SCAN_ALL_EVENTS, 0,
|
||
|
__pa(logdata), rtas_error_log_max);
|
||
|
if (error == -1) {
|
||
|
printk(KERN_ERR "event-scan failed\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (error == 0)
|
||
|
pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
|
||
|
|
||
|
} while(error == 0);
|
||
|
}
|
||
|
|
||
|
static void rtas_event_scan(struct work_struct *w);
|
||
|
DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
|
||
|
|
||
|
/*
|
||
|
* Delay should be at least one second since some machines have problems if
|
||
|
* we call event-scan too quickly.
|
||
|
*/
|
||
|
static unsigned long event_scan_delay = 1*HZ;
|
||
|
static int first_pass = 1;
|
||
|
|
||
|
static void rtas_event_scan(struct work_struct *w)
|
||
|
{
|
||
|
unsigned int cpu;
|
||
|
|
||
|
do_event_scan();
|
||
|
|
||
|
get_online_cpus();
|
||
|
|
||
|
cpu = next_cpu(smp_processor_id(), cpu_online_map);
|
||
|
if (cpu == NR_CPUS) {
|
||
|
cpu = first_cpu(cpu_online_map);
|
||
|
|
||
|
if (first_pass) {
|
||
|
first_pass = 0;
|
||
|
event_scan_delay = 30*HZ/rtas_event_scan_rate;
|
||
|
|
||
|
if (surveillance_timeout != -1) {
|
||
|
pr_debug("rtasd: enabling surveillance\n");
|
||
|
enable_surveillance(surveillance_timeout);
|
||
|
pr_debug("rtasd: surveillance enabled\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
schedule_delayed_work_on(cpu, &event_scan_work,
|
||
|
__round_jiffies_relative(event_scan_delay, cpu));
|
||
|
|
||
|
put_online_cpus();
|
||
|
}
|
||
|
|
||
|
static void start_event_scan(void)
|
||
|
{
|
||
|
unsigned int err_type;
|
||
|
int rc;
|
||
|
|
||
|
printk(KERN_DEBUG "RTAS daemon started\n");
|
||
|
pr_debug("rtasd: will sleep for %d milliseconds\n",
|
||
|
(30000 / rtas_event_scan_rate));
|
||
|
|
||
|
/* See if we have any error stored in NVRAM */
|
||
|
memset(logdata, 0, rtas_error_log_max);
|
||
|
rc = nvram_read_error_log(logdata, rtas_error_log_max,
|
||
|
&err_type, &error_log_cnt);
|
||
|
/* We can use rtas_log_buf now */
|
||
|
logging_enabled = 1;
|
||
|
|
||
|
if (!rc) {
|
||
|
if (err_type != ERR_FLAG_ALREADY_LOGGED) {
|
||
|
pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
schedule_delayed_work_on(first_cpu(cpu_online_map), &event_scan_work,
|
||
|
event_scan_delay);
|
||
|
}
|
||
|
|
||
|
static int __init rtas_init(void)
|
||
|
{
|
||
|
struct proc_dir_entry *entry;
|
||
|
|
||
|
if (!machine_is(pseries))
|
||
|
return 0;
|
||
|
|
||
|
/* No RTAS */
|
||
|
event_scan = rtas_token("event-scan");
|
||
|
if (event_scan == RTAS_UNKNOWN_SERVICE) {
|
||
|
printk(KERN_DEBUG "rtasd: no event-scan on system\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
|
||
|
if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
|
||
|
printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
/* Make room for the sequence number */
|
||
|
rtas_error_log_max = rtas_get_error_log_max();
|
||
|
rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
|
||
|
|
||
|
rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
|
||
|
if (!rtas_log_buf) {
|
||
|
printk(KERN_ERR "rtasd: no memory\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
entry = proc_create("ppc64/rtas/error_log", S_IRUSR, NULL,
|
||
|
&proc_rtas_log_operations);
|
||
|
if (!entry)
|
||
|
printk(KERN_ERR "Failed to create error_log proc entry\n");
|
||
|
|
||
|
start_event_scan();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __init surveillance_setup(char *str)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (get_option(&str,&i)) {
|
||
|
if (i >= 0 && i <= 255)
|
||
|
surveillance_timeout = i;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int __init rtasmsgs_setup(char *str)
|
||
|
{
|
||
|
if (strcmp(str, "on") == 0)
|
||
|
full_rtas_msgs = 1;
|
||
|
else if (strcmp(str, "off") == 0)
|
||
|
full_rtas_msgs = 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
__initcall(rtas_init);
|
||
|
__setup("surveillance=", surveillance_setup);
|
||
|
__setup("rtasmsgs=", rtasmsgs_setup);
|