661 lines
16 KiB
C
661 lines
16 KiB
C
|
/*
|
||
|
* Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
|
||
|
*
|
||
|
* Authors: Shlomi Gridish <gridish@freescale.com>
|
||
|
* Li Yang <leoli@freescale.com>
|
||
|
* Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
|
||
|
*
|
||
|
* Description:
|
||
|
* General Purpose functions for the global management of the
|
||
|
* QUICC Engine (QE).
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*/
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/param.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/bootmem.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/crc32.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/immap_qe.h>
|
||
|
#include <asm/qe.h>
|
||
|
#include <asm/prom.h>
|
||
|
#include <asm/rheap.h>
|
||
|
|
||
|
static void qe_snums_init(void);
|
||
|
static int qe_sdma_init(void);
|
||
|
|
||
|
static DEFINE_SPINLOCK(qe_lock);
|
||
|
DEFINE_SPINLOCK(cmxgcr_lock);
|
||
|
EXPORT_SYMBOL(cmxgcr_lock);
|
||
|
|
||
|
/* QE snum state */
|
||
|
enum qe_snum_state {
|
||
|
QE_SNUM_STATE_USED,
|
||
|
QE_SNUM_STATE_FREE
|
||
|
};
|
||
|
|
||
|
/* QE snum */
|
||
|
struct qe_snum {
|
||
|
u8 num;
|
||
|
enum qe_snum_state state;
|
||
|
};
|
||
|
|
||
|
/* We allocate this here because it is used almost exclusively for
|
||
|
* the communication processor devices.
|
||
|
*/
|
||
|
struct qe_immap __iomem *qe_immr;
|
||
|
EXPORT_SYMBOL(qe_immr);
|
||
|
|
||
|
static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
|
||
|
static unsigned int qe_num_of_snum;
|
||
|
|
||
|
static phys_addr_t qebase = -1;
|
||
|
|
||
|
int qe_alive_during_sleep(void)
|
||
|
{
|
||
|
static int ret = -1;
|
||
|
|
||
|
if (ret != -1)
|
||
|
return ret;
|
||
|
|
||
|
ret = !of_find_compatible_node(NULL, NULL, "fsl,mpc8569-pmc");
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_alive_during_sleep);
|
||
|
|
||
|
phys_addr_t get_qe_base(void)
|
||
|
{
|
||
|
struct device_node *qe;
|
||
|
int size;
|
||
|
const u32 *prop;
|
||
|
|
||
|
if (qebase != -1)
|
||
|
return qebase;
|
||
|
|
||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||
|
if (!qe) {
|
||
|
qe = of_find_node_by_type(NULL, "qe");
|
||
|
if (!qe)
|
||
|
return qebase;
|
||
|
}
|
||
|
|
||
|
prop = of_get_property(qe, "reg", &size);
|
||
|
if (prop && size >= sizeof(*prop))
|
||
|
qebase = of_translate_address(qe, prop);
|
||
|
of_node_put(qe);
|
||
|
|
||
|
return qebase;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(get_qe_base);
|
||
|
|
||
|
void __init qe_reset(void)
|
||
|
{
|
||
|
if (qe_immr == NULL)
|
||
|
qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
|
||
|
|
||
|
qe_snums_init();
|
||
|
|
||
|
qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
|
||
|
QE_CR_PROTOCOL_UNSPECIFIED, 0);
|
||
|
|
||
|
/* Reclaim the MURAM memory for our use. */
|
||
|
qe_muram_init();
|
||
|
|
||
|
if (qe_sdma_init())
|
||
|
panic("sdma init failed!");
|
||
|
}
|
||
|
|
||
|
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u8 mcn_shift = 0, dev_shift = 0;
|
||
|
u32 ret;
|
||
|
|
||
|
spin_lock_irqsave(&qe_lock, flags);
|
||
|
if (cmd == QE_RESET) {
|
||
|
out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
|
||
|
} else {
|
||
|
if (cmd == QE_ASSIGN_PAGE) {
|
||
|
/* Here device is the SNUM, not sub-block */
|
||
|
dev_shift = QE_CR_SNUM_SHIFT;
|
||
|
} else if (cmd == QE_ASSIGN_RISC) {
|
||
|
/* Here device is the SNUM, and mcnProtocol is
|
||
|
* e_QeCmdRiscAssignment value */
|
||
|
dev_shift = QE_CR_SNUM_SHIFT;
|
||
|
mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
|
||
|
} else {
|
||
|
if (device == QE_CR_SUBBLOCK_USB)
|
||
|
mcn_shift = QE_CR_MCN_USB_SHIFT;
|
||
|
else
|
||
|
mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
|
||
|
}
|
||
|
|
||
|
out_be32(&qe_immr->cp.cecdr, cmd_input);
|
||
|
out_be32(&qe_immr->cp.cecr,
|
||
|
(cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
|
||
|
mcn_protocol << mcn_shift));
|
||
|
}
|
||
|
|
||
|
/* wait for the QE_CR_FLG to clear */
|
||
|
ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
|
||
|
100, 0);
|
||
|
/* On timeout (e.g. failure), the expression will be false (ret == 0),
|
||
|
otherwise it will be true (ret == 1). */
|
||
|
spin_unlock_irqrestore(&qe_lock, flags);
|
||
|
|
||
|
return ret == 1;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_issue_cmd);
|
||
|
|
||
|
/* Set a baud rate generator. This needs lots of work. There are
|
||
|
* 16 BRGs, which can be connected to the QE channels or output
|
||
|
* as clocks. The BRGs are in two different block of internal
|
||
|
* memory mapped space.
|
||
|
* The BRG clock is the QE clock divided by 2.
|
||
|
* It was set up long ago during the initial boot phase and is
|
||
|
* is given to us.
|
||
|
* Baud rate clocks are zero-based in the driver code (as that maps
|
||
|
* to port numbers). Documentation uses 1-based numbering.
|
||
|
*/
|
||
|
static unsigned int brg_clk = 0;
|
||
|
|
||
|
unsigned int qe_get_brg_clk(void)
|
||
|
{
|
||
|
struct device_node *qe;
|
||
|
int size;
|
||
|
const u32 *prop;
|
||
|
|
||
|
if (brg_clk)
|
||
|
return brg_clk;
|
||
|
|
||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||
|
if (!qe) {
|
||
|
qe = of_find_node_by_type(NULL, "qe");
|
||
|
if (!qe)
|
||
|
return brg_clk;
|
||
|
}
|
||
|
|
||
|
prop = of_get_property(qe, "brg-frequency", &size);
|
||
|
if (prop && size == sizeof(*prop))
|
||
|
brg_clk = *prop;
|
||
|
|
||
|
of_node_put(qe);
|
||
|
|
||
|
return brg_clk;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_get_brg_clk);
|
||
|
|
||
|
/* Program the BRG to the given sampling rate and multiplier
|
||
|
*
|
||
|
* @brg: the BRG, QE_BRG1 - QE_BRG16
|
||
|
* @rate: the desired sampling rate
|
||
|
* @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
|
||
|
* GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
|
||
|
* then 'multiplier' should be 8.
|
||
|
*/
|
||
|
int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
|
||
|
{
|
||
|
u32 divisor, tempval;
|
||
|
u32 div16 = 0;
|
||
|
|
||
|
if ((brg < QE_BRG1) || (brg > QE_BRG16))
|
||
|
return -EINVAL;
|
||
|
|
||
|
divisor = qe_get_brg_clk() / (rate * multiplier);
|
||
|
|
||
|
if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
|
||
|
div16 = QE_BRGC_DIV16;
|
||
|
divisor /= 16;
|
||
|
}
|
||
|
|
||
|
/* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
|
||
|
that the BRG divisor must be even if you're not using divide-by-16
|
||
|
mode. */
|
||
|
if (!div16 && (divisor & 1))
|
||
|
divisor++;
|
||
|
|
||
|
tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
|
||
|
QE_BRGC_ENABLE | div16;
|
||
|
|
||
|
out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_setbrg);
|
||
|
|
||
|
/* Convert a string to a QE clock source enum
|
||
|
*
|
||
|
* This function takes a string, typically from a property in the device
|
||
|
* tree, and returns the corresponding "enum qe_clock" value.
|
||
|
*/
|
||
|
enum qe_clock qe_clock_source(const char *source)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
if (strcasecmp(source, "none") == 0)
|
||
|
return QE_CLK_NONE;
|
||
|
|
||
|
if (strncasecmp(source, "brg", 3) == 0) {
|
||
|
i = simple_strtoul(source + 3, NULL, 10);
|
||
|
if ((i >= 1) && (i <= 16))
|
||
|
return (QE_BRG1 - 1) + i;
|
||
|
else
|
||
|
return QE_CLK_DUMMY;
|
||
|
}
|
||
|
|
||
|
if (strncasecmp(source, "clk", 3) == 0) {
|
||
|
i = simple_strtoul(source + 3, NULL, 10);
|
||
|
if ((i >= 1) && (i <= 24))
|
||
|
return (QE_CLK1 - 1) + i;
|
||
|
else
|
||
|
return QE_CLK_DUMMY;
|
||
|
}
|
||
|
|
||
|
return QE_CLK_DUMMY;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_clock_source);
|
||
|
|
||
|
/* Initialize SNUMs (thread serial numbers) according to
|
||
|
* QE Module Control chapter, SNUM table
|
||
|
*/
|
||
|
static void qe_snums_init(void)
|
||
|
{
|
||
|
int i;
|
||
|
static const u8 snum_init[] = {
|
||
|
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
|
||
|
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
|
||
|
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
|
||
|
0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
|
||
|
0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
|
||
|
0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
|
||
|
};
|
||
|
|
||
|
qe_num_of_snum = qe_get_num_of_snums();
|
||
|
|
||
|
for (i = 0; i < qe_num_of_snum; i++) {
|
||
|
snums[i].num = snum_init[i];
|
||
|
snums[i].state = QE_SNUM_STATE_FREE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int qe_get_snum(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int snum = -EBUSY;
|
||
|
int i;
|
||
|
|
||
|
spin_lock_irqsave(&qe_lock, flags);
|
||
|
for (i = 0; i < qe_num_of_snum; i++) {
|
||
|
if (snums[i].state == QE_SNUM_STATE_FREE) {
|
||
|
snums[i].state = QE_SNUM_STATE_USED;
|
||
|
snum = snums[i].num;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_irqrestore(&qe_lock, flags);
|
||
|
|
||
|
return snum;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_get_snum);
|
||
|
|
||
|
void qe_put_snum(u8 snum)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < qe_num_of_snum; i++) {
|
||
|
if (snums[i].num == snum) {
|
||
|
snums[i].state = QE_SNUM_STATE_FREE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_put_snum);
|
||
|
|
||
|
static int qe_sdma_init(void)
|
||
|
{
|
||
|
struct sdma __iomem *sdma = &qe_immr->sdma;
|
||
|
unsigned long sdma_buf_offset;
|
||
|
|
||
|
if (!sdma)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* allocate 2 internal temporary buffers (512 bytes size each) for
|
||
|
* the SDMA */
|
||
|
sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
|
||
|
if (IS_ERR_VALUE(sdma_buf_offset))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
|
||
|
out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
|
||
|
(0x1 << QE_SDMR_CEN_SHIFT)));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The maximum number of RISCs we support */
|
||
|
#define MAX_QE_RISC 2
|
||
|
|
||
|
/* Firmware information stored here for qe_get_firmware_info() */
|
||
|
static struct qe_firmware_info qe_firmware_info;
|
||
|
|
||
|
/*
|
||
|
* Set to 1 if QE firmware has been uploaded, and therefore
|
||
|
* qe_firmware_info contains valid data.
|
||
|
*/
|
||
|
static int qe_firmware_uploaded;
|
||
|
|
||
|
/*
|
||
|
* Upload a QE microcode
|
||
|
*
|
||
|
* This function is a worker function for qe_upload_firmware(). It does
|
||
|
* the actual uploading of the microcode.
|
||
|
*/
|
||
|
static void qe_upload_microcode(const void *base,
|
||
|
const struct qe_microcode *ucode)
|
||
|
{
|
||
|
const __be32 *code = base + be32_to_cpu(ucode->code_offset);
|
||
|
unsigned int i;
|
||
|
|
||
|
if (ucode->major || ucode->minor || ucode->revision)
|
||
|
printk(KERN_INFO "qe-firmware: "
|
||
|
"uploading microcode '%s' version %u.%u.%u\n",
|
||
|
ucode->id, ucode->major, ucode->minor, ucode->revision);
|
||
|
else
|
||
|
printk(KERN_INFO "qe-firmware: "
|
||
|
"uploading microcode '%s'\n", ucode->id);
|
||
|
|
||
|
/* Use auto-increment */
|
||
|
out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
|
||
|
QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
|
||
|
|
||
|
for (i = 0; i < be32_to_cpu(ucode->count); i++)
|
||
|
out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Upload a microcode to the I-RAM at a specific address.
|
||
|
*
|
||
|
* See Documentation/powerpc/qe-firmware.txt for information on QE microcode
|
||
|
* uploading.
|
||
|
*
|
||
|
* Currently, only version 1 is supported, so the 'version' field must be
|
||
|
* set to 1.
|
||
|
*
|
||
|
* The SOC model and revision are not validated, they are only displayed for
|
||
|
* informational purposes.
|
||
|
*
|
||
|
* 'calc_size' is the calculated size, in bytes, of the firmware structure and
|
||
|
* all of the microcode structures, minus the CRC.
|
||
|
*
|
||
|
* 'length' is the size that the structure says it is, including the CRC.
|
||
|
*/
|
||
|
int qe_upload_firmware(const struct qe_firmware *firmware)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
unsigned int j;
|
||
|
u32 crc;
|
||
|
size_t calc_size = sizeof(struct qe_firmware);
|
||
|
size_t length;
|
||
|
const struct qe_header *hdr;
|
||
|
|
||
|
if (!firmware) {
|
||
|
printk(KERN_ERR "qe-firmware: invalid pointer\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
hdr = &firmware->header;
|
||
|
length = be32_to_cpu(hdr->length);
|
||
|
|
||
|
/* Check the magic */
|
||
|
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
|
||
|
(hdr->magic[2] != 'F')) {
|
||
|
printk(KERN_ERR "qe-firmware: not a microcode\n");
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/* Check the version */
|
||
|
if (hdr->version != 1) {
|
||
|
printk(KERN_ERR "qe-firmware: unsupported version\n");
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/* Validate some of the fields */
|
||
|
if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
|
||
|
printk(KERN_ERR "qe-firmware: invalid data\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Validate the length and check if there's a CRC */
|
||
|
calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
|
||
|
|
||
|
for (i = 0; i < firmware->count; i++)
|
||
|
/*
|
||
|
* For situations where the second RISC uses the same microcode
|
||
|
* as the first, the 'code_offset' and 'count' fields will be
|
||
|
* zero, so it's okay to add those.
|
||
|
*/
|
||
|
calc_size += sizeof(__be32) *
|
||
|
be32_to_cpu(firmware->microcode[i].count);
|
||
|
|
||
|
/* Validate the length */
|
||
|
if (length != calc_size + sizeof(__be32)) {
|
||
|
printk(KERN_ERR "qe-firmware: invalid length\n");
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/* Validate the CRC */
|
||
|
crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
|
||
|
if (crc != crc32(0, firmware, calc_size)) {
|
||
|
printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the microcode calls for it, split the I-RAM.
|
||
|
*/
|
||
|
if (!firmware->split)
|
||
|
setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
|
||
|
|
||
|
if (firmware->soc.model)
|
||
|
printk(KERN_INFO
|
||
|
"qe-firmware: firmware '%s' for %u V%u.%u\n",
|
||
|
firmware->id, be16_to_cpu(firmware->soc.model),
|
||
|
firmware->soc.major, firmware->soc.minor);
|
||
|
else
|
||
|
printk(KERN_INFO "qe-firmware: firmware '%s'\n",
|
||
|
firmware->id);
|
||
|
|
||
|
/*
|
||
|
* The QE only supports one microcode per RISC, so clear out all the
|
||
|
* saved microcode information and put in the new.
|
||
|
*/
|
||
|
memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
|
||
|
strcpy(qe_firmware_info.id, firmware->id);
|
||
|
qe_firmware_info.extended_modes = firmware->extended_modes;
|
||
|
memcpy(qe_firmware_info.vtraps, firmware->vtraps,
|
||
|
sizeof(firmware->vtraps));
|
||
|
|
||
|
/* Loop through each microcode. */
|
||
|
for (i = 0; i < firmware->count; i++) {
|
||
|
const struct qe_microcode *ucode = &firmware->microcode[i];
|
||
|
|
||
|
/* Upload a microcode if it's present */
|
||
|
if (ucode->code_offset)
|
||
|
qe_upload_microcode(firmware, ucode);
|
||
|
|
||
|
/* Program the traps for this processor */
|
||
|
for (j = 0; j < 16; j++) {
|
||
|
u32 trap = be32_to_cpu(ucode->traps[j]);
|
||
|
|
||
|
if (trap)
|
||
|
out_be32(&qe_immr->rsp[i].tibcr[j], trap);
|
||
|
}
|
||
|
|
||
|
/* Enable traps */
|
||
|
out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
|
||
|
}
|
||
|
|
||
|
qe_firmware_uploaded = 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_upload_firmware);
|
||
|
|
||
|
/*
|
||
|
* Get info on the currently-loaded firmware
|
||
|
*
|
||
|
* This function also checks the device tree to see if the boot loader has
|
||
|
* uploaded a firmware already.
|
||
|
*/
|
||
|
struct qe_firmware_info *qe_get_firmware_info(void)
|
||
|
{
|
||
|
static int initialized;
|
||
|
struct property *prop;
|
||
|
struct device_node *qe;
|
||
|
struct device_node *fw = NULL;
|
||
|
const char *sprop;
|
||
|
unsigned int i;
|
||
|
|
||
|
/*
|
||
|
* If we haven't checked yet, and a driver hasn't uploaded a firmware
|
||
|
* yet, then check the device tree for information.
|
||
|
*/
|
||
|
if (qe_firmware_uploaded)
|
||
|
return &qe_firmware_info;
|
||
|
|
||
|
if (initialized)
|
||
|
return NULL;
|
||
|
|
||
|
initialized = 1;
|
||
|
|
||
|
/*
|
||
|
* Newer device trees have an "fsl,qe" compatible property for the QE
|
||
|
* node, but we still need to support older device trees.
|
||
|
*/
|
||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||
|
if (!qe) {
|
||
|
qe = of_find_node_by_type(NULL, "qe");
|
||
|
if (!qe)
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Find the 'firmware' child node */
|
||
|
for_each_child_of_node(qe, fw) {
|
||
|
if (strcmp(fw->name, "firmware") == 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
of_node_put(qe);
|
||
|
|
||
|
/* Did we find the 'firmware' node? */
|
||
|
if (!fw)
|
||
|
return NULL;
|
||
|
|
||
|
qe_firmware_uploaded = 1;
|
||
|
|
||
|
/* Copy the data into qe_firmware_info*/
|
||
|
sprop = of_get_property(fw, "id", NULL);
|
||
|
if (sprop)
|
||
|
strncpy(qe_firmware_info.id, sprop,
|
||
|
sizeof(qe_firmware_info.id) - 1);
|
||
|
|
||
|
prop = of_find_property(fw, "extended-modes", NULL);
|
||
|
if (prop && (prop->length == sizeof(u64))) {
|
||
|
const u64 *iprop = prop->value;
|
||
|
|
||
|
qe_firmware_info.extended_modes = *iprop;
|
||
|
}
|
||
|
|
||
|
prop = of_find_property(fw, "virtual-traps", NULL);
|
||
|
if (prop && (prop->length == 32)) {
|
||
|
const u32 *iprop = prop->value;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
|
||
|
qe_firmware_info.vtraps[i] = iprop[i];
|
||
|
}
|
||
|
|
||
|
of_node_put(fw);
|
||
|
|
||
|
return &qe_firmware_info;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_get_firmware_info);
|
||
|
|
||
|
unsigned int qe_get_num_of_risc(void)
|
||
|
{
|
||
|
struct device_node *qe;
|
||
|
int size;
|
||
|
unsigned int num_of_risc = 0;
|
||
|
const u32 *prop;
|
||
|
|
||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||
|
if (!qe) {
|
||
|
/* Older devices trees did not have an "fsl,qe"
|
||
|
* compatible property, so we need to look for
|
||
|
* the QE node by name.
|
||
|
*/
|
||
|
qe = of_find_node_by_type(NULL, "qe");
|
||
|
if (!qe)
|
||
|
return num_of_risc;
|
||
|
}
|
||
|
|
||
|
prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
|
||
|
if (prop && size == sizeof(*prop))
|
||
|
num_of_risc = *prop;
|
||
|
|
||
|
of_node_put(qe);
|
||
|
|
||
|
return num_of_risc;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_get_num_of_risc);
|
||
|
|
||
|
unsigned int qe_get_num_of_snums(void)
|
||
|
{
|
||
|
struct device_node *qe;
|
||
|
int size;
|
||
|
unsigned int num_of_snums;
|
||
|
const u32 *prop;
|
||
|
|
||
|
num_of_snums = 28; /* The default number of snum for threads is 28 */
|
||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||
|
if (!qe) {
|
||
|
/* Older devices trees did not have an "fsl,qe"
|
||
|
* compatible property, so we need to look for
|
||
|
* the QE node by name.
|
||
|
*/
|
||
|
qe = of_find_node_by_type(NULL, "qe");
|
||
|
if (!qe)
|
||
|
return num_of_snums;
|
||
|
}
|
||
|
|
||
|
prop = of_get_property(qe, "fsl,qe-num-snums", &size);
|
||
|
if (prop && size == sizeof(*prop)) {
|
||
|
num_of_snums = *prop;
|
||
|
if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
|
||
|
/* No QE ever has fewer than 28 SNUMs */
|
||
|
pr_err("QE: number of snum is invalid\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
of_node_put(qe);
|
||
|
|
||
|
return num_of_snums;
|
||
|
}
|
||
|
EXPORT_SYMBOL(qe_get_num_of_snums);
|