183 lines
6.7 KiB
Plaintext
183 lines
6.7 KiB
Plaintext
|
Regulator Consumer Driver Interface
|
||
|
===================================
|
||
|
|
||
|
This text describes the regulator interface for consumer device drivers.
|
||
|
Please see overview.txt for a description of the terms used in this text.
|
||
|
|
||
|
|
||
|
1. Consumer Regulator Access (static & dynamic drivers)
|
||
|
=======================================================
|
||
|
|
||
|
A consumer driver can get access to it's supply regulator by calling :-
|
||
|
|
||
|
regulator = regulator_get(dev, "Vcc");
|
||
|
|
||
|
The consumer passes in it's struct device pointer and power supply ID. The core
|
||
|
then finds the correct regulator by consulting a machine specific lookup table.
|
||
|
If the lookup is successful then this call will return a pointer to the struct
|
||
|
regulator that supplies this consumer.
|
||
|
|
||
|
To release the regulator the consumer driver should call :-
|
||
|
|
||
|
regulator_put(regulator);
|
||
|
|
||
|
Consumers can be supplied by more than one regulator e.g. codec consumer with
|
||
|
analog and digital supplies :-
|
||
|
|
||
|
digital = regulator_get(dev, "Vcc"); /* digital core */
|
||
|
analog = regulator_get(dev, "Avdd"); /* analog */
|
||
|
|
||
|
The regulator access functions regulator_get() and regulator_put() will
|
||
|
usually be called in your device drivers probe() and remove() respectively.
|
||
|
|
||
|
|
||
|
2. Regulator Output Enable & Disable (static & dynamic drivers)
|
||
|
====================================================================
|
||
|
|
||
|
A consumer can enable it's power supply by calling:-
|
||
|
|
||
|
int regulator_enable(regulator);
|
||
|
|
||
|
NOTE: The supply may already be enabled before regulator_enabled() is called.
|
||
|
This may happen if the consumer shares the regulator or the regulator has been
|
||
|
previously enabled by bootloader or kernel board initialization code.
|
||
|
|
||
|
A consumer can determine if a regulator is enabled by calling :-
|
||
|
|
||
|
int regulator_is_enabled(regulator);
|
||
|
|
||
|
This will return > zero when the regulator is enabled.
|
||
|
|
||
|
|
||
|
A consumer can disable it's supply when no longer needed by calling :-
|
||
|
|
||
|
int regulator_disable(regulator);
|
||
|
|
||
|
NOTE: This may not disable the supply if it's shared with other consumers. The
|
||
|
regulator will only be disabled when the enabled reference count is zero.
|
||
|
|
||
|
Finally, a regulator can be forcefully disabled in the case of an emergency :-
|
||
|
|
||
|
int regulator_force_disable(regulator);
|
||
|
|
||
|
NOTE: this will immediately and forcefully shutdown the regulator output. All
|
||
|
consumers will be powered off.
|
||
|
|
||
|
|
||
|
3. Regulator Voltage Control & Status (dynamic drivers)
|
||
|
======================================================
|
||
|
|
||
|
Some consumer drivers need to be able to dynamically change their supply
|
||
|
voltage to match system operating points. e.g. CPUfreq drivers can scale
|
||
|
voltage along with frequency to save power, SD drivers may need to select the
|
||
|
correct card voltage, etc.
|
||
|
|
||
|
Consumers can control their supply voltage by calling :-
|
||
|
|
||
|
int regulator_set_voltage(regulator, min_uV, max_uV);
|
||
|
|
||
|
Where min_uV and max_uV are the minimum and maximum acceptable voltages in
|
||
|
microvolts.
|
||
|
|
||
|
NOTE: this can be called when the regulator is enabled or disabled. If called
|
||
|
when enabled, then the voltage changes instantly, otherwise the voltage
|
||
|
configuration changes and the voltage is physically set when the regulator is
|
||
|
next enabled.
|
||
|
|
||
|
The regulators configured voltage output can be found by calling :-
|
||
|
|
||
|
int regulator_get_voltage(regulator);
|
||
|
|
||
|
NOTE: get_voltage() will return the configured output voltage whether the
|
||
|
regulator is enabled or disabled and should NOT be used to determine regulator
|
||
|
output state. However this can be used in conjunction with is_enabled() to
|
||
|
determine the regulator physical output voltage.
|
||
|
|
||
|
|
||
|
4. Regulator Current Limit Control & Status (dynamic drivers)
|
||
|
===========================================================
|
||
|
|
||
|
Some consumer drivers need to be able to dynamically change their supply
|
||
|
current limit to match system operating points. e.g. LCD backlight driver can
|
||
|
change the current limit to vary the backlight brightness, USB drivers may want
|
||
|
to set the limit to 500mA when supplying power.
|
||
|
|
||
|
Consumers can control their supply current limit by calling :-
|
||
|
|
||
|
int regulator_set_current_limit(regulator, min_uV, max_uV);
|
||
|
|
||
|
Where min_uA and max_uA are the minimum and maximum acceptable current limit in
|
||
|
microamps.
|
||
|
|
||
|
NOTE: this can be called when the regulator is enabled or disabled. If called
|
||
|
when enabled, then the current limit changes instantly, otherwise the current
|
||
|
limit configuration changes and the current limit is physically set when the
|
||
|
regulator is next enabled.
|
||
|
|
||
|
A regulators current limit can be found by calling :-
|
||
|
|
||
|
int regulator_get_current_limit(regulator);
|
||
|
|
||
|
NOTE: get_current_limit() will return the current limit whether the regulator
|
||
|
is enabled or disabled and should not be used to determine regulator current
|
||
|
load.
|
||
|
|
||
|
|
||
|
5. Regulator Operating Mode Control & Status (dynamic drivers)
|
||
|
=============================================================
|
||
|
|
||
|
Some consumers can further save system power by changing the operating mode of
|
||
|
their supply regulator to be more efficient when the consumers operating state
|
||
|
changes. e.g. consumer driver is idle and subsequently draws less current
|
||
|
|
||
|
Regulator operating mode can be changed indirectly or directly.
|
||
|
|
||
|
Indirect operating mode control.
|
||
|
--------------------------------
|
||
|
Consumer drivers can request a change in their supply regulator operating mode
|
||
|
by calling :-
|
||
|
|
||
|
int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
|
||
|
|
||
|
This will cause the core to recalculate the total load on the regulator (based
|
||
|
on all it's consumers) and change operating mode (if necessary and permitted)
|
||
|
to best match the current operating load.
|
||
|
|
||
|
The load_uA value can be determined from the consumers datasheet. e.g.most
|
||
|
datasheets have tables showing the max current consumed in certain situations.
|
||
|
|
||
|
Most consumers will use indirect operating mode control since they have no
|
||
|
knowledge of the regulator or whether the regulator is shared with other
|
||
|
consumers.
|
||
|
|
||
|
Direct operating mode control.
|
||
|
------------------------------
|
||
|
Bespoke or tightly coupled drivers may want to directly control regulator
|
||
|
operating mode depending on their operating point. This can be achieved by
|
||
|
calling :-
|
||
|
|
||
|
int regulator_set_mode(struct regulator *regulator, unsigned int mode);
|
||
|
unsigned int regulator_get_mode(struct regulator *regulator);
|
||
|
|
||
|
Direct mode will only be used by consumers that *know* about the regulator and
|
||
|
are not sharing the regulator with other consumers.
|
||
|
|
||
|
|
||
|
6. Regulator Events
|
||
|
===================
|
||
|
Regulators can notify consumers of external events. Events could be received by
|
||
|
consumers under regulator stress or failure conditions.
|
||
|
|
||
|
Consumers can register interest in regulator events by calling :-
|
||
|
|
||
|
int regulator_register_notifier(struct regulator *regulator,
|
||
|
struct notifier_block *nb);
|
||
|
|
||
|
Consumers can uregister interest by calling :-
|
||
|
|
||
|
int regulator_unregister_notifier(struct regulator *regulator,
|
||
|
struct notifier_block *nb);
|
||
|
|
||
|
Regulators use the kernel notifier framework to send event to their interested
|
||
|
consumers.
|