647 lines
19 KiB
C
647 lines
19 KiB
C
|
/*
|
||
|
** -----------------------------------------------------------------------------
|
||
|
**
|
||
|
** Perle Specialix driver for Linux
|
||
|
** Ported from existing RIO Driver for SCO sources.
|
||
|
*
|
||
|
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
**
|
||
|
** Module : riointr.c
|
||
|
** SID : 1.2
|
||
|
** Last Modified : 11/6/98 10:33:44
|
||
|
** Retrieved : 11/6/98 10:33:49
|
||
|
**
|
||
|
** ident @(#)riointr.c 1.2
|
||
|
**
|
||
|
** -----------------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/tty.h>
|
||
|
#include <linux/tty_flip.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/system.h>
|
||
|
#include <asm/string.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
|
||
|
#include <linux/termios.h>
|
||
|
#include <linux/serial.h>
|
||
|
|
||
|
#include <linux/generic_serial.h>
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
|
||
|
#include "linux_compat.h"
|
||
|
#include "rio_linux.h"
|
||
|
#include "pkt.h"
|
||
|
#include "daemon.h"
|
||
|
#include "rio.h"
|
||
|
#include "riospace.h"
|
||
|
#include "cmdpkt.h"
|
||
|
#include "map.h"
|
||
|
#include "rup.h"
|
||
|
#include "port.h"
|
||
|
#include "riodrvr.h"
|
||
|
#include "rioinfo.h"
|
||
|
#include "func.h"
|
||
|
#include "errors.h"
|
||
|
#include "pci.h"
|
||
|
|
||
|
#include "parmmap.h"
|
||
|
#include "unixrup.h"
|
||
|
#include "board.h"
|
||
|
#include "host.h"
|
||
|
#include "phb.h"
|
||
|
#include "link.h"
|
||
|
#include "cmdblk.h"
|
||
|
#include "route.h"
|
||
|
#include "cirrus.h"
|
||
|
#include "rioioctl.h"
|
||
|
|
||
|
|
||
|
static void RIOReceive(struct rio_info *, struct Port *);
|
||
|
|
||
|
|
||
|
static char *firstchars(char *p, int nch)
|
||
|
{
|
||
|
static char buf[2][128];
|
||
|
static int t = 0;
|
||
|
t = !t;
|
||
|
memcpy(buf[t], p, nch);
|
||
|
buf[t][nch] = 0;
|
||
|
return buf[t];
|
||
|
}
|
||
|
|
||
|
|
||
|
#define INCR( P, I ) ((P) = (((P)+(I)) & p->RIOBufferMask))
|
||
|
/* Enable and start the transmission of packets */
|
||
|
void RIOTxEnable(char *en)
|
||
|
{
|
||
|
struct Port *PortP;
|
||
|
struct rio_info *p;
|
||
|
struct tty_struct *tty;
|
||
|
int c;
|
||
|
struct PKT __iomem *PacketP;
|
||
|
unsigned long flags;
|
||
|
|
||
|
PortP = (struct Port *) en;
|
||
|
p = (struct rio_info *) PortP->p;
|
||
|
tty = PortP->gs.port.tty;
|
||
|
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "tx port %d: %d chars queued.\n", PortP->PortNum, PortP->gs.xmit_cnt);
|
||
|
|
||
|
if (!PortP->gs.xmit_cnt)
|
||
|
return;
|
||
|
|
||
|
|
||
|
/* This routine is an order of magnitude simpler than the specialix
|
||
|
version. One of the disadvantages is that this version will send
|
||
|
an incomplete packet (usually 64 bytes instead of 72) once for
|
||
|
every 4k worth of data. Let's just say that this won't influence
|
||
|
performance significantly..... */
|
||
|
|
||
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
||
|
|
||
|
while (can_add_transmit(&PacketP, PortP)) {
|
||
|
c = PortP->gs.xmit_cnt;
|
||
|
if (c > PKT_MAX_DATA_LEN)
|
||
|
c = PKT_MAX_DATA_LEN;
|
||
|
|
||
|
/* Don't copy past the end of the source buffer */
|
||
|
if (c > SERIAL_XMIT_SIZE - PortP->gs.xmit_tail)
|
||
|
c = SERIAL_XMIT_SIZE - PortP->gs.xmit_tail;
|
||
|
|
||
|
{
|
||
|
int t;
|
||
|
t = (c > 10) ? 10 : c;
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "rio: tx port %d: copying %d chars: %s - %s\n", PortP->PortNum, c, firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail, t), firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail + c - t, t));
|
||
|
}
|
||
|
/* If for one reason or another, we can't copy more data,
|
||
|
we're done! */
|
||
|
if (c == 0)
|
||
|
break;
|
||
|
|
||
|
rio_memcpy_toio(PortP->HostP->Caddr, PacketP->data, PortP->gs.xmit_buf + PortP->gs.xmit_tail, c);
|
||
|
/* udelay (1); */
|
||
|
|
||
|
writeb(c, &(PacketP->len));
|
||
|
if (!(PortP->State & RIO_DELETED)) {
|
||
|
add_transmit(PortP);
|
||
|
/*
|
||
|
** Count chars tx'd for port statistics reporting
|
||
|
*/
|
||
|
if (PortP->statsGather)
|
||
|
PortP->txchars += c;
|
||
|
}
|
||
|
PortP->gs.xmit_tail = (PortP->gs.xmit_tail + c) & (SERIAL_XMIT_SIZE - 1);
|
||
|
PortP->gs.xmit_cnt -= c;
|
||
|
}
|
||
|
|
||
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
||
|
|
||
|
if (PortP->gs.xmit_cnt <= (PortP->gs.wakeup_chars + 2 * PKT_MAX_DATA_LEN))
|
||
|
tty_wakeup(PortP->gs.port.tty);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** RIO Host Service routine. Does all the work traditionally associated with an
|
||
|
** interrupt.
|
||
|
*/
|
||
|
static int RupIntr;
|
||
|
static int RxIntr;
|
||
|
static int TxIntr;
|
||
|
|
||
|
void RIOServiceHost(struct rio_info *p, struct Host *HostP)
|
||
|
{
|
||
|
rio_spin_lock(&HostP->HostLock);
|
||
|
if ((HostP->Flags & RUN_STATE) != RC_RUNNING) {
|
||
|
static int t = 0;
|
||
|
rio_spin_unlock(&HostP->HostLock);
|
||
|
if ((t++ % 200) == 0)
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Interrupt but host not running. flags=%x.\n", (int) HostP->Flags);
|
||
|
return;
|
||
|
}
|
||
|
rio_spin_unlock(&HostP->HostLock);
|
||
|
|
||
|
if (readw(&HostP->ParmMapP->rup_intr)) {
|
||
|
writew(0, &HostP->ParmMapP->rup_intr);
|
||
|
p->RIORupCount++;
|
||
|
RupIntr++;
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "rio: RUP interrupt on host %Zd\n", HostP - p->RIOHosts);
|
||
|
RIOPollHostCommands(p, HostP);
|
||
|
}
|
||
|
|
||
|
if (readw(&HostP->ParmMapP->rx_intr)) {
|
||
|
int port;
|
||
|
|
||
|
writew(0, &HostP->ParmMapP->rx_intr);
|
||
|
p->RIORxCount++;
|
||
|
RxIntr++;
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "rio: RX interrupt on host %Zd\n", HostP - p->RIOHosts);
|
||
|
/*
|
||
|
** Loop through every port. If the port is mapped into
|
||
|
** the system ( i.e. has /dev/ttyXXXX associated ) then it is
|
||
|
** worth checking. If the port isn't open, grab any packets
|
||
|
** hanging on its receive queue and stuff them on the free
|
||
|
** list; check for commands on the way.
|
||
|
*/
|
||
|
for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) {
|
||
|
struct Port *PortP = p->RIOPortp[port];
|
||
|
struct tty_struct *ttyP;
|
||
|
struct PKT __iomem *PacketP;
|
||
|
|
||
|
/*
|
||
|
** not mapped in - most of the RIOPortp[] information
|
||
|
** has not been set up!
|
||
|
** Optimise: ports come in bundles of eight.
|
||
|
*/
|
||
|
if (!PortP->Mapped) {
|
||
|
port += 7;
|
||
|
continue; /* with the next port */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** If the host board isn't THIS host board, check the next one.
|
||
|
** optimise: ports come in bundles of eight.
|
||
|
*/
|
||
|
if (PortP->HostP != HostP) {
|
||
|
port += 7;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Let us see - is the port open? If not, then don't service it.
|
||
|
*/
|
||
|
if (!(PortP->PortState & PORT_ISOPEN)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** find corresponding tty structure. The process of mapping
|
||
|
** the ports puts these here.
|
||
|
*/
|
||
|
ttyP = PortP->gs.port.tty;
|
||
|
|
||
|
/*
|
||
|
** Lock the port before we begin working on it.
|
||
|
*/
|
||
|
rio_spin_lock(&PortP->portSem);
|
||
|
|
||
|
/*
|
||
|
** Process received data if there is any.
|
||
|
*/
|
||
|
if (can_remove_receive(&PacketP, PortP))
|
||
|
RIOReceive(p, PortP);
|
||
|
|
||
|
/*
|
||
|
** If there is no data left to be read from the port, and
|
||
|
** it's handshake bit is set, then we must clear the handshake,
|
||
|
** so that that downstream RTA is re-enabled.
|
||
|
*/
|
||
|
if (!can_remove_receive(&PacketP, PortP) && (readw(&PortP->PhbP->handshake) == PHB_HANDSHAKE_SET)) {
|
||
|
/*
|
||
|
** MAGIC! ( Basically, handshake the RX buffer, so that
|
||
|
** the RTAs upstream can be re-enabled. )
|
||
|
*/
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Set RX handshake bit\n");
|
||
|
writew(PHB_HANDSHAKE_SET | PHB_HANDSHAKE_RESET, &PortP->PhbP->handshake);
|
||
|
}
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (readw(&HostP->ParmMapP->tx_intr)) {
|
||
|
int port;
|
||
|
|
||
|
writew(0, &HostP->ParmMapP->tx_intr);
|
||
|
|
||
|
p->RIOTxCount++;
|
||
|
TxIntr++;
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "rio: TX interrupt on host %Zd\n", HostP - p->RIOHosts);
|
||
|
|
||
|
/*
|
||
|
** Loop through every port.
|
||
|
** If the port is mapped into the system ( i.e. has /dev/ttyXXXX
|
||
|
** associated ) then it is worth checking.
|
||
|
*/
|
||
|
for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) {
|
||
|
struct Port *PortP = p->RIOPortp[port];
|
||
|
struct tty_struct *ttyP;
|
||
|
struct PKT __iomem *PacketP;
|
||
|
|
||
|
/*
|
||
|
** not mapped in - most of the RIOPortp[] information
|
||
|
** has not been set up!
|
||
|
*/
|
||
|
if (!PortP->Mapped) {
|
||
|
port += 7;
|
||
|
continue; /* with the next port */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** If the host board isn't running, then its data structures
|
||
|
** are no use to us - continue quietly.
|
||
|
*/
|
||
|
if (PortP->HostP != HostP) {
|
||
|
port += 7;
|
||
|
continue; /* with the next port */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Let us see - is the port open? If not, then don't service it.
|
||
|
*/
|
||
|
if (!(PortP->PortState & PORT_ISOPEN)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "rio: Looking into port %d.\n", port);
|
||
|
/*
|
||
|
** Lock the port before we begin working on it.
|
||
|
*/
|
||
|
rio_spin_lock(&PortP->portSem);
|
||
|
|
||
|
/*
|
||
|
** If we can't add anything to the transmit queue, then
|
||
|
** we need do none of this processing.
|
||
|
*/
|
||
|
if (!can_add_transmit(&PacketP, PortP)) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Can't add to port, so skipping.\n");
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** find corresponding tty structure. The process of mapping
|
||
|
** the ports puts these here.
|
||
|
*/
|
||
|
ttyP = PortP->gs.port.tty;
|
||
|
/* If ttyP is NULL, the port is getting closed. Forget about it. */
|
||
|
if (!ttyP) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "no tty, so skipping.\n");
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
continue;
|
||
|
}
|
||
|
/*
|
||
|
** If there is more room available we start up the transmit
|
||
|
** data process again. This can be direct I/O, if the cookmode
|
||
|
** is set to COOK_RAW or COOK_MEDIUM, or will be a call to the
|
||
|
** riotproc( T_OUTPUT ) if we are in COOK_WELL mode, to fetch
|
||
|
** characters via the line discipline. We must always call
|
||
|
** the line discipline,
|
||
|
** so that user input characters can be echoed correctly.
|
||
|
**
|
||
|
** ++++ Update +++++
|
||
|
** With the advent of double buffering, we now see if
|
||
|
** TxBufferOut-In is non-zero. If so, then we copy a packet
|
||
|
** to the output place, and set it going. If this empties
|
||
|
** the buffer, then we must issue a wakeup( ) on OUT.
|
||
|
** If it frees space in the buffer then we must issue
|
||
|
** a wakeup( ) on IN.
|
||
|
**
|
||
|
** ++++ Extra! Extra! If PortP->WflushFlag is set, then we
|
||
|
** have to send a WFLUSH command down the PHB, to mark the
|
||
|
** end point of a WFLUSH. We also need to clear out any
|
||
|
** data from the double buffer! ( note that WflushFlag is a
|
||
|
** *count* of the number of WFLUSH commands outstanding! )
|
||
|
**
|
||
|
** ++++ And there's more!
|
||
|
** If an RTA is powered off, then on again, and rebooted,
|
||
|
** whilst it has ports open, then we need to re-open the ports.
|
||
|
** ( reasonable enough ). We can't do this when we spot the
|
||
|
** re-boot, in interrupt time, because the queue is probably
|
||
|
** full. So, when we come in here, we need to test if any
|
||
|
** ports are in this condition, and re-open the port before
|
||
|
** we try to send any more data to it. Now, the re-booted
|
||
|
** RTA will be discarding packets from the PHB until it
|
||
|
** receives this open packet, but don't worry tooo much
|
||
|
** about that. The one thing that is interesting is the
|
||
|
** combination of this effect and the WFLUSH effect!
|
||
|
*/
|
||
|
/* For now don't handle RTA reboots. -- REW.
|
||
|
Reenabled. Otherwise RTA reboots didn't work. Duh. -- REW */
|
||
|
if (PortP->MagicFlags) {
|
||
|
if (PortP->MagicFlags & MAGIC_REBOOT) {
|
||
|
/*
|
||
|
** well, the RTA has been rebooted, and there is room
|
||
|
** on its queue to add the open packet that is required.
|
||
|
**
|
||
|
** The messy part of this line is trying to decide if
|
||
|
** we need to call the Param function as a tty or as
|
||
|
** a modem.
|
||
|
** DONT USE CLOCAL AS A TEST FOR THIS!
|
||
|
**
|
||
|
** If we can't param the port, then move on to the
|
||
|
** next port.
|
||
|
*/
|
||
|
PortP->InUse = NOT_INUSE;
|
||
|
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
if (RIOParam(PortP, RIOC_OPEN, ((PortP->Cor2Copy & (RIOC_COR2_RTSFLOW | RIOC_COR2_CTSFLOW)) == (RIOC_COR2_RTSFLOW | RIOC_COR2_CTSFLOW)) ? 1 : 0, DONT_SLEEP) == RIO_FAIL)
|
||
|
continue; /* with next port */
|
||
|
rio_spin_lock(&PortP->portSem);
|
||
|
PortP->MagicFlags &= ~MAGIC_REBOOT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** As mentioned above, this is a tacky hack to cope
|
||
|
** with WFLUSH
|
||
|
*/
|
||
|
if (PortP->WflushFlag) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Want to WFLUSH mark this port\n");
|
||
|
|
||
|
if (PortP->InUse)
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "FAILS - PORT IS IN USE\n");
|
||
|
}
|
||
|
|
||
|
while (PortP->WflushFlag && can_add_transmit(&PacketP, PortP) && (PortP->InUse == NOT_INUSE)) {
|
||
|
int p;
|
||
|
struct PktCmd __iomem *PktCmdP;
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Add WFLUSH marker to data queue\n");
|
||
|
/*
|
||
|
** make it look just like a WFLUSH command
|
||
|
*/
|
||
|
PktCmdP = (struct PktCmd __iomem *) &PacketP->data[0];
|
||
|
|
||
|
writeb(RIOC_WFLUSH, &PktCmdP->Command);
|
||
|
|
||
|
p = PortP->HostPort % (u16) PORTS_PER_RTA;
|
||
|
|
||
|
/*
|
||
|
** If second block of ports for 16 port RTA, add 8
|
||
|
** to index 8-15.
|
||
|
*/
|
||
|
if (PortP->SecondBlock)
|
||
|
p += PORTS_PER_RTA;
|
||
|
|
||
|
writeb(p, &PktCmdP->PhbNum);
|
||
|
|
||
|
/*
|
||
|
** to make debuggery easier
|
||
|
*/
|
||
|
writeb('W', &PacketP->data[2]);
|
||
|
writeb('F', &PacketP->data[3]);
|
||
|
writeb('L', &PacketP->data[4]);
|
||
|
writeb('U', &PacketP->data[5]);
|
||
|
writeb('S', &PacketP->data[6]);
|
||
|
writeb('H', &PacketP->data[7]);
|
||
|
writeb(' ', &PacketP->data[8]);
|
||
|
writeb('0' + PortP->WflushFlag, &PacketP->data[9]);
|
||
|
writeb(' ', &PacketP->data[10]);
|
||
|
writeb(' ', &PacketP->data[11]);
|
||
|
writeb('\0', &PacketP->data[12]);
|
||
|
|
||
|
/*
|
||
|
** its two bytes long!
|
||
|
*/
|
||
|
writeb(PKT_CMD_BIT | 2, &PacketP->len);
|
||
|
|
||
|
/*
|
||
|
** queue it!
|
||
|
*/
|
||
|
if (!(PortP->State & RIO_DELETED)) {
|
||
|
add_transmit(PortP);
|
||
|
/*
|
||
|
** Count chars tx'd for port statistics reporting
|
||
|
*/
|
||
|
if (PortP->statsGather)
|
||
|
PortP->txchars += 2;
|
||
|
}
|
||
|
|
||
|
if (--(PortP->WflushFlag) == 0) {
|
||
|
PortP->MagicFlags &= ~MAGIC_FLUSH;
|
||
|
}
|
||
|
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "Wflush count now stands at %d\n", PortP->WflushFlag);
|
||
|
}
|
||
|
if (PortP->MagicFlags & MORE_OUTPUT_EYGOR) {
|
||
|
if (PortP->MagicFlags & MAGIC_FLUSH) {
|
||
|
PortP->MagicFlags |= MORE_OUTPUT_EYGOR;
|
||
|
} else {
|
||
|
if (!can_add_transmit(&PacketP, PortP)) {
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
continue;
|
||
|
}
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
RIOTxEnable((char *) PortP);
|
||
|
rio_spin_lock(&PortP->portSem);
|
||
|
PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** If we can't add anything to the transmit queue, then
|
||
|
** we need do none of the remaining processing.
|
||
|
*/
|
||
|
if (!can_add_transmit(&PacketP, PortP)) {
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
rio_spin_unlock(&PortP->portSem);
|
||
|
RIOTxEnable((char *) PortP);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Routine for handling received data for tty drivers
|
||
|
*/
|
||
|
static void RIOReceive(struct rio_info *p, struct Port *PortP)
|
||
|
{
|
||
|
struct tty_struct *TtyP;
|
||
|
unsigned short transCount;
|
||
|
struct PKT __iomem *PacketP;
|
||
|
register unsigned int DataCnt;
|
||
|
unsigned char __iomem *ptr;
|
||
|
unsigned char *buf;
|
||
|
int copied = 0;
|
||
|
|
||
|
static int intCount, RxIntCnt;
|
||
|
|
||
|
/*
|
||
|
** The receive data process is to remove packets from the
|
||
|
** PHB until there aren't any more or the current cblock
|
||
|
** is full. When this occurs, there will be some left over
|
||
|
** data in the packet, that we must do something with.
|
||
|
** As we haven't unhooked the packet from the read list
|
||
|
** yet, we can just leave the packet there, having first
|
||
|
** made a note of how far we got. This means that we need
|
||
|
** a pointer per port saying where we start taking the
|
||
|
** data from - this will normally be zero, but when we
|
||
|
** run out of space it will be set to the offset of the
|
||
|
** next byte to copy from the packet data area. The packet
|
||
|
** length field is decremented by the number of bytes that
|
||
|
** we successfully removed from the packet. When this reaches
|
||
|
** zero, we reset the offset pointer to be zero, and free
|
||
|
** the packet from the front of the queue.
|
||
|
*/
|
||
|
|
||
|
intCount++;
|
||
|
|
||
|
TtyP = PortP->gs.port.tty;
|
||
|
if (!TtyP) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: tty is null. \n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (PortP->State & RIO_THROTTLE_RX) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: Throttled. Can't handle more input.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (PortP->State & RIO_DELETED) {
|
||
|
while (can_remove_receive(&PacketP, PortP)) {
|
||
|
remove_receive(PortP);
|
||
|
put_free_end(PortP->HostP, PacketP);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
** loop, just so long as:
|
||
|
** i ) there's some data ( i.e. can_remove_receive )
|
||
|
** ii ) we haven't been blocked
|
||
|
** iii ) there's somewhere to put the data
|
||
|
** iv ) we haven't outstayed our welcome
|
||
|
*/
|
||
|
transCount = 1;
|
||
|
while (can_remove_receive(&PacketP, PortP)
|
||
|
&& transCount) {
|
||
|
RxIntCnt++;
|
||
|
|
||
|
/*
|
||
|
** check that it is not a command!
|
||
|
*/
|
||
|
if (readb(&PacketP->len) & PKT_CMD_BIT) {
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "RIO: unexpected command packet received on PHB\n");
|
||
|
/* rio_dprint(RIO_DEBUG_INTR, (" sysport = %d\n", p->RIOPortp->PortNum)); */
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " dest_unit = %d\n", readb(&PacketP->dest_unit));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " dest_port = %d\n", readb(&PacketP->dest_port));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " src_unit = %d\n", readb(&PacketP->src_unit));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " src_port = %d\n", readb(&PacketP->src_port));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " len = %d\n", readb(&PacketP->len));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " control = %d\n", readb(&PacketP->control));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " csum = %d\n", readw(&PacketP->csum));
|
||
|
rio_dprintk(RIO_DEBUG_INTR, " data bytes: ");
|
||
|
for (DataCnt = 0; DataCnt < PKT_MAX_DATA_LEN; DataCnt++)
|
||
|
rio_dprintk(RIO_DEBUG_INTR, "%d\n", readb(&PacketP->data[DataCnt]));
|
||
|
remove_receive(PortP);
|
||
|
put_free_end(PortP->HostP, PacketP);
|
||
|
continue; /* with next packet */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** How many characters can we move 'upstream' ?
|
||
|
**
|
||
|
** Determine the minimum of the amount of data
|
||
|
** available and the amount of space in which to
|
||
|
** put it.
|
||
|
**
|
||
|
** 1. Get the packet length by masking 'len'
|
||
|
** for only the length bits.
|
||
|
** 2. Available space is [buffer size] - [space used]
|
||
|
**
|
||
|
** Transfer count is the minimum of packet length
|
||
|
** and available space.
|
||
|
*/
|
||
|
|
||
|
transCount = tty_buffer_request_room(TtyP, readb(&PacketP->len) & PKT_LEN_MASK);
|
||
|
rio_dprintk(RIO_DEBUG_REC, "port %d: Copy %d bytes\n", PortP->PortNum, transCount);
|
||
|
/*
|
||
|
** To use the following 'kkprintfs' for debugging - change the '#undef'
|
||
|
** to '#define', (this is the only place ___DEBUG_IT___ occurs in the
|
||
|
** driver).
|
||
|
*/
|
||
|
ptr = (unsigned char __iomem *) PacketP->data + PortP->RxDataStart;
|
||
|
|
||
|
tty_prepare_flip_string(TtyP, &buf, transCount);
|
||
|
rio_memcpy_fromio(buf, ptr, transCount);
|
||
|
PortP->RxDataStart += transCount;
|
||
|
writeb(readb(&PacketP->len)-transCount, &PacketP->len);
|
||
|
copied += transCount;
|
||
|
|
||
|
|
||
|
|
||
|
if (readb(&PacketP->len) == 0) {
|
||
|
/*
|
||
|
** If we have emptied the packet, then we can
|
||
|
** free it, and reset the start pointer for
|
||
|
** the next packet.
|
||
|
*/
|
||
|
remove_receive(PortP);
|
||
|
put_free_end(PortP->HostP, PacketP);
|
||
|
PortP->RxDataStart = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (copied) {
|
||
|
rio_dprintk(RIO_DEBUG_REC, "port %d: pushing tty flip buffer: %d total bytes copied.\n", PortP->PortNum, copied);
|
||
|
tty_flip_buffer_push(TtyP);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|