542 lines
14 KiB
C
542 lines
14 KiB
C
|
/*
|
||
|
* page.c - buffer/page management specific to NILFS
|
||
|
*
|
||
|
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
* Written by Ryusuke Konishi <ryusuke@osrg.net>,
|
||
|
* Seiji Kihara <kihara@osrg.net>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/writeback.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/pagevec.h>
|
||
|
#include "nilfs.h"
|
||
|
#include "page.h"
|
||
|
#include "mdt.h"
|
||
|
|
||
|
|
||
|
#define NILFS_BUFFER_INHERENT_BITS \
|
||
|
((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
|
||
|
(1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated))
|
||
|
|
||
|
static struct buffer_head *
|
||
|
__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
|
||
|
int blkbits, unsigned long b_state)
|
||
|
|
||
|
{
|
||
|
unsigned long first_block;
|
||
|
struct buffer_head *bh;
|
||
|
|
||
|
if (!page_has_buffers(page))
|
||
|
create_empty_buffers(page, 1 << blkbits, b_state);
|
||
|
|
||
|
first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
|
||
|
bh = nilfs_page_get_nth_block(page, block - first_block);
|
||
|
|
||
|
touch_buffer(bh);
|
||
|
wait_on_buffer(bh);
|
||
|
return bh;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Since the page cache of B-tree node pages or data page cache of pseudo
|
||
|
* inodes does not have a valid mapping->host pointer, calling
|
||
|
* mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
|
||
|
* it calls __mark_inode_dirty(NULL) through __set_page_dirty().
|
||
|
* To avoid this problem, the old style mark_buffer_dirty() is used instead.
|
||
|
*/
|
||
|
void nilfs_mark_buffer_dirty(struct buffer_head *bh)
|
||
|
{
|
||
|
if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
|
||
|
__set_page_dirty_nobuffers(bh->b_page);
|
||
|
}
|
||
|
|
||
|
struct buffer_head *nilfs_grab_buffer(struct inode *inode,
|
||
|
struct address_space *mapping,
|
||
|
unsigned long blkoff,
|
||
|
unsigned long b_state)
|
||
|
{
|
||
|
int blkbits = inode->i_blkbits;
|
||
|
pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
|
||
|
struct page *page, *opage;
|
||
|
struct buffer_head *bh, *obh;
|
||
|
|
||
|
page = grab_cache_page(mapping, index);
|
||
|
if (unlikely(!page))
|
||
|
return NULL;
|
||
|
|
||
|
bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
|
||
|
if (unlikely(!bh)) {
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
|
||
|
/*
|
||
|
* Shadow page cache uses assoc_mapping to point its original
|
||
|
* page cache. The following code tries the original cache
|
||
|
* if the given cache is a shadow and it didn't hit.
|
||
|
*/
|
||
|
opage = find_lock_page(mapping->assoc_mapping, index);
|
||
|
if (!opage)
|
||
|
return bh;
|
||
|
|
||
|
obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
|
||
|
b_state);
|
||
|
if (buffer_uptodate(obh)) {
|
||
|
nilfs_copy_buffer(bh, obh);
|
||
|
if (buffer_dirty(obh)) {
|
||
|
nilfs_mark_buffer_dirty(bh);
|
||
|
if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
|
||
|
nilfs_mdt_mark_dirty(inode);
|
||
|
}
|
||
|
}
|
||
|
brelse(obh);
|
||
|
unlock_page(opage);
|
||
|
page_cache_release(opage);
|
||
|
}
|
||
|
return bh;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_forget_buffer - discard dirty state
|
||
|
* @inode: owner inode of the buffer
|
||
|
* @bh: buffer head of the buffer to be discarded
|
||
|
*/
|
||
|
void nilfs_forget_buffer(struct buffer_head *bh)
|
||
|
{
|
||
|
struct page *page = bh->b_page;
|
||
|
|
||
|
lock_buffer(bh);
|
||
|
clear_buffer_nilfs_volatile(bh);
|
||
|
clear_buffer_dirty(bh);
|
||
|
if (nilfs_page_buffers_clean(page))
|
||
|
__nilfs_clear_page_dirty(page);
|
||
|
|
||
|
clear_buffer_uptodate(bh);
|
||
|
clear_buffer_mapped(bh);
|
||
|
bh->b_blocknr = -1;
|
||
|
ClearPageUptodate(page);
|
||
|
ClearPageMappedToDisk(page);
|
||
|
unlock_buffer(bh);
|
||
|
brelse(bh);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_copy_buffer -- copy buffer data and flags
|
||
|
* @dbh: destination buffer
|
||
|
* @sbh: source buffer
|
||
|
*/
|
||
|
void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
|
||
|
{
|
||
|
void *kaddr0, *kaddr1;
|
||
|
unsigned long bits;
|
||
|
struct page *spage = sbh->b_page, *dpage = dbh->b_page;
|
||
|
struct buffer_head *bh;
|
||
|
|
||
|
kaddr0 = kmap_atomic(spage, KM_USER0);
|
||
|
kaddr1 = kmap_atomic(dpage, KM_USER1);
|
||
|
memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
|
||
|
kunmap_atomic(kaddr1, KM_USER1);
|
||
|
kunmap_atomic(kaddr0, KM_USER0);
|
||
|
|
||
|
dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
|
||
|
dbh->b_blocknr = sbh->b_blocknr;
|
||
|
dbh->b_bdev = sbh->b_bdev;
|
||
|
|
||
|
bh = dbh;
|
||
|
bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
|
||
|
while ((bh = bh->b_this_page) != dbh) {
|
||
|
lock_buffer(bh);
|
||
|
bits &= bh->b_state;
|
||
|
unlock_buffer(bh);
|
||
|
}
|
||
|
if (bits & (1UL << BH_Uptodate))
|
||
|
SetPageUptodate(dpage);
|
||
|
else
|
||
|
ClearPageUptodate(dpage);
|
||
|
if (bits & (1UL << BH_Mapped))
|
||
|
SetPageMappedToDisk(dpage);
|
||
|
else
|
||
|
ClearPageMappedToDisk(dpage);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_page_buffers_clean - check if a page has dirty buffers or not.
|
||
|
* @page: page to be checked
|
||
|
*
|
||
|
* nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
|
||
|
* Otherwise, it returns non-zero value.
|
||
|
*/
|
||
|
int nilfs_page_buffers_clean(struct page *page)
|
||
|
{
|
||
|
struct buffer_head *bh, *head;
|
||
|
|
||
|
bh = head = page_buffers(page);
|
||
|
do {
|
||
|
if (buffer_dirty(bh))
|
||
|
return 0;
|
||
|
bh = bh->b_this_page;
|
||
|
} while (bh != head);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void nilfs_page_bug(struct page *page)
|
||
|
{
|
||
|
struct address_space *m;
|
||
|
unsigned long ino = 0;
|
||
|
|
||
|
if (unlikely(!page)) {
|
||
|
printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
m = page->mapping;
|
||
|
if (m) {
|
||
|
struct inode *inode = NILFS_AS_I(m);
|
||
|
if (inode != NULL)
|
||
|
ino = inode->i_ino;
|
||
|
}
|
||
|
printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
|
||
|
"mapping=%p ino=%lu\n",
|
||
|
page, atomic_read(&page->_count),
|
||
|
(unsigned long long)page->index, page->flags, m, ino);
|
||
|
|
||
|
if (page_has_buffers(page)) {
|
||
|
struct buffer_head *bh, *head;
|
||
|
int i = 0;
|
||
|
|
||
|
bh = head = page_buffers(page);
|
||
|
do {
|
||
|
printk(KERN_CRIT
|
||
|
" BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
|
||
|
i++, bh, atomic_read(&bh->b_count),
|
||
|
(unsigned long long)bh->b_blocknr, bh->b_state);
|
||
|
bh = bh->b_this_page;
|
||
|
} while (bh != head);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_alloc_private_page - allocate a private page with buffer heads
|
||
|
*
|
||
|
* Return Value: On success, a pointer to the allocated page is returned.
|
||
|
* On error, NULL is returned.
|
||
|
*/
|
||
|
struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
|
||
|
unsigned long state)
|
||
|
{
|
||
|
struct buffer_head *bh, *head, *tail;
|
||
|
struct page *page;
|
||
|
|
||
|
page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
|
||
|
if (unlikely(!page))
|
||
|
return NULL;
|
||
|
|
||
|
lock_page(page);
|
||
|
head = alloc_page_buffers(page, size, 0);
|
||
|
if (unlikely(!head)) {
|
||
|
unlock_page(page);
|
||
|
__free_page(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
bh = head;
|
||
|
do {
|
||
|
bh->b_state = (1UL << BH_NILFS_Allocated) | state;
|
||
|
tail = bh;
|
||
|
bh->b_bdev = bdev;
|
||
|
bh = bh->b_this_page;
|
||
|
} while (bh);
|
||
|
|
||
|
tail->b_this_page = head;
|
||
|
attach_page_buffers(page, head);
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
void nilfs_free_private_page(struct page *page)
|
||
|
{
|
||
|
BUG_ON(!PageLocked(page));
|
||
|
BUG_ON(page->mapping);
|
||
|
|
||
|
if (page_has_buffers(page) && !try_to_free_buffers(page))
|
||
|
NILFS_PAGE_BUG(page, "failed to free page");
|
||
|
|
||
|
unlock_page(page);
|
||
|
__free_page(page);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_copy_page -- copy the page with buffers
|
||
|
* @dst: destination page
|
||
|
* @src: source page
|
||
|
* @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
|
||
|
*
|
||
|
* This fuction is for both data pages and btnode pages. The dirty flag
|
||
|
* should be treated by caller. The page must not be under i/o.
|
||
|
* Both src and dst page must be locked
|
||
|
*/
|
||
|
static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
|
||
|
{
|
||
|
struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
|
||
|
unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
|
||
|
|
||
|
BUG_ON(PageWriteback(dst));
|
||
|
|
||
|
sbh = sbufs = page_buffers(src);
|
||
|
if (!page_has_buffers(dst))
|
||
|
create_empty_buffers(dst, sbh->b_size, 0);
|
||
|
|
||
|
if (copy_dirty)
|
||
|
mask |= (1UL << BH_Dirty);
|
||
|
|
||
|
dbh = dbufs = page_buffers(dst);
|
||
|
do {
|
||
|
lock_buffer(sbh);
|
||
|
lock_buffer(dbh);
|
||
|
dbh->b_state = sbh->b_state & mask;
|
||
|
dbh->b_blocknr = sbh->b_blocknr;
|
||
|
dbh->b_bdev = sbh->b_bdev;
|
||
|
sbh = sbh->b_this_page;
|
||
|
dbh = dbh->b_this_page;
|
||
|
} while (dbh != dbufs);
|
||
|
|
||
|
copy_highpage(dst, src);
|
||
|
|
||
|
if (PageUptodate(src) && !PageUptodate(dst))
|
||
|
SetPageUptodate(dst);
|
||
|
else if (!PageUptodate(src) && PageUptodate(dst))
|
||
|
ClearPageUptodate(dst);
|
||
|
if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
|
||
|
SetPageMappedToDisk(dst);
|
||
|
else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
|
||
|
ClearPageMappedToDisk(dst);
|
||
|
|
||
|
do {
|
||
|
unlock_buffer(sbh);
|
||
|
unlock_buffer(dbh);
|
||
|
sbh = sbh->b_this_page;
|
||
|
dbh = dbh->b_this_page;
|
||
|
} while (dbh != dbufs);
|
||
|
}
|
||
|
|
||
|
int nilfs_copy_dirty_pages(struct address_space *dmap,
|
||
|
struct address_space *smap)
|
||
|
{
|
||
|
struct pagevec pvec;
|
||
|
unsigned int i;
|
||
|
pgoff_t index = 0;
|
||
|
int err = 0;
|
||
|
|
||
|
pagevec_init(&pvec, 0);
|
||
|
repeat:
|
||
|
if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
|
||
|
PAGEVEC_SIZE))
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
||
|
struct page *page = pvec.pages[i], *dpage;
|
||
|
|
||
|
lock_page(page);
|
||
|
if (unlikely(!PageDirty(page)))
|
||
|
NILFS_PAGE_BUG(page, "inconsistent dirty state");
|
||
|
|
||
|
dpage = grab_cache_page(dmap, page->index);
|
||
|
if (unlikely(!dpage)) {
|
||
|
/* No empty page is added to the page cache */
|
||
|
err = -ENOMEM;
|
||
|
unlock_page(page);
|
||
|
break;
|
||
|
}
|
||
|
if (unlikely(!page_has_buffers(page)))
|
||
|
NILFS_PAGE_BUG(page,
|
||
|
"found empty page in dat page cache");
|
||
|
|
||
|
nilfs_copy_page(dpage, page, 1);
|
||
|
__set_page_dirty_nobuffers(dpage);
|
||
|
|
||
|
unlock_page(dpage);
|
||
|
page_cache_release(dpage);
|
||
|
unlock_page(page);
|
||
|
}
|
||
|
pagevec_release(&pvec);
|
||
|
cond_resched();
|
||
|
|
||
|
if (likely(!err))
|
||
|
goto repeat;
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nilfs_copy_back_pages -- copy back pages to orignal cache from shadow cache
|
||
|
* @dmap: destination page cache
|
||
|
* @smap: source page cache
|
||
|
*
|
||
|
* No pages must no be added to the cache during this process.
|
||
|
* This must be ensured by the caller.
|
||
|
*/
|
||
|
void nilfs_copy_back_pages(struct address_space *dmap,
|
||
|
struct address_space *smap)
|
||
|
{
|
||
|
struct pagevec pvec;
|
||
|
unsigned int i, n;
|
||
|
pgoff_t index = 0;
|
||
|
int err;
|
||
|
|
||
|
pagevec_init(&pvec, 0);
|
||
|
repeat:
|
||
|
n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
|
||
|
if (!n)
|
||
|
return;
|
||
|
index = pvec.pages[n - 1]->index + 1;
|
||
|
|
||
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
||
|
struct page *page = pvec.pages[i], *dpage;
|
||
|
pgoff_t offset = page->index;
|
||
|
|
||
|
lock_page(page);
|
||
|
dpage = find_lock_page(dmap, offset);
|
||
|
if (dpage) {
|
||
|
/* override existing page on the destination cache */
|
||
|
WARN_ON(PageDirty(dpage));
|
||
|
nilfs_copy_page(dpage, page, 0);
|
||
|
unlock_page(dpage);
|
||
|
page_cache_release(dpage);
|
||
|
} else {
|
||
|
struct page *page2;
|
||
|
|
||
|
/* move the page to the destination cache */
|
||
|
spin_lock_irq(&smap->tree_lock);
|
||
|
page2 = radix_tree_delete(&smap->page_tree, offset);
|
||
|
WARN_ON(page2 != page);
|
||
|
|
||
|
smap->nrpages--;
|
||
|
spin_unlock_irq(&smap->tree_lock);
|
||
|
|
||
|
spin_lock_irq(&dmap->tree_lock);
|
||
|
err = radix_tree_insert(&dmap->page_tree, offset, page);
|
||
|
if (unlikely(err < 0)) {
|
||
|
WARN_ON(err == -EEXIST);
|
||
|
page->mapping = NULL;
|
||
|
page_cache_release(page); /* for cache */
|
||
|
} else {
|
||
|
page->mapping = dmap;
|
||
|
dmap->nrpages++;
|
||
|
if (PageDirty(page))
|
||
|
radix_tree_tag_set(&dmap->page_tree,
|
||
|
offset,
|
||
|
PAGECACHE_TAG_DIRTY);
|
||
|
}
|
||
|
spin_unlock_irq(&dmap->tree_lock);
|
||
|
}
|
||
|
unlock_page(page);
|
||
|
}
|
||
|
pagevec_release(&pvec);
|
||
|
cond_resched();
|
||
|
|
||
|
goto repeat;
|
||
|
}
|
||
|
|
||
|
void nilfs_clear_dirty_pages(struct address_space *mapping)
|
||
|
{
|
||
|
struct pagevec pvec;
|
||
|
unsigned int i;
|
||
|
pgoff_t index = 0;
|
||
|
|
||
|
pagevec_init(&pvec, 0);
|
||
|
|
||
|
while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
|
||
|
PAGEVEC_SIZE)) {
|
||
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
||
|
struct page *page = pvec.pages[i];
|
||
|
struct buffer_head *bh, *head;
|
||
|
|
||
|
lock_page(page);
|
||
|
ClearPageUptodate(page);
|
||
|
ClearPageMappedToDisk(page);
|
||
|
bh = head = page_buffers(page);
|
||
|
do {
|
||
|
lock_buffer(bh);
|
||
|
clear_buffer_dirty(bh);
|
||
|
clear_buffer_nilfs_volatile(bh);
|
||
|
clear_buffer_uptodate(bh);
|
||
|
clear_buffer_mapped(bh);
|
||
|
unlock_buffer(bh);
|
||
|
bh = bh->b_this_page;
|
||
|
} while (bh != head);
|
||
|
|
||
|
__nilfs_clear_page_dirty(page);
|
||
|
unlock_page(page);
|
||
|
}
|
||
|
pagevec_release(&pvec);
|
||
|
cond_resched();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsigned nilfs_page_count_clean_buffers(struct page *page,
|
||
|
unsigned from, unsigned to)
|
||
|
{
|
||
|
unsigned block_start, block_end;
|
||
|
struct buffer_head *bh, *head;
|
||
|
unsigned nc = 0;
|
||
|
|
||
|
for (bh = head = page_buffers(page), block_start = 0;
|
||
|
bh != head || !block_start;
|
||
|
block_start = block_end, bh = bh->b_this_page) {
|
||
|
block_end = block_start + bh->b_size;
|
||
|
if (block_end > from && block_start < to && !buffer_dirty(bh))
|
||
|
nc++;
|
||
|
}
|
||
|
return nc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* NILFS2 needs clear_page_dirty() in the following two cases:
|
||
|
*
|
||
|
* 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
|
||
|
* page dirty flags when it copies back pages from the shadow cache
|
||
|
* (gcdat->{i_mapping,i_btnode_cache}) to its original cache
|
||
|
* (dat->{i_mapping,i_btnode_cache}).
|
||
|
*
|
||
|
* 2) Some B-tree operations like insertion or deletion may dispose buffers
|
||
|
* in dirty state, and this needs to cancel the dirty state of their pages.
|
||
|
*/
|
||
|
int __nilfs_clear_page_dirty(struct page *page)
|
||
|
{
|
||
|
struct address_space *mapping = page->mapping;
|
||
|
|
||
|
if (mapping) {
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
if (test_bit(PG_dirty, &page->flags)) {
|
||
|
radix_tree_tag_clear(&mapping->page_tree,
|
||
|
page_index(page),
|
||
|
PAGECACHE_TAG_DIRTY);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return clear_page_dirty_for_io(page);
|
||
|
}
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
return TestClearPageDirty(page);
|
||
|
}
|