657 lines
19 KiB
C
657 lines
19 KiB
C
|
/*
|
||
|
* Physical mapping layer for MTD using the Axis partitiontable format
|
||
|
*
|
||
|
* Copyright (c) 2001-2007 Axis Communications AB
|
||
|
*
|
||
|
* This file is under the GPL.
|
||
|
*
|
||
|
* First partition is always sector 0 regardless of if we find a partitiontable
|
||
|
* or not. In the start of the next sector, there can be a partitiontable that
|
||
|
* tells us what other partitions to define. If there isn't, we use a default
|
||
|
* partition split defined below.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <linux/mtd/concat.h>
|
||
|
#include <linux/mtd/map.h>
|
||
|
#include <linux/mtd/mtd.h>
|
||
|
#include <linux/mtd/mtdram.h>
|
||
|
#include <linux/mtd/partitions.h>
|
||
|
|
||
|
#include <linux/cramfs_fs.h>
|
||
|
|
||
|
#include <asm/axisflashmap.h>
|
||
|
#include <asm/mmu.h>
|
||
|
|
||
|
#define MEM_CSE0_SIZE (0x04000000)
|
||
|
#define MEM_CSE1_SIZE (0x04000000)
|
||
|
|
||
|
#define FLASH_UNCACHED_ADDR KSEG_E
|
||
|
#define FLASH_CACHED_ADDR KSEG_F
|
||
|
|
||
|
#define PAGESIZE (512)
|
||
|
|
||
|
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
|
||
|
#define flash_data __u8
|
||
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
|
||
|
#define flash_data __u16
|
||
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
|
||
|
#define flash_data __u32
|
||
|
#endif
|
||
|
|
||
|
/* From head.S */
|
||
|
extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
|
||
|
extern unsigned long romfs_start, romfs_length;
|
||
|
extern unsigned long nand_boot; /* 1 when booted from nand flash */
|
||
|
|
||
|
struct partition_name {
|
||
|
char name[6];
|
||
|
};
|
||
|
|
||
|
/* The master mtd for the entire flash. */
|
||
|
struct mtd_info* axisflash_mtd = NULL;
|
||
|
|
||
|
/* Map driver functions. */
|
||
|
|
||
|
static map_word flash_read(struct map_info *map, unsigned long ofs)
|
||
|
{
|
||
|
map_word tmp;
|
||
|
tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
static void flash_copy_from(struct map_info *map, void *to,
|
||
|
unsigned long from, ssize_t len)
|
||
|
{
|
||
|
memcpy(to, (void *)(map->map_priv_1 + from), len);
|
||
|
}
|
||
|
|
||
|
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
|
||
|
{
|
||
|
*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The map for chip select e0.
|
||
|
*
|
||
|
* We run into tricky coherence situations if we mix cached with uncached
|
||
|
* accesses to we only use the uncached version here.
|
||
|
*
|
||
|
* The size field is the total size where the flash chips may be mapped on the
|
||
|
* chip select. MTD probes should find all devices there and it does not matter
|
||
|
* if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
|
||
|
* probes will ignore them.
|
||
|
*
|
||
|
* The start address in map_priv_1 is in virtual memory so we cannot use
|
||
|
* MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
|
||
|
* address of cse0.
|
||
|
*/
|
||
|
static struct map_info map_cse0 = {
|
||
|
.name = "cse0",
|
||
|
.size = MEM_CSE0_SIZE,
|
||
|
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
|
||
|
.read = flash_read,
|
||
|
.copy_from = flash_copy_from,
|
||
|
.write = flash_write,
|
||
|
.map_priv_1 = FLASH_UNCACHED_ADDR
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* The map for chip select e1.
|
||
|
*
|
||
|
* If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
|
||
|
* address, but there isn't.
|
||
|
*/
|
||
|
static struct map_info map_cse1 = {
|
||
|
.name = "cse1",
|
||
|
.size = MEM_CSE1_SIZE,
|
||
|
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
|
||
|
.read = flash_read,
|
||
|
.copy_from = flash_copy_from,
|
||
|
.write = flash_write,
|
||
|
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
|
||
|
};
|
||
|
|
||
|
#define MAX_PARTITIONS 7
|
||
|
#ifdef CONFIG_ETRAX_NANDBOOT
|
||
|
#define NUM_DEFAULT_PARTITIONS 4
|
||
|
#define DEFAULT_ROOTFS_PARTITION_NO 2
|
||
|
#define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
|
||
|
#else
|
||
|
#define NUM_DEFAULT_PARTITIONS 3
|
||
|
#define DEFAULT_ROOTFS_PARTITION_NO (-1)
|
||
|
#define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
|
||
|
#endif
|
||
|
|
||
|
#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
|
||
|
#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
|
||
|
#endif
|
||
|
|
||
|
/* Initialize the ones normally used. */
|
||
|
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
|
||
|
{
|
||
|
.name = "part0",
|
||
|
.size = CONFIG_ETRAX_PTABLE_SECTOR,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part1",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part2",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part3",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part4",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part5",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "part6",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
},
|
||
|
};
|
||
|
|
||
|
|
||
|
/* If no partition-table was found, we use this default-set.
|
||
|
* Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
|
||
|
* likely the size of one flash block and "filesystem"-partition needs
|
||
|
* to be >=5 blocks to be able to use JFFS.
|
||
|
*/
|
||
|
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
|
||
|
{
|
||
|
.name = "boot firmware",
|
||
|
.size = CONFIG_ETRAX_PTABLE_SECTOR,
|
||
|
.offset = 0
|
||
|
},
|
||
|
{
|
||
|
.name = "kernel",
|
||
|
.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
|
||
|
.offset = CONFIG_ETRAX_PTABLE_SECTOR
|
||
|
},
|
||
|
#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
|
||
|
#ifdef CONFIG_ETRAX_NANDBOOT
|
||
|
{
|
||
|
.name = "rootfs",
|
||
|
.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
|
||
|
.offset = FILESYSTEM_SECTOR
|
||
|
},
|
||
|
#undef FILESYSTEM_SECTOR
|
||
|
#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
|
||
|
#endif
|
||
|
{
|
||
|
.name = "rwfs",
|
||
|
.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
|
||
|
.offset = FILESYSTEM_SECTOR
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
|
||
|
/* Main flash device */
|
||
|
static struct mtd_partition main_partition = {
|
||
|
.name = "main",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
/* Auxilliary partition if we find another flash */
|
||
|
static struct mtd_partition aux_partition = {
|
||
|
.name = "aux",
|
||
|
.size = 0,
|
||
|
.offset = 0
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
|
||
|
* chips in that order (because the amd_flash-driver is faster).
|
||
|
*/
|
||
|
static struct mtd_info *probe_cs(struct map_info *map_cs)
|
||
|
{
|
||
|
struct mtd_info *mtd_cs = NULL;
|
||
|
|
||
|
printk(KERN_INFO
|
||
|
"%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
|
||
|
map_cs->name, map_cs->size, map_cs->map_priv_1);
|
||
|
|
||
|
#ifdef CONFIG_MTD_CFI
|
||
|
mtd_cs = do_map_probe("cfi_probe", map_cs);
|
||
|
#endif
|
||
|
#ifdef CONFIG_MTD_JEDECPROBE
|
||
|
if (!mtd_cs)
|
||
|
mtd_cs = do_map_probe("jedec_probe", map_cs);
|
||
|
#endif
|
||
|
|
||
|
return mtd_cs;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Probe each chip select individually for flash chips. If there are chips on
|
||
|
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
|
||
|
* so that MTD partitions can cross chip boundries.
|
||
|
*
|
||
|
* The only known restriction to how you can mount your chips is that each
|
||
|
* chip select must hold similar flash chips. But you need external hardware
|
||
|
* to do that anyway and you can put totally different chips on cse0 and cse1
|
||
|
* so it isn't really much of a restriction.
|
||
|
*/
|
||
|
extern struct mtd_info* __init crisv32_nand_flash_probe (void);
|
||
|
static struct mtd_info *flash_probe(void)
|
||
|
{
|
||
|
struct mtd_info *mtd_cse0;
|
||
|
struct mtd_info *mtd_cse1;
|
||
|
struct mtd_info *mtd_total;
|
||
|
struct mtd_info *mtds[2];
|
||
|
int count = 0;
|
||
|
|
||
|
if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
|
||
|
mtds[count++] = mtd_cse0;
|
||
|
if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
|
||
|
mtds[count++] = mtd_cse1;
|
||
|
|
||
|
if (!mtd_cse0 && !mtd_cse1) {
|
||
|
/* No chip found. */
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (count > 1) {
|
||
|
#ifdef CONFIG_MTD_CONCAT
|
||
|
/* Since the concatenation layer adds a small overhead we
|
||
|
* could try to figure out if the chips in cse0 and cse1 are
|
||
|
* identical and reprobe the whole cse0+cse1 window. But since
|
||
|
* flash chips are slow, the overhead is relatively small.
|
||
|
* So we use the MTD concatenation layer instead of further
|
||
|
* complicating the probing procedure.
|
||
|
*/
|
||
|
mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
|
||
|
#else
|
||
|
printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
|
||
|
"(mis)configuration!\n", map_cse0.name, map_cse1.name);
|
||
|
mtd_toal = NULL;
|
||
|
#endif
|
||
|
if (!mtd_total) {
|
||
|
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
|
||
|
map_cse0.name, map_cse1.name);
|
||
|
|
||
|
/* The best we can do now is to only use what we found
|
||
|
* at cse0. */
|
||
|
mtd_total = mtd_cse0;
|
||
|
map_destroy(mtd_cse1);
|
||
|
}
|
||
|
} else
|
||
|
mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
|
||
|
|
||
|
return mtd_total;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Probe the flash chip(s) and, if it succeeds, read the partition-table
|
||
|
* and register the partitions with MTD.
|
||
|
*/
|
||
|
static int __init init_axis_flash(void)
|
||
|
{
|
||
|
struct mtd_info *main_mtd;
|
||
|
struct mtd_info *aux_mtd = NULL;
|
||
|
int err = 0;
|
||
|
int pidx = 0;
|
||
|
struct partitiontable_head *ptable_head = NULL;
|
||
|
struct partitiontable_entry *ptable;
|
||
|
int ptable_ok = 0;
|
||
|
static char page[PAGESIZE];
|
||
|
size_t len;
|
||
|
int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
|
||
|
int part;
|
||
|
|
||
|
/* We need a root fs. If it resides in RAM, we need to use an
|
||
|
* MTDRAM device, so it must be enabled in the kernel config,
|
||
|
* but its size must be configured as 0 so as not to conflict
|
||
|
* with our usage.
|
||
|
*/
|
||
|
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
|
||
|
if (!romfs_in_flash && !nand_boot) {
|
||
|
printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
|
||
|
"device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
|
||
|
panic("This kernel cannot boot from RAM!\n");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
main_mtd = flash_probe();
|
||
|
if (main_mtd)
|
||
|
printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
|
||
|
main_mtd->name, main_mtd->size);
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_NANDFLASH
|
||
|
aux_mtd = crisv32_nand_flash_probe();
|
||
|
if (aux_mtd)
|
||
|
printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
|
||
|
aux_mtd->name, aux_mtd->size);
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_NANDBOOT
|
||
|
{
|
||
|
struct mtd_info *tmp_mtd;
|
||
|
|
||
|
printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
|
||
|
"making NAND flash primary device.\n");
|
||
|
tmp_mtd = main_mtd;
|
||
|
main_mtd = aux_mtd;
|
||
|
aux_mtd = tmp_mtd;
|
||
|
}
|
||
|
#endif /* CONFIG_ETRAX_NANDBOOT */
|
||
|
#endif /* CONFIG_ETRAX_NANDFLASH */
|
||
|
|
||
|
if (!main_mtd && !aux_mtd) {
|
||
|
/* There's no reason to use this module if no flash chip can
|
||
|
* be identified. Make sure that's understood.
|
||
|
*/
|
||
|
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
|
||
|
}
|
||
|
|
||
|
#if 0 /* Dump flash memory so we can see what is going on */
|
||
|
if (main_mtd) {
|
||
|
int sectoraddr, i;
|
||
|
for (sectoraddr = 0; sectoraddr < 2*65536+4096;
|
||
|
sectoraddr += PAGESIZE) {
|
||
|
main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
|
||
|
page);
|
||
|
printk(KERN_INFO
|
||
|
"Sector at %d (length %d):\n",
|
||
|
sectoraddr, len);
|
||
|
for (i = 0; i < PAGESIZE; i += 16) {
|
||
|
printk(KERN_INFO
|
||
|
"%02x %02x %02x %02x "
|
||
|
"%02x %02x %02x %02x "
|
||
|
"%02x %02x %02x %02x "
|
||
|
"%02x %02x %02x %02x\n",
|
||
|
page[i] & 255, page[i+1] & 255,
|
||
|
page[i+2] & 255, page[i+3] & 255,
|
||
|
page[i+4] & 255, page[i+5] & 255,
|
||
|
page[i+6] & 255, page[i+7] & 255,
|
||
|
page[i+8] & 255, page[i+9] & 255,
|
||
|
page[i+10] & 255, page[i+11] & 255,
|
||
|
page[i+12] & 255, page[i+13] & 255,
|
||
|
page[i+14] & 255, page[i+15] & 255);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (main_mtd) {
|
||
|
main_mtd->owner = THIS_MODULE;
|
||
|
axisflash_mtd = main_mtd;
|
||
|
|
||
|
loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
|
||
|
|
||
|
/* First partition (rescue) is always set to the default. */
|
||
|
pidx++;
|
||
|
#ifdef CONFIG_ETRAX_NANDBOOT
|
||
|
/* We know where the partition table should be located,
|
||
|
* it will be in first good block after that.
|
||
|
*/
|
||
|
int blockstat;
|
||
|
do {
|
||
|
blockstat = main_mtd->block_isbad(main_mtd,
|
||
|
ptable_sector);
|
||
|
if (blockstat < 0)
|
||
|
ptable_sector = 0; /* read error */
|
||
|
else if (blockstat)
|
||
|
ptable_sector += main_mtd->erasesize;
|
||
|
} while (blockstat && ptable_sector);
|
||
|
#endif
|
||
|
if (ptable_sector) {
|
||
|
main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
|
||
|
&len, page);
|
||
|
ptable_head = &((struct partitiontable *) page)->head;
|
||
|
}
|
||
|
|
||
|
#if 0 /* Dump partition table so we can see what is going on */
|
||
|
printk(KERN_INFO
|
||
|
"axisflashmap: flash read %d bytes at 0x%08x, data: "
|
||
|
"%02x %02x %02x %02x %02x %02x %02x %02x\n",
|
||
|
len, CONFIG_ETRAX_PTABLE_SECTOR,
|
||
|
page[0] & 255, page[1] & 255,
|
||
|
page[2] & 255, page[3] & 255,
|
||
|
page[4] & 255, page[5] & 255,
|
||
|
page[6] & 255, page[7] & 255);
|
||
|
printk(KERN_INFO
|
||
|
"axisflashmap: partition table offset %d, data: "
|
||
|
"%02x %02x %02x %02x %02x %02x %02x %02x\n",
|
||
|
PARTITION_TABLE_OFFSET,
|
||
|
page[PARTITION_TABLE_OFFSET+0] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+1] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+2] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+3] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+4] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+5] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+6] & 255,
|
||
|
page[PARTITION_TABLE_OFFSET+7] & 255);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
|
||
|
&& (ptable_head->size <
|
||
|
(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
|
||
|
PARTITIONTABLE_END_MARKER_SIZE))
|
||
|
&& (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
|
||
|
ptable_head->size -
|
||
|
PARTITIONTABLE_END_MARKER_SIZE)
|
||
|
== PARTITIONTABLE_END_MARKER)) {
|
||
|
/* Looks like a start, sane length and end of a
|
||
|
* partition table, lets check csum etc.
|
||
|
*/
|
||
|
struct partitiontable_entry *max_addr =
|
||
|
(struct partitiontable_entry *)
|
||
|
((unsigned long)ptable_head + sizeof(*ptable_head) +
|
||
|
ptable_head->size);
|
||
|
unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
|
||
|
unsigned char *p;
|
||
|
unsigned long csum = 0;
|
||
|
|
||
|
ptable = (struct partitiontable_entry *)
|
||
|
((unsigned long)ptable_head + sizeof(*ptable_head));
|
||
|
|
||
|
/* Lets be PARANOID, and check the checksum. */
|
||
|
p = (unsigned char*) ptable;
|
||
|
|
||
|
while (p <= (unsigned char*)max_addr) {
|
||
|
csum += *p++;
|
||
|
csum += *p++;
|
||
|
csum += *p++;
|
||
|
csum += *p++;
|
||
|
}
|
||
|
ptable_ok = (csum == ptable_head->checksum);
|
||
|
|
||
|
/* Read the entries and use/show the info. */
|
||
|
printk(KERN_INFO "axisflashmap: "
|
||
|
"Found a%s partition table at 0x%p-0x%p.\n",
|
||
|
(ptable_ok ? " valid" : "n invalid"), ptable_head,
|
||
|
max_addr);
|
||
|
|
||
|
/* We have found a working bootblock. Now read the
|
||
|
* partition table. Scan the table. It ends with 0xffffffff.
|
||
|
*/
|
||
|
while (ptable_ok
|
||
|
&& ptable->offset != PARTITIONTABLE_END_MARKER
|
||
|
&& ptable < max_addr
|
||
|
&& pidx < MAX_PARTITIONS - 1) {
|
||
|
|
||
|
axis_partitions[pidx].offset = offset + ptable->offset;
|
||
|
#ifdef CONFIG_ETRAX_NANDFLASH
|
||
|
if (main_mtd->type == MTD_NANDFLASH) {
|
||
|
axis_partitions[pidx].size =
|
||
|
(((ptable+1)->offset ==
|
||
|
PARTITIONTABLE_END_MARKER) ?
|
||
|
main_mtd->size :
|
||
|
((ptable+1)->offset + offset)) -
|
||
|
(ptable->offset + offset);
|
||
|
|
||
|
} else
|
||
|
#endif /* CONFIG_ETRAX_NANDFLASH */
|
||
|
axis_partitions[pidx].size = ptable->size;
|
||
|
#ifdef CONFIG_ETRAX_NANDBOOT
|
||
|
/* Save partition number of jffs2 ro partition.
|
||
|
* Needed if RAM booting or root file system in RAM.
|
||
|
*/
|
||
|
if (!nand_boot &&
|
||
|
ram_rootfs_partition < 0 && /* not already set */
|
||
|
ptable->type == PARTITION_TYPE_JFFS2 &&
|
||
|
(ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
|
||
|
PARTITION_FLAGS_READONLY)
|
||
|
ram_rootfs_partition = pidx;
|
||
|
#endif /* CONFIG_ETRAX_NANDBOOT */
|
||
|
pidx++;
|
||
|
ptable++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Decide whether to use default partition table. */
|
||
|
/* Only use default table if we actually have a device (main_mtd) */
|
||
|
|
||
|
struct mtd_partition *partition = &axis_partitions[0];
|
||
|
if (main_mtd && !ptable_ok) {
|
||
|
memcpy(axis_partitions, axis_default_partitions,
|
||
|
sizeof(axis_default_partitions));
|
||
|
pidx = NUM_DEFAULT_PARTITIONS;
|
||
|
ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
|
||
|
}
|
||
|
|
||
|
/* Add artificial partitions for rootfs if necessary */
|
||
|
if (romfs_in_flash) {
|
||
|
/* rootfs is in directly accessible flash memory = NOR flash.
|
||
|
Add an overlapping device for the rootfs partition. */
|
||
|
printk(KERN_INFO "axisflashmap: Adding partition for "
|
||
|
"overlapping root file system image\n");
|
||
|
axis_partitions[pidx].size = romfs_length;
|
||
|
axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
|
||
|
axis_partitions[pidx].name = "romfs";
|
||
|
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
|
||
|
ram_rootfs_partition = -1;
|
||
|
pidx++;
|
||
|
} else if (romfs_length && !nand_boot) {
|
||
|
/* romfs exists in memory, but not in flash, so must be in RAM.
|
||
|
* Configure an MTDRAM partition. */
|
||
|
if (ram_rootfs_partition < 0) {
|
||
|
/* None set yet, put it at the end */
|
||
|
ram_rootfs_partition = pidx;
|
||
|
pidx++;
|
||
|
}
|
||
|
printk(KERN_INFO "axisflashmap: Adding partition for "
|
||
|
"root file system image in RAM\n");
|
||
|
axis_partitions[ram_rootfs_partition].size = romfs_length;
|
||
|
axis_partitions[ram_rootfs_partition].offset = romfs_start;
|
||
|
axis_partitions[ram_rootfs_partition].name = "romfs";
|
||
|
axis_partitions[ram_rootfs_partition].mask_flags |=
|
||
|
MTD_WRITEABLE;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
|
||
|
if (main_mtd) {
|
||
|
main_partition.size = main_mtd->size;
|
||
|
err = add_mtd_partitions(main_mtd, &main_partition, 1);
|
||
|
if (err)
|
||
|
panic("axisflashmap: Could not initialize "
|
||
|
"partition for whole main mtd device!\n");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Now, register all partitions with mtd.
|
||
|
* We do this one at a time so we can slip in an MTDRAM device
|
||
|
* in the proper place if required. */
|
||
|
|
||
|
for (part = 0; part < pidx; part++) {
|
||
|
if (part == ram_rootfs_partition) {
|
||
|
/* add MTDRAM partition here */
|
||
|
struct mtd_info *mtd_ram;
|
||
|
|
||
|
mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
||
|
if (!mtd_ram)
|
||
|
panic("axisflashmap: Couldn't allocate memory "
|
||
|
"for mtd_info!\n");
|
||
|
printk(KERN_INFO "axisflashmap: Adding RAM partition "
|
||
|
"for rootfs image.\n");
|
||
|
err = mtdram_init_device(mtd_ram,
|
||
|
(void *)partition[part].offset,
|
||
|
partition[part].size,
|
||
|
partition[part].name);
|
||
|
if (err)
|
||
|
panic("axisflashmap: Could not initialize "
|
||
|
"MTD RAM device!\n");
|
||
|
/* JFFS2 likes to have an erasesize. Keep potential
|
||
|
* JFFS2 rootfs happy by providing one. Since image
|
||
|
* was most likely created for main mtd, use that
|
||
|
* erasesize, if available. Otherwise, make a guess. */
|
||
|
mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
|
||
|
CONFIG_ETRAX_PTABLE_SECTOR);
|
||
|
} else {
|
||
|
err = add_mtd_partitions(main_mtd, &partition[part], 1);
|
||
|
if (err)
|
||
|
panic("axisflashmap: Could not add mtd "
|
||
|
"partition %d\n", part);
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_EXTRAX_VCS_SIM */
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_VCS_SIM
|
||
|
/* For simulator, always use a RAM partition.
|
||
|
* The rootfs will be found after the kernel in RAM,
|
||
|
* with romfs_start and romfs_end indicating location and size.
|
||
|
*/
|
||
|
struct mtd_info *mtd_ram;
|
||
|
|
||
|
mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
||
|
if (!mtd_ram) {
|
||
|
panic("axisflashmap: Couldn't allocate memory for "
|
||
|
"mtd_info!\n");
|
||
|
}
|
||
|
|
||
|
printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
|
||
|
"at %u, size %u\n",
|
||
|
(unsigned) romfs_start, (unsigned) romfs_length);
|
||
|
|
||
|
err = mtdram_init_device(mtd_ram, (void *)romfs_start,
|
||
|
romfs_length, "romfs");
|
||
|
if (err) {
|
||
|
panic("axisflashmap: Could not initialize MTD RAM "
|
||
|
"device!\n");
|
||
|
}
|
||
|
#endif /* CONFIG_EXTRAX_VCS_SIM */
|
||
|
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
if (aux_mtd) {
|
||
|
aux_partition.size = aux_mtd->size;
|
||
|
err = add_mtd_partitions(aux_mtd, &aux_partition, 1);
|
||
|
if (err)
|
||
|
panic("axisflashmap: Could not initialize "
|
||
|
"aux mtd device!\n");
|
||
|
|
||
|
}
|
||
|
#endif /* CONFIG_EXTRAX_VCS_SIM */
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* This adds the above to the kernels init-call chain. */
|
||
|
module_init(init_axis_flash);
|
||
|
|
||
|
EXPORT_SYMBOL(axisflash_mtd);
|