459 lines
14 KiB
C
459 lines
14 KiB
C
|
#ifndef _ASM_X86_SYSTEM_H
|
||
|
#define _ASM_X86_SYSTEM_H
|
||
|
|
||
|
#include <asm/asm.h>
|
||
|
#include <asm/segment.h>
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/cmpxchg.h>
|
||
|
#include <asm/nops.h>
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/irqflags.h>
|
||
|
|
||
|
/* entries in ARCH_DLINFO: */
|
||
|
#ifdef CONFIG_IA32_EMULATION
|
||
|
# define AT_VECTOR_SIZE_ARCH 2
|
||
|
#else
|
||
|
# define AT_VECTOR_SIZE_ARCH 1
|
||
|
#endif
|
||
|
|
||
|
struct task_struct; /* one of the stranger aspects of C forward declarations */
|
||
|
struct task_struct *__switch_to(struct task_struct *prev,
|
||
|
struct task_struct *next);
|
||
|
struct tss_struct;
|
||
|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
|
||
|
struct tss_struct *tss);
|
||
|
|
||
|
#ifdef CONFIG_X86_32
|
||
|
|
||
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
||
|
#define __switch_canary \
|
||
|
"movl %P[task_canary](%[next]), %%ebx\n\t" \
|
||
|
"movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
|
||
|
#define __switch_canary_oparam \
|
||
|
, [stack_canary] "=m" (per_cpu_var(stack_canary.canary))
|
||
|
#define __switch_canary_iparam \
|
||
|
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
|
||
|
#else /* CC_STACKPROTECTOR */
|
||
|
#define __switch_canary
|
||
|
#define __switch_canary_oparam
|
||
|
#define __switch_canary_iparam
|
||
|
#endif /* CC_STACKPROTECTOR */
|
||
|
|
||
|
/*
|
||
|
* Saving eflags is important. It switches not only IOPL between tasks,
|
||
|
* it also protects other tasks from NT leaking through sysenter etc.
|
||
|
*/
|
||
|
#define switch_to(prev, next, last) \
|
||
|
do { \
|
||
|
/* \
|
||
|
* Context-switching clobbers all registers, so we clobber \
|
||
|
* them explicitly, via unused output variables. \
|
||
|
* (EAX and EBP is not listed because EBP is saved/restored \
|
||
|
* explicitly for wchan access and EAX is the return value of \
|
||
|
* __switch_to()) \
|
||
|
*/ \
|
||
|
unsigned long ebx, ecx, edx, esi, edi; \
|
||
|
\
|
||
|
asm volatile("pushfl\n\t" /* save flags */ \
|
||
|
"pushl %%ebp\n\t" /* save EBP */ \
|
||
|
"movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
|
||
|
"movl %[next_sp],%%esp\n\t" /* restore ESP */ \
|
||
|
"movl $1f,%[prev_ip]\n\t" /* save EIP */ \
|
||
|
"pushl %[next_ip]\n\t" /* restore EIP */ \
|
||
|
__switch_canary \
|
||
|
"jmp __switch_to\n" /* regparm call */ \
|
||
|
"1:\t" \
|
||
|
"popl %%ebp\n\t" /* restore EBP */ \
|
||
|
"popfl\n" /* restore flags */ \
|
||
|
\
|
||
|
/* output parameters */ \
|
||
|
: [prev_sp] "=m" (prev->thread.sp), \
|
||
|
[prev_ip] "=m" (prev->thread.ip), \
|
||
|
"=a" (last), \
|
||
|
\
|
||
|
/* clobbered output registers: */ \
|
||
|
"=b" (ebx), "=c" (ecx), "=d" (edx), \
|
||
|
"=S" (esi), "=D" (edi) \
|
||
|
\
|
||
|
__switch_canary_oparam \
|
||
|
\
|
||
|
/* input parameters: */ \
|
||
|
: [next_sp] "m" (next->thread.sp), \
|
||
|
[next_ip] "m" (next->thread.ip), \
|
||
|
\
|
||
|
/* regparm parameters for __switch_to(): */ \
|
||
|
[prev] "a" (prev), \
|
||
|
[next] "d" (next) \
|
||
|
\
|
||
|
__switch_canary_iparam \
|
||
|
\
|
||
|
: /* reloaded segment registers */ \
|
||
|
"memory"); \
|
||
|
} while (0)
|
||
|
|
||
|
/*
|
||
|
* disable hlt during certain critical i/o operations
|
||
|
*/
|
||
|
#define HAVE_DISABLE_HLT
|
||
|
#else
|
||
|
#define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
|
||
|
#define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
|
||
|
|
||
|
/* frame pointer must be last for get_wchan */
|
||
|
#define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
|
||
|
#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
|
||
|
|
||
|
#define __EXTRA_CLOBBER \
|
||
|
, "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
|
||
|
"r12", "r13", "r14", "r15"
|
||
|
|
||
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
||
|
#define __switch_canary \
|
||
|
"movq %P[task_canary](%%rsi),%%r8\n\t" \
|
||
|
"movq %%r8,"__percpu_arg([gs_canary])"\n\t"
|
||
|
#define __switch_canary_oparam \
|
||
|
, [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
|
||
|
#define __switch_canary_iparam \
|
||
|
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
|
||
|
#else /* CC_STACKPROTECTOR */
|
||
|
#define __switch_canary
|
||
|
#define __switch_canary_oparam
|
||
|
#define __switch_canary_iparam
|
||
|
#endif /* CC_STACKPROTECTOR */
|
||
|
|
||
|
/* Save restore flags to clear handle leaking NT */
|
||
|
#define switch_to(prev, next, last) \
|
||
|
asm volatile(SAVE_CONTEXT \
|
||
|
"movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
|
||
|
"movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
|
||
|
"call __switch_to\n\t" \
|
||
|
".globl thread_return\n" \
|
||
|
"thread_return:\n\t" \
|
||
|
"movq "__percpu_arg([current_task])",%%rsi\n\t" \
|
||
|
__switch_canary \
|
||
|
"movq %P[thread_info](%%rsi),%%r8\n\t" \
|
||
|
"movq %%rax,%%rdi\n\t" \
|
||
|
"testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
|
||
|
"jnz ret_from_fork\n\t" \
|
||
|
RESTORE_CONTEXT \
|
||
|
: "=a" (last) \
|
||
|
__switch_canary_oparam \
|
||
|
: [next] "S" (next), [prev] "D" (prev), \
|
||
|
[threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
|
||
|
[ti_flags] "i" (offsetof(struct thread_info, flags)), \
|
||
|
[_tif_fork] "i" (_TIF_FORK), \
|
||
|
[thread_info] "i" (offsetof(struct task_struct, stack)), \
|
||
|
[current_task] "m" (per_cpu_var(current_task)) \
|
||
|
__switch_canary_iparam \
|
||
|
: "memory", "cc" __EXTRA_CLOBBER)
|
||
|
#endif
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
extern void native_load_gs_index(unsigned);
|
||
|
|
||
|
/*
|
||
|
* Load a segment. Fall back on loading the zero
|
||
|
* segment if something goes wrong..
|
||
|
*/
|
||
|
#define loadsegment(seg, value) \
|
||
|
asm volatile("\n" \
|
||
|
"1:\t" \
|
||
|
"movl %k0,%%" #seg "\n" \
|
||
|
"2:\n" \
|
||
|
".section .fixup,\"ax\"\n" \
|
||
|
"3:\t" \
|
||
|
"movl %k1, %%" #seg "\n\t" \
|
||
|
"jmp 2b\n" \
|
||
|
".previous\n" \
|
||
|
_ASM_EXTABLE(1b,3b) \
|
||
|
: :"r" (value), "r" (0) : "memory")
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Save a segment register away
|
||
|
*/
|
||
|
#define savesegment(seg, value) \
|
||
|
asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
|
||
|
|
||
|
/*
|
||
|
* x86_32 user gs accessors.
|
||
|
*/
|
||
|
#ifdef CONFIG_X86_32
|
||
|
#ifdef CONFIG_X86_32_LAZY_GS
|
||
|
#define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
|
||
|
#define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
|
||
|
#define task_user_gs(tsk) ((tsk)->thread.gs)
|
||
|
#define lazy_save_gs(v) savesegment(gs, (v))
|
||
|
#define lazy_load_gs(v) loadsegment(gs, (v))
|
||
|
#else /* X86_32_LAZY_GS */
|
||
|
#define get_user_gs(regs) (u16)((regs)->gs)
|
||
|
#define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
|
||
|
#define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
|
||
|
#define lazy_save_gs(v) do { } while (0)
|
||
|
#define lazy_load_gs(v) do { } while (0)
|
||
|
#endif /* X86_32_LAZY_GS */
|
||
|
#endif /* X86_32 */
|
||
|
|
||
|
static inline unsigned long get_limit(unsigned long segment)
|
||
|
{
|
||
|
unsigned long __limit;
|
||
|
asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
|
||
|
return __limit + 1;
|
||
|
}
|
||
|
|
||
|
static inline void native_clts(void)
|
||
|
{
|
||
|
asm volatile("clts");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Volatile isn't enough to prevent the compiler from reordering the
|
||
|
* read/write functions for the control registers and messing everything up.
|
||
|
* A memory clobber would solve the problem, but would prevent reordering of
|
||
|
* all loads stores around it, which can hurt performance. Solution is to
|
||
|
* use a variable and mimic reads and writes to it to enforce serialization
|
||
|
*/
|
||
|
static unsigned long __force_order;
|
||
|
|
||
|
static inline unsigned long native_read_cr0(void)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline void native_write_cr0(unsigned long val)
|
||
|
{
|
||
|
asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
|
||
|
}
|
||
|
|
||
|
static inline unsigned long native_read_cr2(void)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline void native_write_cr2(unsigned long val)
|
||
|
{
|
||
|
asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
|
||
|
}
|
||
|
|
||
|
static inline unsigned long native_read_cr3(void)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline void native_write_cr3(unsigned long val)
|
||
|
{
|
||
|
asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
|
||
|
}
|
||
|
|
||
|
static inline unsigned long native_read_cr4(void)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long native_read_cr4_safe(void)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
/* This could fault if %cr4 does not exist. In x86_64, a cr4 always
|
||
|
* exists, so it will never fail. */
|
||
|
#ifdef CONFIG_X86_32
|
||
|
asm volatile("1: mov %%cr4, %0\n"
|
||
|
"2:\n"
|
||
|
_ASM_EXTABLE(1b, 2b)
|
||
|
: "=r" (val), "=m" (__force_order) : "0" (0));
|
||
|
#else
|
||
|
val = native_read_cr4();
|
||
|
#endif
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline void native_write_cr4(unsigned long val)
|
||
|
{
|
||
|
asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static inline unsigned long native_read_cr8(void)
|
||
|
{
|
||
|
unsigned long cr8;
|
||
|
asm volatile("movq %%cr8,%0" : "=r" (cr8));
|
||
|
return cr8;
|
||
|
}
|
||
|
|
||
|
static inline void native_write_cr8(unsigned long val)
|
||
|
{
|
||
|
asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline void native_wbinvd(void)
|
||
|
{
|
||
|
asm volatile("wbinvd": : :"memory");
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PARAVIRT
|
||
|
#include <asm/paravirt.h>
|
||
|
#else
|
||
|
#define read_cr0() (native_read_cr0())
|
||
|
#define write_cr0(x) (native_write_cr0(x))
|
||
|
#define read_cr2() (native_read_cr2())
|
||
|
#define write_cr2(x) (native_write_cr2(x))
|
||
|
#define read_cr3() (native_read_cr3())
|
||
|
#define write_cr3(x) (native_write_cr3(x))
|
||
|
#define read_cr4() (native_read_cr4())
|
||
|
#define read_cr4_safe() (native_read_cr4_safe())
|
||
|
#define write_cr4(x) (native_write_cr4(x))
|
||
|
#define wbinvd() (native_wbinvd())
|
||
|
#ifdef CONFIG_X86_64
|
||
|
#define read_cr8() (native_read_cr8())
|
||
|
#define write_cr8(x) (native_write_cr8(x))
|
||
|
#define load_gs_index native_load_gs_index
|
||
|
#endif
|
||
|
|
||
|
/* Clear the 'TS' bit */
|
||
|
#define clts() (native_clts())
|
||
|
|
||
|
#endif/* CONFIG_PARAVIRT */
|
||
|
|
||
|
#define stts() write_cr0(read_cr0() | X86_CR0_TS)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
static inline void clflush(volatile void *__p)
|
||
|
{
|
||
|
asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
|
||
|
}
|
||
|
|
||
|
#define nop() asm volatile ("nop")
|
||
|
|
||
|
void disable_hlt(void);
|
||
|
void enable_hlt(void);
|
||
|
|
||
|
void cpu_idle_wait(void);
|
||
|
|
||
|
extern unsigned long arch_align_stack(unsigned long sp);
|
||
|
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
|
||
|
|
||
|
void default_idle(void);
|
||
|
|
||
|
void stop_this_cpu(void *dummy);
|
||
|
|
||
|
/*
|
||
|
* Force strict CPU ordering.
|
||
|
* And yes, this is required on UP too when we're talking
|
||
|
* to devices.
|
||
|
*/
|
||
|
#ifdef CONFIG_X86_32
|
||
|
/*
|
||
|
* Some non-Intel clones support out of order store. wmb() ceases to be a
|
||
|
* nop for these.
|
||
|
*/
|
||
|
#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
|
||
|
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
|
||
|
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
|
||
|
#else
|
||
|
#define mb() asm volatile("mfence":::"memory")
|
||
|
#define rmb() asm volatile("lfence":::"memory")
|
||
|
#define wmb() asm volatile("sfence" ::: "memory")
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||
|
* depend on.
|
||
|
*
|
||
|
* No data-dependent reads from memory-like regions are ever reordered
|
||
|
* over this barrier. All reads preceding this primitive are guaranteed
|
||
|
* to access memory (but not necessarily other CPUs' caches) before any
|
||
|
* reads following this primitive that depend on the data return by
|
||
|
* any of the preceding reads. This primitive is much lighter weight than
|
||
|
* rmb() on most CPUs, and is never heavier weight than is
|
||
|
* rmb().
|
||
|
*
|
||
|
* These ordering constraints are respected by both the local CPU
|
||
|
* and the compiler.
|
||
|
*
|
||
|
* Ordering is not guaranteed by anything other than these primitives,
|
||
|
* not even by data dependencies. See the documentation for
|
||
|
* memory_barrier() for examples and URLs to more information.
|
||
|
*
|
||
|
* For example, the following code would force ordering (the initial
|
||
|
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||
|
*
|
||
|
* <programlisting>
|
||
|
* CPU 0 CPU 1
|
||
|
*
|
||
|
* b = 2;
|
||
|
* memory_barrier();
|
||
|
* p = &b; q = p;
|
||
|
* read_barrier_depends();
|
||
|
* d = *q;
|
||
|
* </programlisting>
|
||
|
*
|
||
|
* because the read of "*q" depends on the read of "p" and these
|
||
|
* two reads are separated by a read_barrier_depends(). However,
|
||
|
* the following code, with the same initial values for "a" and "b":
|
||
|
*
|
||
|
* <programlisting>
|
||
|
* CPU 0 CPU 1
|
||
|
*
|
||
|
* a = 2;
|
||
|
* memory_barrier();
|
||
|
* b = 3; y = b;
|
||
|
* read_barrier_depends();
|
||
|
* x = a;
|
||
|
* </programlisting>
|
||
|
*
|
||
|
* does not enforce ordering, since there is no data dependency between
|
||
|
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||
|
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||
|
* in cases like this where there are no data dependencies.
|
||
|
**/
|
||
|
|
||
|
#define read_barrier_depends() do { } while (0)
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
#define smp_mb() mb()
|
||
|
#ifdef CONFIG_X86_PPRO_FENCE
|
||
|
# define smp_rmb() rmb()
|
||
|
#else
|
||
|
# define smp_rmb() barrier()
|
||
|
#endif
|
||
|
#ifdef CONFIG_X86_OOSTORE
|
||
|
# define smp_wmb() wmb()
|
||
|
#else
|
||
|
# define smp_wmb() barrier()
|
||
|
#endif
|
||
|
#define smp_read_barrier_depends() read_barrier_depends()
|
||
|
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
|
||
|
#else
|
||
|
#define smp_mb() barrier()
|
||
|
#define smp_rmb() barrier()
|
||
|
#define smp_wmb() barrier()
|
||
|
#define smp_read_barrier_depends() do { } while (0)
|
||
|
#define set_mb(var, value) do { var = value; barrier(); } while (0)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Stop RDTSC speculation. This is needed when you need to use RDTSC
|
||
|
* (or get_cycles or vread that possibly accesses the TSC) in a defined
|
||
|
* code region.
|
||
|
*
|
||
|
* (Could use an alternative three way for this if there was one.)
|
||
|
*/
|
||
|
static __always_inline void rdtsc_barrier(void)
|
||
|
{
|
||
|
alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
|
||
|
alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
|
||
|
}
|
||
|
|
||
|
#endif /* _ASM_X86_SYSTEM_H */
|