597 lines
14 KiB
C
597 lines
14 KiB
C
|
/**
|
||
|
* @file buffer_sync.c
|
||
|
*
|
||
|
* @remark Copyright 2002-2009 OProfile authors
|
||
|
* @remark Read the file COPYING
|
||
|
*
|
||
|
* @author John Levon <levon@movementarian.org>
|
||
|
* @author Barry Kasindorf
|
||
|
* @author Robert Richter <robert.richter@amd.com>
|
||
|
*
|
||
|
* This is the core of the buffer management. Each
|
||
|
* CPU buffer is processed and entered into the
|
||
|
* global event buffer. Such processing is necessary
|
||
|
* in several circumstances, mentioned below.
|
||
|
*
|
||
|
* The processing does the job of converting the
|
||
|
* transitory EIP value into a persistent dentry/offset
|
||
|
* value that the profiler can record at its leisure.
|
||
|
*
|
||
|
* See fs/dcookies.c for a description of the dentry/offset
|
||
|
* objects.
|
||
|
*/
|
||
|
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
#include <linux/notifier.h>
|
||
|
#include <linux/dcookies.h>
|
||
|
#include <linux/profile.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/oprofile.h>
|
||
|
#include <linux/sched.h>
|
||
|
|
||
|
#include "oprofile_stats.h"
|
||
|
#include "event_buffer.h"
|
||
|
#include "cpu_buffer.h"
|
||
|
#include "buffer_sync.h"
|
||
|
|
||
|
static LIST_HEAD(dying_tasks);
|
||
|
static LIST_HEAD(dead_tasks);
|
||
|
static cpumask_var_t marked_cpus;
|
||
|
static DEFINE_SPINLOCK(task_mortuary);
|
||
|
static void process_task_mortuary(void);
|
||
|
|
||
|
/* Take ownership of the task struct and place it on the
|
||
|
* list for processing. Only after two full buffer syncs
|
||
|
* does the task eventually get freed, because by then
|
||
|
* we are sure we will not reference it again.
|
||
|
* Can be invoked from softirq via RCU callback due to
|
||
|
* call_rcu() of the task struct, hence the _irqsave.
|
||
|
*/
|
||
|
static int
|
||
|
task_free_notify(struct notifier_block *self, unsigned long val, void *data)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct task_struct *task = data;
|
||
|
spin_lock_irqsave(&task_mortuary, flags);
|
||
|
list_add(&task->tasks, &dying_tasks);
|
||
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* The task is on its way out. A sync of the buffer means we can catch
|
||
|
* any remaining samples for this task.
|
||
|
*/
|
||
|
static int
|
||
|
task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
|
||
|
{
|
||
|
/* To avoid latency problems, we only process the current CPU,
|
||
|
* hoping that most samples for the task are on this CPU
|
||
|
*/
|
||
|
sync_buffer(raw_smp_processor_id());
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* The task is about to try a do_munmap(). We peek at what it's going to
|
||
|
* do, and if it's an executable region, process the samples first, so
|
||
|
* we don't lose any. This does not have to be exact, it's a QoI issue
|
||
|
* only.
|
||
|
*/
|
||
|
static int
|
||
|
munmap_notify(struct notifier_block *self, unsigned long val, void *data)
|
||
|
{
|
||
|
unsigned long addr = (unsigned long)data;
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
struct vm_area_struct *mpnt;
|
||
|
|
||
|
down_read(&mm->mmap_sem);
|
||
|
|
||
|
mpnt = find_vma(mm, addr);
|
||
|
if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
|
||
|
up_read(&mm->mmap_sem);
|
||
|
/* To avoid latency problems, we only process the current CPU,
|
||
|
* hoping that most samples for the task are on this CPU
|
||
|
*/
|
||
|
sync_buffer(raw_smp_processor_id());
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
up_read(&mm->mmap_sem);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* We need to be told about new modules so we don't attribute to a previously
|
||
|
* loaded module, or drop the samples on the floor.
|
||
|
*/
|
||
|
static int
|
||
|
module_load_notify(struct notifier_block *self, unsigned long val, void *data)
|
||
|
{
|
||
|
#ifdef CONFIG_MODULES
|
||
|
if (val != MODULE_STATE_COMING)
|
||
|
return 0;
|
||
|
|
||
|
/* FIXME: should we process all CPU buffers ? */
|
||
|
mutex_lock(&buffer_mutex);
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(MODULE_LOADED_CODE);
|
||
|
mutex_unlock(&buffer_mutex);
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct notifier_block task_free_nb = {
|
||
|
.notifier_call = task_free_notify,
|
||
|
};
|
||
|
|
||
|
static struct notifier_block task_exit_nb = {
|
||
|
.notifier_call = task_exit_notify,
|
||
|
};
|
||
|
|
||
|
static struct notifier_block munmap_nb = {
|
||
|
.notifier_call = munmap_notify,
|
||
|
};
|
||
|
|
||
|
static struct notifier_block module_load_nb = {
|
||
|
.notifier_call = module_load_notify,
|
||
|
};
|
||
|
|
||
|
int sync_start(void)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mutex_lock(&buffer_mutex);
|
||
|
|
||
|
err = task_handoff_register(&task_free_nb);
|
||
|
if (err)
|
||
|
goto out1;
|
||
|
err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
|
||
|
if (err)
|
||
|
goto out2;
|
||
|
err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
|
||
|
if (err)
|
||
|
goto out3;
|
||
|
err = register_module_notifier(&module_load_nb);
|
||
|
if (err)
|
||
|
goto out4;
|
||
|
|
||
|
start_cpu_work();
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&buffer_mutex);
|
||
|
return err;
|
||
|
out4:
|
||
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
||
|
out3:
|
||
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
||
|
out2:
|
||
|
task_handoff_unregister(&task_free_nb);
|
||
|
out1:
|
||
|
free_cpumask_var(marked_cpus);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
|
||
|
void sync_stop(void)
|
||
|
{
|
||
|
/* flush buffers */
|
||
|
mutex_lock(&buffer_mutex);
|
||
|
end_cpu_work();
|
||
|
unregister_module_notifier(&module_load_nb);
|
||
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
||
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
||
|
task_handoff_unregister(&task_free_nb);
|
||
|
mutex_unlock(&buffer_mutex);
|
||
|
flush_scheduled_work();
|
||
|
|
||
|
/* make sure we don't leak task structs */
|
||
|
process_task_mortuary();
|
||
|
process_task_mortuary();
|
||
|
|
||
|
free_cpumask_var(marked_cpus);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Optimisation. We can manage without taking the dcookie sem
|
||
|
* because we cannot reach this code without at least one
|
||
|
* dcookie user still being registered (namely, the reader
|
||
|
* of the event buffer). */
|
||
|
static inline unsigned long fast_get_dcookie(struct path *path)
|
||
|
{
|
||
|
unsigned long cookie;
|
||
|
|
||
|
if (path->dentry->d_flags & DCACHE_COOKIE)
|
||
|
return (unsigned long)path->dentry;
|
||
|
get_dcookie(path, &cookie);
|
||
|
return cookie;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
|
||
|
* which corresponds loosely to "application name". This is
|
||
|
* not strictly necessary but allows oprofile to associate
|
||
|
* shared-library samples with particular applications
|
||
|
*/
|
||
|
static unsigned long get_exec_dcookie(struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long cookie = NO_COOKIE;
|
||
|
struct vm_area_struct *vma;
|
||
|
|
||
|
if (!mm)
|
||
|
goto out;
|
||
|
|
||
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
||
|
if (!vma->vm_file)
|
||
|
continue;
|
||
|
if (!(vma->vm_flags & VM_EXECUTABLE))
|
||
|
continue;
|
||
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return cookie;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Convert the EIP value of a sample into a persistent dentry/offset
|
||
|
* pair that can then be added to the global event buffer. We make
|
||
|
* sure to do this lookup before a mm->mmap modification happens so
|
||
|
* we don't lose track.
|
||
|
*/
|
||
|
static unsigned long
|
||
|
lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
|
||
|
{
|
||
|
unsigned long cookie = NO_COOKIE;
|
||
|
struct vm_area_struct *vma;
|
||
|
|
||
|
for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
|
||
|
|
||
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
||
|
continue;
|
||
|
|
||
|
if (vma->vm_file) {
|
||
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
||
|
*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
|
||
|
vma->vm_start;
|
||
|
} else {
|
||
|
/* must be an anonymous map */
|
||
|
*offset = addr;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!vma)
|
||
|
cookie = INVALID_COOKIE;
|
||
|
|
||
|
return cookie;
|
||
|
}
|
||
|
|
||
|
static unsigned long last_cookie = INVALID_COOKIE;
|
||
|
|
||
|
static void add_cpu_switch(int i)
|
||
|
{
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(CPU_SWITCH_CODE);
|
||
|
add_event_entry(i);
|
||
|
last_cookie = INVALID_COOKIE;
|
||
|
}
|
||
|
|
||
|
static void add_kernel_ctx_switch(unsigned int in_kernel)
|
||
|
{
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
if (in_kernel)
|
||
|
add_event_entry(KERNEL_ENTER_SWITCH_CODE);
|
||
|
else
|
||
|
add_event_entry(KERNEL_EXIT_SWITCH_CODE);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
|
||
|
{
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(CTX_SWITCH_CODE);
|
||
|
add_event_entry(task->pid);
|
||
|
add_event_entry(cookie);
|
||
|
/* Another code for daemon back-compat */
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(CTX_TGID_CODE);
|
||
|
add_event_entry(task->tgid);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void add_cookie_switch(unsigned long cookie)
|
||
|
{
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(COOKIE_SWITCH_CODE);
|
||
|
add_event_entry(cookie);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void add_trace_begin(void)
|
||
|
{
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(TRACE_BEGIN_CODE);
|
||
|
}
|
||
|
|
||
|
static void add_data(struct op_entry *entry, struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long code, pc, val;
|
||
|
unsigned long cookie;
|
||
|
off_t offset;
|
||
|
|
||
|
if (!op_cpu_buffer_get_data(entry, &code))
|
||
|
return;
|
||
|
if (!op_cpu_buffer_get_data(entry, &pc))
|
||
|
return;
|
||
|
if (!op_cpu_buffer_get_size(entry))
|
||
|
return;
|
||
|
|
||
|
if (mm) {
|
||
|
cookie = lookup_dcookie(mm, pc, &offset);
|
||
|
|
||
|
if (cookie == NO_COOKIE)
|
||
|
offset = pc;
|
||
|
if (cookie == INVALID_COOKIE) {
|
||
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
||
|
offset = pc;
|
||
|
}
|
||
|
if (cookie != last_cookie) {
|
||
|
add_cookie_switch(cookie);
|
||
|
last_cookie = cookie;
|
||
|
}
|
||
|
} else
|
||
|
offset = pc;
|
||
|
|
||
|
add_event_entry(ESCAPE_CODE);
|
||
|
add_event_entry(code);
|
||
|
add_event_entry(offset); /* Offset from Dcookie */
|
||
|
|
||
|
while (op_cpu_buffer_get_data(entry, &val))
|
||
|
add_event_entry(val);
|
||
|
}
|
||
|
|
||
|
static inline void add_sample_entry(unsigned long offset, unsigned long event)
|
||
|
{
|
||
|
add_event_entry(offset);
|
||
|
add_event_entry(event);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Add a sample to the global event buffer. If possible the
|
||
|
* sample is converted into a persistent dentry/offset pair
|
||
|
* for later lookup from userspace. Return 0 on failure.
|
||
|
*/
|
||
|
static int
|
||
|
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
|
||
|
{
|
||
|
unsigned long cookie;
|
||
|
off_t offset;
|
||
|
|
||
|
if (in_kernel) {
|
||
|
add_sample_entry(s->eip, s->event);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* add userspace sample */
|
||
|
|
||
|
if (!mm) {
|
||
|
atomic_inc(&oprofile_stats.sample_lost_no_mm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
cookie = lookup_dcookie(mm, s->eip, &offset);
|
||
|
|
||
|
if (cookie == INVALID_COOKIE) {
|
||
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (cookie != last_cookie) {
|
||
|
add_cookie_switch(cookie);
|
||
|
last_cookie = cookie;
|
||
|
}
|
||
|
|
||
|
add_sample_entry(offset, s->event);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void release_mm(struct mm_struct *mm)
|
||
|
{
|
||
|
if (!mm)
|
||
|
return;
|
||
|
up_read(&mm->mmap_sem);
|
||
|
mmput(mm);
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct mm_struct *take_tasks_mm(struct task_struct *task)
|
||
|
{
|
||
|
struct mm_struct *mm = get_task_mm(task);
|
||
|
if (mm)
|
||
|
down_read(&mm->mmap_sem);
|
||
|
return mm;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline int is_code(unsigned long val)
|
||
|
{
|
||
|
return val == ESCAPE_CODE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Move tasks along towards death. Any tasks on dead_tasks
|
||
|
* will definitely have no remaining references in any
|
||
|
* CPU buffers at this point, because we use two lists,
|
||
|
* and to have reached the list, it must have gone through
|
||
|
* one full sync already.
|
||
|
*/
|
||
|
static void process_task_mortuary(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
LIST_HEAD(local_dead_tasks);
|
||
|
struct task_struct *task;
|
||
|
struct task_struct *ttask;
|
||
|
|
||
|
spin_lock_irqsave(&task_mortuary, flags);
|
||
|
|
||
|
list_splice_init(&dead_tasks, &local_dead_tasks);
|
||
|
list_splice_init(&dying_tasks, &dead_tasks);
|
||
|
|
||
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
||
|
|
||
|
list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
|
||
|
list_del(&task->tasks);
|
||
|
free_task(task);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void mark_done(int cpu)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
cpumask_set_cpu(cpu, marked_cpus);
|
||
|
|
||
|
for_each_online_cpu(i) {
|
||
|
if (!cpumask_test_cpu(i, marked_cpus))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* All CPUs have been processed at least once,
|
||
|
* we can process the mortuary once
|
||
|
*/
|
||
|
process_task_mortuary();
|
||
|
|
||
|
cpumask_clear(marked_cpus);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* FIXME: this is not sufficient if we implement syscall barrier backtrace
|
||
|
* traversal, the code switch to sb_sample_start at first kernel enter/exit
|
||
|
* switch so we need a fifth state and some special handling in sync_buffer()
|
||
|
*/
|
||
|
typedef enum {
|
||
|
sb_bt_ignore = -2,
|
||
|
sb_buffer_start,
|
||
|
sb_bt_start,
|
||
|
sb_sample_start,
|
||
|
} sync_buffer_state;
|
||
|
|
||
|
/* Sync one of the CPU's buffers into the global event buffer.
|
||
|
* Here we need to go through each batch of samples punctuated
|
||
|
* by context switch notes, taking the task's mmap_sem and doing
|
||
|
* lookup in task->mm->mmap to convert EIP into dcookie/offset
|
||
|
* value.
|
||
|
*/
|
||
|
void sync_buffer(int cpu)
|
||
|
{
|
||
|
struct mm_struct *mm = NULL;
|
||
|
struct mm_struct *oldmm;
|
||
|
unsigned long val;
|
||
|
struct task_struct *new;
|
||
|
unsigned long cookie = 0;
|
||
|
int in_kernel = 1;
|
||
|
sync_buffer_state state = sb_buffer_start;
|
||
|
unsigned int i;
|
||
|
unsigned long available;
|
||
|
unsigned long flags;
|
||
|
struct op_entry entry;
|
||
|
struct op_sample *sample;
|
||
|
|
||
|
mutex_lock(&buffer_mutex);
|
||
|
|
||
|
add_cpu_switch(cpu);
|
||
|
|
||
|
op_cpu_buffer_reset(cpu);
|
||
|
available = op_cpu_buffer_entries(cpu);
|
||
|
|
||
|
for (i = 0; i < available; ++i) {
|
||
|
sample = op_cpu_buffer_read_entry(&entry, cpu);
|
||
|
if (!sample)
|
||
|
break;
|
||
|
|
||
|
if (is_code(sample->eip)) {
|
||
|
flags = sample->event;
|
||
|
if (flags & TRACE_BEGIN) {
|
||
|
state = sb_bt_start;
|
||
|
add_trace_begin();
|
||
|
}
|
||
|
if (flags & KERNEL_CTX_SWITCH) {
|
||
|
/* kernel/userspace switch */
|
||
|
in_kernel = flags & IS_KERNEL;
|
||
|
if (state == sb_buffer_start)
|
||
|
state = sb_sample_start;
|
||
|
add_kernel_ctx_switch(flags & IS_KERNEL);
|
||
|
}
|
||
|
if (flags & USER_CTX_SWITCH
|
||
|
&& op_cpu_buffer_get_data(&entry, &val)) {
|
||
|
/* userspace context switch */
|
||
|
new = (struct task_struct *)val;
|
||
|
oldmm = mm;
|
||
|
release_mm(oldmm);
|
||
|
mm = take_tasks_mm(new);
|
||
|
if (mm != oldmm)
|
||
|
cookie = get_exec_dcookie(mm);
|
||
|
add_user_ctx_switch(new, cookie);
|
||
|
}
|
||
|
if (op_cpu_buffer_get_size(&entry))
|
||
|
add_data(&entry, mm);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (state < sb_bt_start)
|
||
|
/* ignore sample */
|
||
|
continue;
|
||
|
|
||
|
if (add_sample(mm, sample, in_kernel))
|
||
|
continue;
|
||
|
|
||
|
/* ignore backtraces if failed to add a sample */
|
||
|
if (state == sb_bt_start) {
|
||
|
state = sb_bt_ignore;
|
||
|
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
|
||
|
}
|
||
|
}
|
||
|
release_mm(mm);
|
||
|
|
||
|
mark_done(cpu);
|
||
|
|
||
|
mutex_unlock(&buffer_mutex);
|
||
|
}
|
||
|
|
||
|
/* The function can be used to add a buffer worth of data directly to
|
||
|
* the kernel buffer. The buffer is assumed to be a circular buffer.
|
||
|
* Take the entries from index start and end at index end, wrapping
|
||
|
* at max_entries.
|
||
|
*/
|
||
|
void oprofile_put_buff(unsigned long *buf, unsigned int start,
|
||
|
unsigned int stop, unsigned int max)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
i = start;
|
||
|
|
||
|
mutex_lock(&buffer_mutex);
|
||
|
while (i != stop) {
|
||
|
add_event_entry(buf[i++]);
|
||
|
|
||
|
if (i >= max)
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&buffer_mutex);
|
||
|
}
|
||
|
|