661 lines
17 KiB
C
661 lines
17 KiB
C
|
/*
|
||
|
I2C functions
|
||
|
Copyright (C) 2003-2004 Kevin Thayer <nufan_wfk at yahoo.com>
|
||
|
Copyright (C) 2005-2007 Hans Verkuil <hverkuil@xs4all.nl>
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
This file includes an i2c implementation that was reverse engineered
|
||
|
from the Hauppauge windows driver. Older ivtv versions used i2c-algo-bit,
|
||
|
which whilst fine under most circumstances, had trouble with the Zilog
|
||
|
CPU on the PVR-150 which handles IR functions (occasional inability to
|
||
|
communicate with the chip until it was reset) and also with the i2c
|
||
|
bus being completely unreachable when multiple PVR cards were present.
|
||
|
|
||
|
The implementation is very similar to i2c-algo-bit, but there are enough
|
||
|
subtle differences that the two are hard to merge. The general strategy
|
||
|
employed by i2c-algo-bit is to use udelay() to implement the timing
|
||
|
when putting out bits on the scl/sda lines. The general strategy taken
|
||
|
here is to poll the lines for state changes (see ivtv_waitscl and
|
||
|
ivtv_waitsda). In addition there are small delays at various locations
|
||
|
which poll the SCL line 5 times (ivtv_scldelay). I would guess that
|
||
|
since this is memory mapped I/O that the length of those delays is tied
|
||
|
to the PCI bus clock. There is some extra code to do with recovery
|
||
|
and retries. Since it is not known what causes the actual i2c problems
|
||
|
in the first place, the only goal if one was to attempt to use
|
||
|
i2c-algo-bit would be to try to make it follow the same code path.
|
||
|
This would be a lot of work, and I'm also not convinced that it would
|
||
|
provide a generic benefit to i2c-algo-bit. Therefore consider this
|
||
|
an engineering solution -- not pretty, but it works.
|
||
|
|
||
|
Some more general comments about what we are doing:
|
||
|
|
||
|
The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
|
||
|
lines. To communicate on the bus (as a master, we don't act as a slave),
|
||
|
we first initiate a start condition (ivtv_start). We then write the
|
||
|
address of the device that we want to communicate with, along with a flag
|
||
|
that indicates whether this is a read or a write. The slave then issues
|
||
|
an ACK signal (ivtv_ack), which tells us that it is ready for reading /
|
||
|
writing. We then proceed with reading or writing (ivtv_read/ivtv_write),
|
||
|
and finally issue a stop condition (ivtv_stop) to make the bus available
|
||
|
to other masters.
|
||
|
|
||
|
There is an additional form of transaction where a write may be
|
||
|
immediately followed by a read. In this case, there is no intervening
|
||
|
stop condition. (Only the msp3400 chip uses this method of data transfer).
|
||
|
*/
|
||
|
|
||
|
#include "ivtv-driver.h"
|
||
|
#include "ivtv-cards.h"
|
||
|
#include "ivtv-gpio.h"
|
||
|
#include "ivtv-i2c.h"
|
||
|
|
||
|
/* i2c implementation for cx23415/6 chip, ivtv project.
|
||
|
* Author: Kevin Thayer (nufan_wfk at yahoo.com)
|
||
|
*/
|
||
|
/* i2c stuff */
|
||
|
#define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
|
||
|
#define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
|
||
|
#define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
|
||
|
#define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
|
||
|
|
||
|
#define IVTV_CS53L32A_I2C_ADDR 0x11
|
||
|
#define IVTV_M52790_I2C_ADDR 0x48
|
||
|
#define IVTV_CX25840_I2C_ADDR 0x44
|
||
|
#define IVTV_SAA7115_I2C_ADDR 0x21
|
||
|
#define IVTV_SAA7127_I2C_ADDR 0x44
|
||
|
#define IVTV_SAA717x_I2C_ADDR 0x21
|
||
|
#define IVTV_MSP3400_I2C_ADDR 0x40
|
||
|
#define IVTV_HAUPPAUGE_I2C_ADDR 0x50
|
||
|
#define IVTV_WM8739_I2C_ADDR 0x1a
|
||
|
#define IVTV_WM8775_I2C_ADDR 0x1b
|
||
|
#define IVTV_TEA5767_I2C_ADDR 0x60
|
||
|
#define IVTV_UPD64031A_I2C_ADDR 0x12
|
||
|
#define IVTV_UPD64083_I2C_ADDR 0x5c
|
||
|
#define IVTV_VP27SMPX_I2C_ADDR 0x5b
|
||
|
#define IVTV_M52790_I2C_ADDR 0x48
|
||
|
|
||
|
/* This array should match the IVTV_HW_ defines */
|
||
|
static const u8 hw_addrs[] = {
|
||
|
IVTV_CX25840_I2C_ADDR,
|
||
|
IVTV_SAA7115_I2C_ADDR,
|
||
|
IVTV_SAA7127_I2C_ADDR,
|
||
|
IVTV_MSP3400_I2C_ADDR,
|
||
|
0,
|
||
|
IVTV_WM8775_I2C_ADDR,
|
||
|
IVTV_CS53L32A_I2C_ADDR,
|
||
|
0,
|
||
|
IVTV_SAA7115_I2C_ADDR,
|
||
|
IVTV_UPD64031A_I2C_ADDR,
|
||
|
IVTV_UPD64083_I2C_ADDR,
|
||
|
IVTV_SAA717x_I2C_ADDR,
|
||
|
IVTV_WM8739_I2C_ADDR,
|
||
|
IVTV_VP27SMPX_I2C_ADDR,
|
||
|
IVTV_M52790_I2C_ADDR,
|
||
|
0 /* IVTV_HW_GPIO dummy driver ID */
|
||
|
};
|
||
|
|
||
|
/* This array should match the IVTV_HW_ defines */
|
||
|
static const char *hw_modules[] = {
|
||
|
"cx25840",
|
||
|
"saa7115",
|
||
|
"saa7127",
|
||
|
"msp3400",
|
||
|
"tuner",
|
||
|
"wm8775",
|
||
|
"cs53l32a",
|
||
|
NULL,
|
||
|
"saa7115",
|
||
|
"upd64031a",
|
||
|
"upd64083",
|
||
|
"saa717x",
|
||
|
"wm8739",
|
||
|
"vp27smpx",
|
||
|
"m52790",
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
/* This array should match the IVTV_HW_ defines */
|
||
|
static const char * const hw_devicenames[] = {
|
||
|
"cx25840",
|
||
|
"saa7115",
|
||
|
"saa7127_auto", /* saa7127 or saa7129 */
|
||
|
"msp3400",
|
||
|
"tuner",
|
||
|
"wm8775",
|
||
|
"cs53l32a",
|
||
|
"tveeprom",
|
||
|
"saa7114",
|
||
|
"upd64031a",
|
||
|
"upd64083",
|
||
|
"saa717x",
|
||
|
"wm8739",
|
||
|
"vp27smpx",
|
||
|
"m52790",
|
||
|
"gpio",
|
||
|
};
|
||
|
|
||
|
int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
|
||
|
{
|
||
|
struct v4l2_subdev *sd;
|
||
|
struct i2c_adapter *adap = &itv->i2c_adap;
|
||
|
const char *mod = hw_modules[idx];
|
||
|
const char *type = hw_devicenames[idx];
|
||
|
u32 hw = 1 << idx;
|
||
|
|
||
|
if (idx >= ARRAY_SIZE(hw_addrs))
|
||
|
return -1;
|
||
|
if (hw == IVTV_HW_TUNER) {
|
||
|
/* special tuner handling */
|
||
|
sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
|
||
|
adap, mod, type,
|
||
|
0, itv->card_i2c->radio);
|
||
|
if (sd)
|
||
|
sd->grp_id = 1 << idx;
|
||
|
sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
|
||
|
adap, mod, type,
|
||
|
0, itv->card_i2c->demod);
|
||
|
if (sd)
|
||
|
sd->grp_id = 1 << idx;
|
||
|
sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
|
||
|
adap, mod, type,
|
||
|
0, itv->card_i2c->tv);
|
||
|
if (sd)
|
||
|
sd->grp_id = 1 << idx;
|
||
|
return sd ? 0 : -1;
|
||
|
}
|
||
|
if (!hw_addrs[idx])
|
||
|
return -1;
|
||
|
if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
|
||
|
sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
|
||
|
adap, mod, type, 0, I2C_ADDRS(hw_addrs[idx]));
|
||
|
} else {
|
||
|
sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
|
||
|
adap, mod, type, hw_addrs[idx], NULL);
|
||
|
}
|
||
|
if (sd)
|
||
|
sd->grp_id = 1 << idx;
|
||
|
return sd ? 0 : -1;
|
||
|
}
|
||
|
|
||
|
struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
|
||
|
{
|
||
|
struct v4l2_subdev *result = NULL;
|
||
|
struct v4l2_subdev *sd;
|
||
|
|
||
|
spin_lock(&itv->v4l2_dev.lock);
|
||
|
v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
|
||
|
if (sd->grp_id == hw) {
|
||
|
result = sd;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(&itv->v4l2_dev.lock);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* Set the serial clock line to the desired state */
|
||
|
static void ivtv_setscl(struct ivtv *itv, int state)
|
||
|
{
|
||
|
/* write them out */
|
||
|
/* write bits are inverted */
|
||
|
write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
|
||
|
}
|
||
|
|
||
|
/* Set the serial data line to the desired state */
|
||
|
static void ivtv_setsda(struct ivtv *itv, int state)
|
||
|
{
|
||
|
/* write them out */
|
||
|
/* write bits are inverted */
|
||
|
write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
|
||
|
}
|
||
|
|
||
|
/* Read the serial clock line */
|
||
|
static int ivtv_getscl(struct ivtv *itv)
|
||
|
{
|
||
|
return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
|
||
|
}
|
||
|
|
||
|
/* Read the serial data line */
|
||
|
static int ivtv_getsda(struct ivtv *itv)
|
||
|
{
|
||
|
return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
|
||
|
}
|
||
|
|
||
|
/* Implement a short delay by polling the serial clock line */
|
||
|
static void ivtv_scldelay(struct ivtv *itv)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < 5; ++i)
|
||
|
ivtv_getscl(itv);
|
||
|
}
|
||
|
|
||
|
/* Wait for the serial clock line to become set to a specific value */
|
||
|
static int ivtv_waitscl(struct ivtv *itv, int val)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
ivtv_scldelay(itv);
|
||
|
for (i = 0; i < 1000; ++i) {
|
||
|
if (ivtv_getscl(itv) == val)
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Wait for the serial data line to become set to a specific value */
|
||
|
static int ivtv_waitsda(struct ivtv *itv, int val)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
ivtv_scldelay(itv);
|
||
|
for (i = 0; i < 1000; ++i) {
|
||
|
if (ivtv_getsda(itv) == val)
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Wait for the slave to issue an ACK */
|
||
|
static int ivtv_ack(struct ivtv *itv)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
if (ivtv_getscl(itv) == 1) {
|
||
|
IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
|
||
|
ivtv_setscl(itv, 0);
|
||
|
if (!ivtv_waitscl(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
}
|
||
|
ivtv_setsda(itv, 1);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 1);
|
||
|
if (!ivtv_waitsda(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("Slave did not ack\n");
|
||
|
ret = -EREMOTEIO;
|
||
|
}
|
||
|
ivtv_setscl(itv, 0);
|
||
|
if (!ivtv_waitscl(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
|
||
|
ret = -EREMOTEIO;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Write a single byte to the i2c bus and wait for the slave to ACK */
|
||
|
static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
|
||
|
{
|
||
|
int i, bit;
|
||
|
|
||
|
IVTV_DEBUG_HI_I2C("write %x\n",byte);
|
||
|
for (i = 0; i < 8; ++i, byte<<=1) {
|
||
|
ivtv_setscl(itv, 0);
|
||
|
if (!ivtv_waitscl(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("Error setting SCL low\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
bit = (byte>>7)&1;
|
||
|
ivtv_setsda(itv, bit);
|
||
|
if (!ivtv_waitsda(itv, bit)) {
|
||
|
IVTV_DEBUG_I2C("Error setting SDA\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
ivtv_setscl(itv, 1);
|
||
|
if (!ivtv_waitscl(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("Slave not ready for bit\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
}
|
||
|
ivtv_setscl(itv, 0);
|
||
|
if (!ivtv_waitscl(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("Error setting SCL low\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
return ivtv_ack(itv);
|
||
|
}
|
||
|
|
||
|
/* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
|
||
|
final byte) */
|
||
|
static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
*byte = 0;
|
||
|
|
||
|
ivtv_setsda(itv, 1);
|
||
|
ivtv_scldelay(itv);
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
ivtv_setscl(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 1);
|
||
|
if (!ivtv_waitscl(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("Error setting SCL high\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
*byte = ((*byte)<<1)|ivtv_getsda(itv);
|
||
|
}
|
||
|
ivtv_setscl(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setsda(itv, nack);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 1);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
IVTV_DEBUG_HI_I2C("read %x\n",*byte);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Issue a start condition on the i2c bus to alert slaves to prepare for
|
||
|
an address write */
|
||
|
static int ivtv_start(struct ivtv *itv)
|
||
|
{
|
||
|
int sda;
|
||
|
|
||
|
sda = ivtv_getsda(itv);
|
||
|
if (sda != 1) {
|
||
|
IVTV_DEBUG_HI_I2C("SDA was low at start\n");
|
||
|
ivtv_setsda(itv, 1);
|
||
|
if (!ivtv_waitsda(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("SDA stuck low\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
}
|
||
|
if (ivtv_getscl(itv) != 1) {
|
||
|
ivtv_setscl(itv, 1);
|
||
|
if (!ivtv_waitscl(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("SCL stuck low at start\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
}
|
||
|
ivtv_setsda(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Issue a stop condition on the i2c bus to release it */
|
||
|
static int ivtv_stop(struct ivtv *itv)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (ivtv_getscl(itv) != 0) {
|
||
|
IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
|
||
|
ivtv_setscl(itv, 0);
|
||
|
if (!ivtv_waitscl(itv, 0)) {
|
||
|
IVTV_DEBUG_I2C("SCL could not be set low\n");
|
||
|
}
|
||
|
}
|
||
|
ivtv_setsda(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 1);
|
||
|
if (!ivtv_waitscl(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("SCL could not be set high\n");
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setsda(itv, 1);
|
||
|
if (!ivtv_waitsda(itv, 1)) {
|
||
|
IVTV_DEBUG_I2C("resetting I2C\n");
|
||
|
for (i = 0; i < 16; ++i) {
|
||
|
ivtv_setscl(itv, 0);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setscl(itv, 1);
|
||
|
ivtv_scldelay(itv);
|
||
|
ivtv_setsda(itv, 1);
|
||
|
}
|
||
|
ivtv_waitsda(itv, 1);
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Write a message to the given i2c slave. do_stop may be 0 to prevent
|
||
|
issuing the i2c stop condition (when following with a read) */
|
||
|
static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
|
||
|
{
|
||
|
int retry, ret = -EREMOTEIO;
|
||
|
u32 i;
|
||
|
|
||
|
for (retry = 0; ret != 0 && retry < 8; ++retry) {
|
||
|
ret = ivtv_start(itv);
|
||
|
|
||
|
if (ret == 0) {
|
||
|
ret = ivtv_sendbyte(itv, addr<<1);
|
||
|
for (i = 0; ret == 0 && i < len; ++i)
|
||
|
ret = ivtv_sendbyte(itv, data[i]);
|
||
|
}
|
||
|
if (ret != 0 || do_stop) {
|
||
|
ivtv_stop(itv);
|
||
|
}
|
||
|
}
|
||
|
if (ret)
|
||
|
IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Read data from the given i2c slave. A stop condition is always issued. */
|
||
|
static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
|
||
|
{
|
||
|
int retry, ret = -EREMOTEIO;
|
||
|
u32 i;
|
||
|
|
||
|
for (retry = 0; ret != 0 && retry < 8; ++retry) {
|
||
|
ret = ivtv_start(itv);
|
||
|
if (ret == 0)
|
||
|
ret = ivtv_sendbyte(itv, (addr << 1) | 1);
|
||
|
for (i = 0; ret == 0 && i < len; ++i) {
|
||
|
ret = ivtv_readbyte(itv, &data[i], i == len - 1);
|
||
|
}
|
||
|
ivtv_stop(itv);
|
||
|
}
|
||
|
if (ret)
|
||
|
IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Kernel i2c transfer implementation. Takes a number of messages to be read
|
||
|
or written. If a read follows a write, this will occur without an
|
||
|
intervening stop condition */
|
||
|
static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
|
||
|
{
|
||
|
struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
|
||
|
struct ivtv *itv = to_ivtv(v4l2_dev);
|
||
|
int retval;
|
||
|
int i;
|
||
|
|
||
|
mutex_lock(&itv->i2c_bus_lock);
|
||
|
for (i = retval = 0; retval == 0 && i < num; i++) {
|
||
|
if (msgs[i].flags & I2C_M_RD)
|
||
|
retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
|
||
|
else {
|
||
|
/* if followed by a read, don't stop */
|
||
|
int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
|
||
|
|
||
|
retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
|
||
|
}
|
||
|
}
|
||
|
mutex_unlock(&itv->i2c_bus_lock);
|
||
|
return retval ? retval : num;
|
||
|
}
|
||
|
|
||
|
/* Kernel i2c capabilities */
|
||
|
static u32 ivtv_functionality(struct i2c_adapter *adap)
|
||
|
{
|
||
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
||
|
}
|
||
|
|
||
|
static struct i2c_algorithm ivtv_algo = {
|
||
|
.master_xfer = ivtv_xfer,
|
||
|
.functionality = ivtv_functionality,
|
||
|
};
|
||
|
|
||
|
/* template for our-bit banger */
|
||
|
static struct i2c_adapter ivtv_i2c_adap_hw_template = {
|
||
|
.name = "ivtv i2c driver",
|
||
|
.algo = &ivtv_algo,
|
||
|
.algo_data = NULL, /* filled from template */
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static void ivtv_setscl_old(void *data, int state)
|
||
|
{
|
||
|
struct ivtv *itv = (struct ivtv *)data;
|
||
|
|
||
|
if (state)
|
||
|
itv->i2c_state |= 0x01;
|
||
|
else
|
||
|
itv->i2c_state &= ~0x01;
|
||
|
|
||
|
/* write them out */
|
||
|
/* write bits are inverted */
|
||
|
write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
|
||
|
}
|
||
|
|
||
|
static void ivtv_setsda_old(void *data, int state)
|
||
|
{
|
||
|
struct ivtv *itv = (struct ivtv *)data;
|
||
|
|
||
|
if (state)
|
||
|
itv->i2c_state |= 0x01;
|
||
|
else
|
||
|
itv->i2c_state &= ~0x01;
|
||
|
|
||
|
/* write them out */
|
||
|
/* write bits are inverted */
|
||
|
write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
|
||
|
}
|
||
|
|
||
|
static int ivtv_getscl_old(void *data)
|
||
|
{
|
||
|
struct ivtv *itv = (struct ivtv *)data;
|
||
|
|
||
|
return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
|
||
|
}
|
||
|
|
||
|
static int ivtv_getsda_old(void *data)
|
||
|
{
|
||
|
struct ivtv *itv = (struct ivtv *)data;
|
||
|
|
||
|
return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
|
||
|
}
|
||
|
|
||
|
/* template for i2c-bit-algo */
|
||
|
static struct i2c_adapter ivtv_i2c_adap_template = {
|
||
|
.name = "ivtv i2c driver",
|
||
|
.algo = NULL, /* set by i2c-algo-bit */
|
||
|
.algo_data = NULL, /* filled from template */
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
|
||
|
.setsda = ivtv_setsda_old,
|
||
|
.setscl = ivtv_setscl_old,
|
||
|
.getsda = ivtv_getsda_old,
|
||
|
.getscl = ivtv_getscl_old,
|
||
|
.udelay = 10,
|
||
|
.timeout = 200,
|
||
|
};
|
||
|
|
||
|
static struct i2c_client ivtv_i2c_client_template = {
|
||
|
.name = "ivtv internal",
|
||
|
};
|
||
|
|
||
|
/* init + register i2c adapter + instantiate IR receiver */
|
||
|
int init_ivtv_i2c(struct ivtv *itv)
|
||
|
{
|
||
|
int retval;
|
||
|
|
||
|
IVTV_DEBUG_I2C("i2c init\n");
|
||
|
|
||
|
/* Sanity checks for the I2C hardware arrays. They must be the
|
||
|
* same size and GPIO must be the last entry.
|
||
|
*/
|
||
|
if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs) ||
|
||
|
ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_modules) ||
|
||
|
IVTV_HW_GPIO != (1 << (ARRAY_SIZE(hw_addrs) - 1))) {
|
||
|
IVTV_ERR("Mismatched I2C hardware arrays\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
if (itv->options.newi2c > 0) {
|
||
|
memcpy(&itv->i2c_adap, &ivtv_i2c_adap_hw_template,
|
||
|
sizeof(struct i2c_adapter));
|
||
|
} else {
|
||
|
memcpy(&itv->i2c_adap, &ivtv_i2c_adap_template,
|
||
|
sizeof(struct i2c_adapter));
|
||
|
memcpy(&itv->i2c_algo, &ivtv_i2c_algo_template,
|
||
|
sizeof(struct i2c_algo_bit_data));
|
||
|
}
|
||
|
itv->i2c_algo.data = itv;
|
||
|
itv->i2c_adap.algo_data = &itv->i2c_algo;
|
||
|
|
||
|
sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
|
||
|
itv->instance);
|
||
|
i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
|
||
|
|
||
|
memcpy(&itv->i2c_client, &ivtv_i2c_client_template,
|
||
|
sizeof(struct i2c_client));
|
||
|
itv->i2c_client.adapter = &itv->i2c_adap;
|
||
|
itv->i2c_adap.dev.parent = &itv->pdev->dev;
|
||
|
|
||
|
IVTV_DEBUG_I2C("setting scl and sda to 1\n");
|
||
|
ivtv_setscl(itv, 1);
|
||
|
ivtv_setsda(itv, 1);
|
||
|
|
||
|
if (itv->options.newi2c > 0)
|
||
|
retval = i2c_add_adapter(&itv->i2c_adap);
|
||
|
else
|
||
|
retval = i2c_bit_add_bus(&itv->i2c_adap);
|
||
|
|
||
|
/* Instantiate the IR receiver device, if present */
|
||
|
if (retval == 0) {
|
||
|
struct i2c_board_info info;
|
||
|
/* The external IR receiver is at i2c address 0x34 (0x35 for
|
||
|
reads). Future Hauppauge cards will have an internal
|
||
|
receiver at 0x30 (0x31 for reads). In theory, both can be
|
||
|
fitted, and Hauppauge suggest an external overrides an
|
||
|
internal.
|
||
|
|
||
|
That's why we probe 0x1a (~0x34) first. CB
|
||
|
*/
|
||
|
const unsigned short addr_list[] = {
|
||
|
0x1a, /* Hauppauge IR external */
|
||
|
0x18, /* Hauppauge IR internal */
|
||
|
0x71, /* Hauppauge IR (PVR150) */
|
||
|
0x64, /* Pixelview IR */
|
||
|
0x30, /* KNC ONE IR */
|
||
|
0x6b, /* Adaptec IR */
|
||
|
I2C_CLIENT_END
|
||
|
};
|
||
|
|
||
|
memset(&info, 0, sizeof(struct i2c_board_info));
|
||
|
strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
|
||
|
i2c_new_probed_device(&itv->i2c_adap, &info, addr_list);
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
void exit_ivtv_i2c(struct ivtv *itv)
|
||
|
{
|
||
|
IVTV_DEBUG_I2C("i2c exit\n");
|
||
|
|
||
|
i2c_del_adapter(&itv->i2c_adap);
|
||
|
}
|