satip-axe/kernel/drivers/ssb/pcmcia.c

861 lines
20 KiB
C
Raw Normal View History

/*
* Sonics Silicon Backplane
* PCMCIA-Hostbus related functions
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2007-2008 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/etherdevice.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <pcmcia/cisreg.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCMCIACORESWITCH_DEBUG 0
/* PCMCIA configuration registers */
#define SSB_PCMCIA_ADDRESS0 0x2E
#define SSB_PCMCIA_ADDRESS1 0x30
#define SSB_PCMCIA_ADDRESS2 0x32
#define SSB_PCMCIA_MEMSEG 0x34
#define SSB_PCMCIA_SPROMCTL 0x36
#define SSB_PCMCIA_SPROMCTL_IDLE 0
#define SSB_PCMCIA_SPROMCTL_WRITE 1
#define SSB_PCMCIA_SPROMCTL_READ 2
#define SSB_PCMCIA_SPROMCTL_WRITEEN 4
#define SSB_PCMCIA_SPROMCTL_WRITEDIS 7
#define SSB_PCMCIA_SPROMCTL_DONE 8
#define SSB_PCMCIA_SPROM_DATALO 0x38
#define SSB_PCMCIA_SPROM_DATAHI 0x3A
#define SSB_PCMCIA_SPROM_ADDRLO 0x3C
#define SSB_PCMCIA_SPROM_ADDRHI 0x3E
/* Hardware invariants CIS tuples */
#define SSB_PCMCIA_CIS 0x80
#define SSB_PCMCIA_CIS_ID 0x01
#define SSB_PCMCIA_CIS_BOARDREV 0x02
#define SSB_PCMCIA_CIS_PA 0x03
#define SSB_PCMCIA_CIS_PA_PA0B0_LO 0
#define SSB_PCMCIA_CIS_PA_PA0B0_HI 1
#define SSB_PCMCIA_CIS_PA_PA0B1_LO 2
#define SSB_PCMCIA_CIS_PA_PA0B1_HI 3
#define SSB_PCMCIA_CIS_PA_PA0B2_LO 4
#define SSB_PCMCIA_CIS_PA_PA0B2_HI 5
#define SSB_PCMCIA_CIS_PA_ITSSI 6
#define SSB_PCMCIA_CIS_PA_MAXPOW 7
#define SSB_PCMCIA_CIS_OEMNAME 0x04
#define SSB_PCMCIA_CIS_CCODE 0x05
#define SSB_PCMCIA_CIS_ANTENNA 0x06
#define SSB_PCMCIA_CIS_ANTGAIN 0x07
#define SSB_PCMCIA_CIS_BFLAGS 0x08
#define SSB_PCMCIA_CIS_LEDS 0x09
/* PCMCIA SPROM size. */
#define SSB_PCMCIA_SPROM_SIZE 256
#define SSB_PCMCIA_SPROM_SIZE_BYTES (SSB_PCMCIA_SPROM_SIZE * sizeof(u16))
/* Write to a PCMCIA configuration register. */
static int ssb_pcmcia_cfg_write(struct ssb_bus *bus, u8 offset, u8 value)
{
conf_reg_t reg;
int res;
memset(&reg, 0, sizeof(reg));
reg.Offset = offset;
reg.Action = CS_WRITE;
reg.Value = value;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != 0))
return -EBUSY;
return 0;
}
/* Read from a PCMCIA configuration register. */
static int ssb_pcmcia_cfg_read(struct ssb_bus *bus, u8 offset, u8 *value)
{
conf_reg_t reg;
int res;
memset(&reg, 0, sizeof(reg));
reg.Offset = offset;
reg.Action = CS_READ;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != 0))
return -EBUSY;
*value = reg.Value;
return 0;
}
int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
u32 addr;
u32 read_addr;
u8 val;
addr = (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE;
while (1) {
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS0,
(addr & 0x0000F000) >> 12);
if (err)
goto error;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS1,
(addr & 0x00FF0000) >> 16);
if (err)
goto error;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS2,
(addr & 0xFF000000) >> 24);
if (err)
goto error;
read_addr = 0;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS0, &val);
if (err)
goto error;
read_addr |= ((u32)(val & 0x0F)) << 12;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS1, &val);
if (err)
goto error;
read_addr |= ((u32)val) << 16;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS2, &val);
if (err)
goto error;
read_addr |= ((u32)val) << 24;
cur_core = (read_addr - SSB_ENUM_BASE) / SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
err = -ETIMEDOUT;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return err;
}
int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
#if SSB_VERBOSE_PCMCIACORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
err = ssb_pcmcia_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
return err;
}
int ssb_pcmcia_switch_segment(struct ssb_bus *bus, u8 seg)
{
int attempts = 0;
int err;
u8 val;
SSB_WARN_ON((seg != 0) && (seg != 1));
while (1) {
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_MEMSEG, seg);
if (err)
goto error;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_MEMSEG, &val);
if (err)
goto error;
if (val == seg)
break;
err = -ETIMEDOUT;
if (unlikely(attempts++ > SSB_BAR0_MAX_RETRIES))
goto error;
udelay(10);
}
bus->mapped_pcmcia_seg = seg;
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch pcmcia segment\n");
return err;
}
static int select_core_and_segment(struct ssb_device *dev,
u16 *offset)
{
struct ssb_bus *bus = dev->bus;
int err;
u8 need_segment;
if (*offset >= 0x800) {
*offset -= 0x800;
need_segment = 1;
} else
need_segment = 0;
if (unlikely(dev != bus->mapped_device)) {
err = ssb_pcmcia_switch_core(bus, dev);
if (unlikely(err))
return err;
}
if (unlikely(need_segment != bus->mapped_pcmcia_seg)) {
err = ssb_pcmcia_switch_segment(bus, need_segment);
if (unlikely(err))
return err;
}
return 0;
}
static u8 ssb_pcmcia_read8(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u8 value = 0xFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
value = readb(bus->mmio + offset);
spin_unlock_irqrestore(&bus->bar_lock, flags);
return value;
}
static u16 ssb_pcmcia_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u16 value = 0xFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
value = readw(bus->mmio + offset);
spin_unlock_irqrestore(&bus->bar_lock, flags);
return value;
}
static u32 ssb_pcmcia_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u32 lo = 0xFFFFFFFF, hi = 0xFFFFFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
lo = readw(bus->mmio + offset);
hi = readw(bus->mmio + offset + 2);
}
spin_unlock_irqrestore(&bus->bar_lock, flags);
return (lo | (hi << 16));
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pcmcia_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
void __iomem *addr = bus->mmio + offset;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (unlikely(err)) {
memset(buffer, 0xFF, count);
goto unlock;
}
switch (reg_width) {
case sizeof(u8): {
u8 *buf = buffer;
while (count) {
*buf = __raw_readb(addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
__le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
*buf = (__force __le16)__raw_readw(addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
__le16 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
*buf = (__force __le16)__raw_readw(addr);
buf++;
*buf = (__force __le16)__raw_readw(addr + 2);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
unlock:
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
#endif /* CONFIG_SSB_BLOCKIO */
static void ssb_pcmcia_write8(struct ssb_device *dev, u16 offset, u8 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
writeb(value, bus->mmio + offset);
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
static void ssb_pcmcia_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
writew(value, bus->mmio + offset);
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
static void ssb_pcmcia_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
writew((value & 0x0000FFFF), bus->mmio + offset);
writew(((value & 0xFFFF0000) >> 16), bus->mmio + offset + 2);
}
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pcmcia_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
void __iomem *addr = bus->mmio + offset;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (unlikely(err))
goto unlock;
switch (reg_width) {
case sizeof(u8): {
const u8 *buf = buffer;
while (count) {
__raw_writeb(*buf, addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
const __le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
__raw_writew((__force u16)(*buf), addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
const __le16 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
__raw_writew((__force u16)(*buf), addr);
buf++;
__raw_writew((__force u16)(*buf), addr + 2);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
unlock:
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
#endif /* CONFIG_SSB_BLOCKIO */
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pcmcia_ops = {
.read8 = ssb_pcmcia_read8,
.read16 = ssb_pcmcia_read16,
.read32 = ssb_pcmcia_read32,
.write8 = ssb_pcmcia_write8,
.write16 = ssb_pcmcia_write16,
.write32 = ssb_pcmcia_write32,
#ifdef CONFIG_SSB_BLOCKIO
.block_read = ssb_pcmcia_block_read,
.block_write = ssb_pcmcia_block_write,
#endif
};
static int ssb_pcmcia_sprom_command(struct ssb_bus *bus, u8 command)
{
unsigned int i;
int err;
u8 value;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROMCTL, command);
if (err)
return err;
for (i = 0; i < 1000; i++) {
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROMCTL, &value);
if (err)
return err;
if (value & SSB_PCMCIA_SPROMCTL_DONE)
return 0;
udelay(10);
}
return -ETIMEDOUT;
}
/* offset is the 16bit word offset */
static int ssb_pcmcia_sprom_read(struct ssb_bus *bus, u16 offset, u16 *value)
{
int err;
u8 lo, hi;
offset *= 2; /* Make byte offset */
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRLO,
(offset & 0x00FF));
if (err)
return err;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRHI,
(offset & 0xFF00) >> 8);
if (err)
return err;
err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_READ);
if (err)
return err;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROM_DATALO, &lo);
if (err)
return err;
err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROM_DATAHI, &hi);
if (err)
return err;
*value = (lo | (((u16)hi) << 8));
return 0;
}
/* offset is the 16bit word offset */
static int ssb_pcmcia_sprom_write(struct ssb_bus *bus, u16 offset, u16 value)
{
int err;
offset *= 2; /* Make byte offset */
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRLO,
(offset & 0x00FF));
if (err)
return err;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRHI,
(offset & 0xFF00) >> 8);
if (err)
return err;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_DATALO,
(value & 0x00FF));
if (err)
return err;
err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_DATAHI,
(value & 0xFF00) >> 8);
if (err)
return err;
err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITE);
if (err)
return err;
msleep(20);
return 0;
}
/* Read the SPROM image. bufsize is in 16bit words. */
static int ssb_pcmcia_sprom_read_all(struct ssb_bus *bus, u16 *sprom)
{
int err, i;
for (i = 0; i < SSB_PCMCIA_SPROM_SIZE; i++) {
err = ssb_pcmcia_sprom_read(bus, i, &sprom[i]);
if (err)
return err;
}
return 0;
}
/* Write the SPROM image. size is in 16bit words. */
static int ssb_pcmcia_sprom_write_all(struct ssb_bus *bus, const u16 *sprom)
{
int i, err;
bool failed = 0;
size_t size = SSB_PCMCIA_SPROM_SIZE;
ssb_printk(KERN_NOTICE PFX
"Writing SPROM. Do NOT turn off the power! "
"Please stand by...\n");
err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITEEN);
if (err) {
ssb_printk(KERN_NOTICE PFX
"Could not enable SPROM write access.\n");
return -EBUSY;
}
ssb_printk(KERN_NOTICE PFX "[ 0%%");
msleep(500);
for (i = 0; i < size; i++) {
if (i == size / 4)
ssb_printk("25%%");
else if (i == size / 2)
ssb_printk("50%%");
else if (i == (size * 3) / 4)
ssb_printk("75%%");
else if (i % 2)
ssb_printk(".");
err = ssb_pcmcia_sprom_write(bus, i, sprom[i]);
if (err) {
ssb_printk(KERN_NOTICE PFX
"Failed to write to SPROM.\n");
failed = 1;
break;
}
}
err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITEDIS);
if (err) {
ssb_printk(KERN_NOTICE PFX
"Could not disable SPROM write access.\n");
failed = 1;
}
msleep(500);
if (!failed) {
ssb_printk("100%% ]\n");
ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
}
return failed ? -EBUSY : 0;
}
static int ssb_pcmcia_sprom_check_crc(const u16 *sprom, size_t size)
{
//TODO
return 0;
}
#define GOTO_ERROR_ON(condition, description) do { \
if (unlikely(condition)) { \
error_description = description; \
goto error; \
} \
} while (0)
int ssb_pcmcia_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
tuple_t tuple;
int res;
unsigned char buf[32];
struct ssb_sprom *sprom = &iv->sprom;
struct ssb_boardinfo *bi = &iv->boardinfo;
const char *error_description;
memset(sprom, 0xFF, sizeof(*sprom));
sprom->revision = 1;
sprom->boardflags_lo = 0;
sprom->boardflags_hi = 0;
/* First fetch the MAC address. */
memset(&tuple, 0, sizeof(tuple));
tuple.DesiredTuple = CISTPL_FUNCE;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
res = pcmcia_get_first_tuple(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "MAC first tpl");
res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "MAC first tpl data");
while (1) {
GOTO_ERROR_ON(tuple.TupleDataLen < 1, "MAC tpl < 1");
if (tuple.TupleData[0] == CISTPL_FUNCE_LAN_NODE_ID)
break;
res = pcmcia_get_next_tuple(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "MAC next tpl");
res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "MAC next tpl data");
}
GOTO_ERROR_ON(tuple.TupleDataLen != ETH_ALEN + 2, "MAC tpl size");
memcpy(sprom->il0mac, &tuple.TupleData[2], ETH_ALEN);
/* Fetch the vendor specific tuples. */
memset(&tuple, 0, sizeof(tuple));
tuple.DesiredTuple = SSB_PCMCIA_CIS;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
res = pcmcia_get_first_tuple(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "VEN first tpl");
res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "VEN first tpl data");
while (1) {
GOTO_ERROR_ON(tuple.TupleDataLen < 1, "VEN tpl < 1");
switch (tuple.TupleData[0]) {
case SSB_PCMCIA_CIS_ID:
GOTO_ERROR_ON((tuple.TupleDataLen != 5) &&
(tuple.TupleDataLen != 7),
"id tpl size");
bi->vendor = tuple.TupleData[1] |
((u16)tuple.TupleData[2] << 8);
break;
case SSB_PCMCIA_CIS_BOARDREV:
GOTO_ERROR_ON(tuple.TupleDataLen != 2,
"boardrev tpl size");
sprom->board_rev = tuple.TupleData[1];
break;
case SSB_PCMCIA_CIS_PA:
GOTO_ERROR_ON((tuple.TupleDataLen != 9) &&
(tuple.TupleDataLen != 10),
"pa tpl size");
sprom->pa0b0 = tuple.TupleData[1] |
((u16)tuple.TupleData[2] << 8);
sprom->pa0b1 = tuple.TupleData[3] |
((u16)tuple.TupleData[4] << 8);
sprom->pa0b2 = tuple.TupleData[5] |
((u16)tuple.TupleData[6] << 8);
sprom->itssi_a = tuple.TupleData[7];
sprom->itssi_bg = tuple.TupleData[7];
sprom->maxpwr_a = tuple.TupleData[8];
sprom->maxpwr_bg = tuple.TupleData[8];
break;
case SSB_PCMCIA_CIS_OEMNAME:
/* We ignore this. */
break;
case SSB_PCMCIA_CIS_CCODE:
GOTO_ERROR_ON(tuple.TupleDataLen != 2,
"ccode tpl size");
sprom->country_code = tuple.TupleData[1];
break;
case SSB_PCMCIA_CIS_ANTENNA:
GOTO_ERROR_ON(tuple.TupleDataLen != 2,
"ant tpl size");
sprom->ant_available_a = tuple.TupleData[1];
sprom->ant_available_bg = tuple.TupleData[1];
break;
case SSB_PCMCIA_CIS_ANTGAIN:
GOTO_ERROR_ON(tuple.TupleDataLen != 2,
"antg tpl size");
sprom->antenna_gain.ghz24.a0 = tuple.TupleData[1];
sprom->antenna_gain.ghz24.a1 = tuple.TupleData[1];
sprom->antenna_gain.ghz24.a2 = tuple.TupleData[1];
sprom->antenna_gain.ghz24.a3 = tuple.TupleData[1];
sprom->antenna_gain.ghz5.a0 = tuple.TupleData[1];
sprom->antenna_gain.ghz5.a1 = tuple.TupleData[1];
sprom->antenna_gain.ghz5.a2 = tuple.TupleData[1];
sprom->antenna_gain.ghz5.a3 = tuple.TupleData[1];
break;
case SSB_PCMCIA_CIS_BFLAGS:
GOTO_ERROR_ON((tuple.TupleDataLen != 3) &&
(tuple.TupleDataLen != 5),
"bfl tpl size");
sprom->boardflags_lo = tuple.TupleData[1] |
((u16)tuple.TupleData[2] << 8);
break;
case SSB_PCMCIA_CIS_LEDS:
GOTO_ERROR_ON(tuple.TupleDataLen != 5,
"leds tpl size");
sprom->gpio0 = tuple.TupleData[1];
sprom->gpio1 = tuple.TupleData[2];
sprom->gpio2 = tuple.TupleData[3];
sprom->gpio3 = tuple.TupleData[4];
break;
}
res = pcmcia_get_next_tuple(bus->host_pcmcia, &tuple);
if (res == -ENOSPC)
break;
GOTO_ERROR_ON(res != 0, "VEN next tpl");
res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple);
GOTO_ERROR_ON(res != 0, "VEN next tpl data");
}
return 0;
error:
ssb_printk(KERN_ERR PFX
"PCMCIA: Failed to fetch device invariants: %s\n",
error_description);
return -ENODEV;
}
static ssize_t ssb_pcmcia_attr_sprom_show(struct device *pcmciadev,
struct device_attribute *attr,
char *buf)
{
struct pcmcia_device *pdev =
container_of(pcmciadev, struct pcmcia_device, dev);
struct ssb_bus *bus;
bus = ssb_pcmcia_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_show(bus, buf,
ssb_pcmcia_sprom_read_all);
}
static ssize_t ssb_pcmcia_attr_sprom_store(struct device *pcmciadev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pcmcia_device *pdev =
container_of(pcmciadev, struct pcmcia_device, dev);
struct ssb_bus *bus;
bus = ssb_pcmcia_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_store(bus, buf, count,
ssb_pcmcia_sprom_check_crc,
ssb_pcmcia_sprom_write_all);
}
static DEVICE_ATTR(ssb_sprom, 0600,
ssb_pcmcia_attr_sprom_show,
ssb_pcmcia_attr_sprom_store);
static int ssb_pcmcia_cor_setup(struct ssb_bus *bus, u8 cor)
{
u8 val;
int err;
err = ssb_pcmcia_cfg_read(bus, cor, &val);
if (err)
return err;
val &= ~COR_SOFT_RESET;
val |= COR_FUNC_ENA | COR_IREQ_ENA | COR_LEVEL_REQ;
err = ssb_pcmcia_cfg_write(bus, cor, val);
if (err)
return err;
msleep(40);
return 0;
}
/* Initialize the PCMCIA hardware. This is called on Init and Resume. */
int ssb_pcmcia_hardware_setup(struct ssb_bus *bus)
{
int err;
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return 0;
/* Switch segment to a known state and sync
* bus->mapped_pcmcia_seg with hardware state. */
ssb_pcmcia_switch_segment(bus, 0);
/* Init the COR register. */
err = ssb_pcmcia_cor_setup(bus, CISREG_COR);
if (err)
return err;
/* Some cards also need this register to get poked. */
err = ssb_pcmcia_cor_setup(bus, CISREG_COR + 0x80);
if (err)
return err;
return 0;
}
void ssb_pcmcia_exit(struct ssb_bus *bus)
{
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return;
device_remove_file(&bus->host_pcmcia->dev, &dev_attr_ssb_sprom);
}
int ssb_pcmcia_init(struct ssb_bus *bus)
{
int err;
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return 0;
err = ssb_pcmcia_hardware_setup(bus);
if (err)
goto error;
bus->sprom_size = SSB_PCMCIA_SPROM_SIZE;
mutex_init(&bus->sprom_mutex);
err = device_create_file(&bus->host_pcmcia->dev, &dev_attr_ssb_sprom);
if (err)
goto error;
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to initialize PCMCIA host device\n");
return err;
}