satip-axe/kernel/drivers/mtd/nand/stm_nand_flex.c

1296 lines
34 KiB
C
Raw Normal View History

/*
* ---------------------------------------------------------------------------
* stm_nand_flex.c STMicroelectronics NAND Flash driver: H/W FLEX mode
* ---------------------------------------------------------------------------
*
* Copyright (c) 2009 STMicroelectronics Limited
* Author: Angus Clark <Angus.Clark@st.com>
*
* ---------------------------------------------------------------------------
* May be copied or modified under the terms of the GNU General Public
* License Version 2.0 only. See linux/COPYING for more information.
* ---------------------------------------------------------------------------
*
* Notes:
*
* - Basic implementation initialises the NAND controller and overrides the
* MTD control layer (see flex_cmd_ctrl(), flex_read_byte(),
* flex_write_byte(), flex_rbn() and flex_select_chip()).
*
* - FDMA and NAND Controller in FLEX mode has not been validated. FDMA
* support diabled for the moment.
*
* - Support for BOOT mode partitions has been added. We maintain 2 sets of
* ECC-related parameters, and override the MTD read/write functions to
* switch ECC scheme depending on which partition we are in (see
* flex_setup_eccparam(), flex_select_eccparams(), nand_read(),
* nand_read_oob(), nand_write, nand_write_oob()). Need to force
* chip.options NAND_USE_FLASH_BBT, since BOOT mode ECC layout is
* incompatible with factory-written bad-block markers.
*
* TODO:
*
* - Test board with multiple NAND devices
*
* - Optimise nand_command and nand_command_lp to issue multibyte commands in
* one go.
*
* - Add support for x16 devices. Should just be a matter of configuring
* FLEX data register...
*
* Changelog:
* 2009-03-12 Angus Clark <angus.clark@st.com>
* - first version
*
*/
#include <linux/io.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/dma-mapping.h>
#include <asm/dma.h>
#include <linux/clk.h>
#include <linux/stm/stm-dma.h>
#include <linux/stm/platform.h>
#include <linux/stm/nand.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include "stm_nandc_regs.h"
#ifdef CONFIG_MTD_PARTITIONS
#include <linux/mtd/partitions.h>
#endif
#define NAME "stm-nand-flex"
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
#include "stm_nand_ecc.h"
/* NAND_BOOT uses a different ECC scheme to that of NAND_FLEX/NAND_AFM. In
* order to support the NAND_BOOT partition we need to maintain 2 sets of
* ECC-related paramters, and switch depending which partition we wish to
* access.
*/
struct ecc_params {
/* nand_chip params */
struct nand_ecc_ctrl ecc_ctrl;
int subpagesize;
/* mtd_info params */
u_int32_t subpage_sft;
};
#endif /* CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT */
/* NAND device connected to STM NAND Controller operatring in FLEX mode. (There
* may be several NAND device connected to the NAND controller.)
*/
struct stm_nand_flex_device {
struct nand_chip chip;
struct mtd_info mtd;
int csn;
struct stm_nand_timing_data *timing_data;
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
unsigned long boot_start;
unsigned long boot_end;
struct ecc_params ecc_boot;
struct ecc_params ecc_flex;
#endif
#ifdef CONFIG_MTD_PARTITIONS
/* Partition Table */
int nr_parts;
struct mtd_partition *parts;
#endif
};
/* STM NAND Controller operating in FLEX mode */
struct stm_nand_flex_controller {
struct resource *mem_region;
void __iomem *base_addr;
int current_csn; /* Current chip */
struct nand_hw_control hwcontrol; /* Aribitrate access */
/* to FLEX devices */
int initialised;
uint8_t *buf; /* Bounce buffer for */
/* non-aligned xfer */
#ifdef CONFIG_STM_NAND_FLEX_CACHED
unsigned long data_phys; /* FLEX data IO */
void __iomem *data_cached;
spinlock_t lock;
#endif
struct stm_nand_flex_device *devices[0];
};
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
/* The command line passed to nboot_setup() */
__initdata static char *cmdline;
#endif
static struct stm_nand_flex_controller* mtd_to_flex(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct nand_hw_control *controller = chip->controller;
struct stm_nand_flex_controller *flex;
flex = container_of(controller, struct stm_nand_flex_controller,
hwcontrol);
return flex;
}
#define flex_writereg(val, reg) iowrite32(val, flex->base_addr + (reg))
#define flex_readreg(reg) ioread32(flex->base_addr + (reg))
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
/*** FLEX mode control functions (cf nand_base.c) ***/
/* Assumes EMINAND_DATAREAD has been configured for 1-byte reads. */
static uint8_t flex_read_byte(struct mtd_info *mtd)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
uint32_t reg;
reg = flex_readreg(EMINAND_FLEX_DATA);
return (uint8_t)(reg & 0xff);
}
static void flex_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
static unsigned int flex_ctrl;
uint32_t reg;
if (ctrl & NAND_CTRL_CHANGE)
flex_ctrl = ctrl;
if (cmd != NAND_CMD_NONE) {
if (flex_ctrl & NAND_CLE) {
reg = (cmd & 0xff) | FLX_CMD_REG_BEAT_1 |
FLX_CMD_REG_CSN_STATUS;
flex_writereg(reg, EMINAND_FLEX_COMMAND_REG);
} else if (flex_ctrl & NAND_ALE) {
reg = (cmd & 0xff) | FLX_ADDR_REG_ADD8_VALID |
FLX_ADDR_REG_BEAT_1 | FLX_ADDR_REG_CSN_STATUS;
flex_writereg(reg, EMINAND_FLEX_ADDRESS_REG);
} else {
printk(KERN_ERR NAME "%s: unknown ctrl 0x%02x!\n",
__FUNCTION__, flex_ctrl);
}
}
}
/*
* Override the default nand_wait() function. If we have access to
* RBn/dev_ready(), then we wait until RBn is asserted before issuing the
* NAND_CMD_STATUS command. If RBn is not available, then we revert to the
* default behaviour and accept a bus stall until the NAND device becomes ready.
*/
static int flex_nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = jiffies;
int status, state = chip->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (chip->dev_ready) {
/* If we have access to RBn */
while (time_before(jiffies, timeo)) {
if (chip->dev_ready(mtd))
break;
cond_resched();
}
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
} else {
/* Else read NAND status register
* (which will stall bus until NAND device is ready) */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
if (chip->read_byte(mtd) & NAND_STATUS_READY)
break;
cond_resched();
}
}
/* Get operation status */
status = (int)chip->read_byte(mtd);
return status;
}
static int flex_rbn(struct mtd_info *mtd)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
/* Apply a small delay before sampling RBn signal */
ndelay(100);
return (flex_readreg(EMINAND_RBN_STATUS) & (0x4)) ? 1 : 0;
}
/* FLEX mode ECC requires 4-byte read/writes. To maintain compatibility with
* MTD framework, the FLEX data register is, by default, configured for 1-byte
* read/writes. Therefore, we must switch temporarily to 4-byte read/writes.
* In addition, readsl/writesl requires buf to be 4-byte aligned. If necessary
* we use flex.buf as bounce buffer.
*/
#ifdef CONFIG_STM_NAND_FLEX_CACHED
static void flex_read_buf_cached(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
unsigned long irq_flags;
uint8_t *p;
int notaligned;
int lenaligned;
notaligned = ((uint32_t)buf & 0x3) || (len & 0x3);
/* Handle non-4-byte-aligned buffer */
if (notaligned) {
p = flex->buf;
lenaligned = (len + 0x3) & ~0x3;
} else {
p = buf;
lenaligned = len;
}
/* Switch to 4-byte reads */
flex_writereg(FLX_DATA_CFG_BEAT_4 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
while (lenaligned > 0) {
spin_lock_irqsave(&(flex->lock), irq_flags);
invalidate_ioremap_region(flex->data_phys,
flex->data_cached, 0, L1_CACHE_BYTES);
memcpy_fromio(p, flex->data_cached,
min(lenaligned, (int)L1_CACHE_BYTES));
spin_unlock_irqrestore(&(flex->lock), irq_flags);
p += L1_CACHE_BYTES;
lenaligned -= L1_CACHE_BYTES;
}
#ifdef CONFIG_STM_L2_CACHE
/* If L2 cache is enabled, we must ensure the cacheline is evicted prior
* to non-cached writes to FLEX_DATA.
*/
invalidate_ioremap_region(flex->data_phys,
flex->data_cached, 0, L1_CACHE_BYTES);
#endif
if (notaligned)
memcpy(buf, flex->buf, len);
/* Switch back to 1-byte reads */
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
}
#else
static void flex_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
uint8_t *p;
int notaligned;
uint32_t lenaligned;
notaligned = ((uint32_t)buf & 0x3) || (len & 0x3);
/* Handle non-aligned buffer */
if (notaligned) {
p = flex->buf;
lenaligned = (len + 0x3) & ~0x3;
} else {
p = buf;
lenaligned = len;
}
/* Switch to 4-byte reads (required for ECC) */
flex_writereg(FLX_DATA_CFG_BEAT_4 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
readsl(flex->base_addr + EMINAND_FLEX_DATA, p, lenaligned/4);
if (notaligned)
memcpy(buf, p, len);
/* Switch back to 1-byte reads */
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
}
#endif
static void flex_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
const uint8_t *p;
BUG_ON(len & 0x3);
/* Handle non-aligned buffer */
if ((uint32_t)buf & 0x3) {
p = flex->buf;
memcpy(flex->buf, buf, len);
} else {
p = buf;
}
/* Switch to 4-byte reads (required for ECC) */
flex_writereg(FLX_DATA_CFG_BEAT_4 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAWRITE_CONFIG);
writesl(flex->base_addr + EMINAND_FLEX_DATA, p, len/4);
/* Switch back to 1-byte writes */
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAWRITE_CONFIG);
}
static int flex_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
uint32_t *p = (uint32_t *)buf;
uint32_t d;
int ret = 0;
int i;
/* Switch to 4-byte reads */
flex_writereg(FLX_DATA_CFG_BEAT_4 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
for (i = 0; i < len/4; i++) {
d = readl(flex->base_addr + EMINAND_FLEX_DATA);
if (d != *p++) {
ret = -EFAULT;
goto out1;
}
}
out1:
/* Switch back to 1-byte reads */
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
return ret;
}
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
/* The STMicroelectronics NAND boot-controller uses 3 bytes ECC per 128-byte
* data record. However, the ECC layout clashes with the factory-set bad-block
* markers. To help distinguish between boot-mode ECC blocks and factory-set
* bad-blocks, we use the 4th byte of each OOB record to store a boot-mode ECC
* marker.
*/
static struct nand_ecclayout boot_oob_16 = {
.eccbytes = 16,
.eccpos = {
0, 1, 2, 3, /* 1st 128-byte record: ECC0, ECC1, ECC2, B */
4, 5, 6, 7, /* 2st 128-byte record: ECC0, ECC1, ECC2, B */
8, 9, 10, 11, /* ... */
12, 13, 14, 15
},
.oobfree = {{0, 0} }, /* No free space in OOB */
};
static struct nand_ecclayout boot_oob_64 = {
.eccbytes = 64,
.eccpos = {
0, 1, 2, 3, /* 1st 128-byte record: ECC0, ECC1, ECC2, B */
4, 5, 6, 7, /* 2st 128-byte record: ECC0, ECC1, ECC2, B */
8, 9, 10, 11, /* ... */
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
24, 25, 26, 27,
28, 29, 30, 31,
32, 33, 34, 35,
36, 37, 38, 39,
40, 41, 42, 43,
44, 45, 46, 47,
48, 49, 50, 51,
52, 53, 54, 55,
56, 57, 58, 59,
60, 61, 62, 63
},
.oobfree = {{0, 0} }, /* No free OOB bytes */
};
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr bbt_scan_sp = {
.options = NAND_BBT_SCAN2NDPAGE | NAND_BBT_SCANSTMBOOTECC,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
};
static struct nand_bbt_descr bbt_scan_lp = {
.options = NAND_BBT_SCAN2NDPAGE | NAND_BBT_SCANSTMBOOTECC,
.offs = 0,
.len = 2,
.pattern = scan_ff_pattern
};
/* Update 'badblock_pattern' to handle STM boot-mode ECC prior to bad-block
* scanning */
static int scan_bbt_stmecc(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
chip->badblock_pattern = (mtd->writesize > 512) ?
&bbt_scan_lp : &bbt_scan_sp;
return nand_default_bbt(mtd);
}
/* Replicated from ../mtdpart.c: required here to get slave MTD offsets and
* determine which ECC mode to use.
*/
struct mtd_part {
struct mtd_info mtd;
struct mtd_info *master;
u_int32_t offset;
struct list_head list;
};
#define PART(x) ((struct mtd_part *)(x))
/* Boot mode ECC calc/correct function */
int boot_calc_ecc(struct mtd_info *mtd, const unsigned char *buf,
unsigned char *ecc)
{
stm_ecc_gen(buf, ecc, ECC_128);
ecc[3] = 'B';
return 0;
}
int boot_correct_ecc(struct mtd_info *mtd, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
int status;
status = stm_ecc_correct(buf, read_ecc, calc_ecc, ECC_128);
/* convert to MTD-compatible status */
if (status == E_NO_CHK)
return 0;
if (status == E_D1_CHK || status == E_C1_CHK)
return 1;
return -1;
}
/* Setup ECC params for NAND_BOOT and NAND_FLEX. The intial 'nand_scan()' sets
* up ECC parameters for NAND_FLEX mode. Here, we take a copy of the exisiting
* NAND_FLEX paramters, and derive a set of NAND_BOOT paramters.
*/
static void flex_setup_eccparams(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct stm_nand_flex_device *data = chip->priv;
/* Take a copy of ECC FLEX params, as set up during nand_scan() */
data->ecc_flex.ecc_ctrl = chip->ecc;
data->ecc_flex.subpagesize = chip->subpagesize;
data->ecc_flex.subpage_sft = mtd->subpage_sft;
/* Set ECC BOOT params */
data->ecc_boot.ecc_ctrl = data->ecc_flex.ecc_ctrl;
data->ecc_boot.ecc_ctrl.calculate = boot_calc_ecc;
data->ecc_boot.ecc_ctrl.correct = boot_correct_ecc;
data->ecc_boot.ecc_ctrl.size = 128;
data->ecc_boot.ecc_ctrl.bytes = 4;
if (mtd->oobsize == 16)
data->ecc_boot.ecc_ctrl.layout = &boot_oob_16;
else
data->ecc_boot.ecc_ctrl.layout = &boot_oob_64;
data->ecc_boot.ecc_ctrl.layout->oobavail = 0;
data->ecc_boot.ecc_ctrl.steps = mtd->writesize /
data->ecc_boot.ecc_ctrl.size;
if (data->ecc_boot.ecc_ctrl.steps * data->ecc_boot.ecc_ctrl.size !=
mtd->writesize) {
printk(KERN_WARNING "Invalid ECC parameters\n");
BUG();
}
data->ecc_boot.ecc_ctrl.total = data->ecc_boot.ecc_ctrl.steps *
data->ecc_boot.ecc_ctrl.bytes;
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
!(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
switch (data->ecc_boot.ecc_ctrl.steps) {
case 2:
data->ecc_boot.subpage_sft = 1;
break;
case 4:
case 8:
case 16:
data->ecc_boot.subpage_sft = 2;
break;
}
}
data->ecc_boot.subpagesize = mtd->writesize >>
data->ecc_boot.subpage_sft;
}
/* Set MTD to use ECC params */
static void flex_set_eccparams(struct mtd_info *mtd, struct ecc_params *params)
{
struct nand_chip *chip = mtd->priv;
chip->ecc = params->ecc_ctrl;
chip->subpagesize = params->subpagesize;
mtd->oobavail = params->ecc_ctrl.layout->oobavail;
mtd->subpage_sft = params->subpage_sft;
}
static void flex_select_eccparams(struct mtd_info *mtd, loff_t offs)
{
struct nand_chip *chip = mtd->priv;
struct stm_nand_flex_device *data = chip->priv;
if (offs >= data->boot_start &&
offs < data->boot_end) {
if (chip->ecc.layout != data->ecc_boot.ecc_ctrl.layout) {
DEBUG(MTD_DEBUG_LEVEL0, NAME
": Switching to BOOT mode ECC\n");
flex_set_eccparams(mtd, &data->ecc_boot);
}
} else {
if (chip->ecc.layout != data->ecc_flex.ecc_ctrl.layout) {
DEBUG(MTD_DEBUG_LEVEL0, NAME
": Switching to FLEX mode ECC\n");
flex_set_eccparams(mtd, &data->ecc_flex);
}
}
}
/* nand_base.c functions required by MTD interface functions defined below */
int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
int new_state);
void nand_release_device(struct mtd_info *mtd);
int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops);
int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops);
int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
/* Override the following functions (see nand_base.c), so that we can switch ECC
* scheme before starting xfer sequence.
*/
/**
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* Get hold of the chip and call nand_do_read
*/
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
int ret;
/* Do not allow reads past end of device */
if ((from + len) > mtd->size)
return -EINVAL;
if (!len)
return 0;
nand_get_device(chip, mtd, FL_READING);
/** Added to support switching ECC format **/
flex_select_eccparams(mtd, from);
chip->ops.len = len;
chip->ops.datbuf = buf;
chip->ops.oobbuf = NULL;
ret = nand_do_read_ops(mtd, from, &chip->ops);
*retlen = chip->ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow reads past end of device */
if (ops->datbuf && (from + ops->len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
"Attempt read beyond end of device\n");
return -EINVAL;
}
nand_get_device(chip, mtd, FL_READING);
/** Added to support switching ECC format **/
flex_select_eccparams(mtd, from);
switch (ops->mode) {
case MTD_OOB_PLACE:
case MTD_OOB_AUTO:
case MTD_OOB_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_read_oob(mtd, from, ops);
else
ret = nand_do_read_ops(mtd, from, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC
*/
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
int ret;
/* Do not allow reads past end of device */
if ((to + len) > mtd->size)
return -EINVAL;
if (!len)
return 0;
nand_get_device(chip, mtd, FL_WRITING);
/** Added to support switching ECC format **/
flex_select_eccparams(mtd, to);
chip->ops.len = len;
chip->ops.datbuf = (uint8_t *)buf;
chip->ops.oobbuf = NULL;
ret = nand_do_write_ops(mtd, to, &chip->ops);
*retlen = chip->ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow writes past end of device */
if (ops->datbuf && (to + ops->len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
"Attempt read beyond end of device\n");
return -EINVAL;
}
nand_get_device(chip, mtd, FL_WRITING);
flex_select_eccparams(mtd, to);
switch (ops->mode) {
case MTD_OOB_PLACE:
case MTD_OOB_AUTO:
case MTD_OOB_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(mtd, to, ops);
else
ret = nand_do_write_ops(mtd, to, ops);
out:
nand_release_device(mtd);
return ret;
}
#endif /* CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT */
/* Configure NAND controller timing registers */
static void flex_set_timings(struct stm_nand_flex_controller *flex,
struct stm_nand_timing_data *tm)
{
uint32_t n;
uint32_t reg;
struct clk *emi_clk;
uint32_t emi_t_ns;
/* Timings set in terms of EMI clock... */
emi_clk = clk_get(NULL, "emi_clk");
if (!emi_clk || IS_ERR(emi_clk)) {
printk(KERN_WARNING NAME ": Failed to find EMI clock. "
"Using default 100MHz.\n");
emi_t_ns = 10;
} else {
emi_t_ns = 1000000000UL / clk_get_rate(emi_clk);
}
/* CONTROL_TIMING */
n = (tm->sig_setup + emi_t_ns - 1)/emi_t_ns;
reg = (n & 0xff) << 0;
n = (tm->sig_hold + emi_t_ns - 1)/emi_t_ns;
reg |= (n & 0xff) << 8;
n = (tm->CE_deassert + emi_t_ns - 1)/emi_t_ns;
reg |= (n & 0xff) << 16;
n = (tm->WE_to_RBn + emi_t_ns - 1)/emi_t_ns;
reg |= (n & 0xff) << 24;
DEBUG(MTD_DEBUG_LEVEL0, "%s: CONTROL_TIMING = 0x%08x\n", NAME, reg);
flex_writereg(reg, EMINAND_CONTROL_TIMING);
/* WEN_TIMING */
n = (tm->wr_on + emi_t_ns - 1)/emi_t_ns;
reg = (n & 0xff) << 0;
n = (tm->wr_off + emi_t_ns - 1)/emi_t_ns;
reg |= (n & 0xff) << 8;
DEBUG(MTD_DEBUG_LEVEL0, "%s: WEN_TIMING = 0x%08x\n", NAME, reg);
flex_writereg(reg, EMINAND_WEN_TIMING);
/* REN_TIMING */
n = (tm->rd_on + emi_t_ns - 1)/emi_t_ns;
reg = (n & 0xff) << 0;
n = (tm->rd_off + emi_t_ns - 1)/emi_t_ns;
reg |= (n & 0xff) << 8;
DEBUG(MTD_DEBUG_LEVEL0, "%s: REN_TIMING = 0x%08x\n", NAME, reg);
flex_writereg(reg, EMINAND_REN_TIMING);
}
/* FLEX mode chip select: For now we only support 1 chip per
* 'stm_nand_flex_device' so chipnr will be 0 for select, -1 for deselect.
*
* So, if we change device:
* - Set bank in mux_control_reg to data->csn
* - Update read/write timings
*/
static void flex_select_chip(struct mtd_info *mtd, int chipnr)
{
struct stm_nand_flex_controller *flex = mtd_to_flex(mtd);
struct nand_chip *chip = mtd->priv;
struct stm_nand_flex_device *data = chip->priv;
/* Deselect, do nothing */
if (chipnr == -1) {
return;
} else if (chipnr == 0) {
/* If same chip as last time, no need to change anything */
if (data->csn == flex->current_csn)
return;
/* Set CSn on FLEX controller */
flex->current_csn = data->csn;
flex_writereg(0x1 << data->csn, EMINAND_MUXCONTROL_REG);
/* Set up timing parameters */
flex_set_timings(flex, data->timing_data);
} else {
printk(KERN_ERR NAME ": attempt to select chipnr = %d\n",
chipnr);
}
return;
}
#ifdef CONFIG_MTD_DEBUG
static void flex_print_regs(struct stm_nand_flex_controller *flex)
{
printk(NAME ": FLEX Registers:\n");
printk(KERN_INFO "\tbootbank_config = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_BOOTBANK_CONFIG));
printk(KERN_INFO "\trbn_status = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_RBN_STATUS));
printk(KERN_INFO "\tinterrupt_enable = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_INTERRUPT_ENABLE));
printk(KERN_INFO "\tinterrupt_status = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_INTERRUPT_STATUS));
printk(KERN_INFO "\tinterrupt_clear = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_INTERRUPT_CLEAR));
printk(KERN_INFO "\tinterrupt_edgeconfig = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_INTERRUPT_EDGECONFIG));
printk(KERN_INFO "\tcontrol_timing = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_CONTROL_TIMING));
printk(KERN_INFO "\twen_timing = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_WEN_TIMING));
printk(KERN_INFO "\tren_timing = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_REN_TIMING));
printk(KERN_INFO "\tflexmode_config = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_FLEXMODE_CONFIG));
printk(KERN_INFO "\tmuxcontrol_reg = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_MUXCONTROL_REG));
printk(KERN_INFO "\tcsn_alternate_reg = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_CSN_ALTERNATE));
printk(KERN_INFO "\tmulti_cs_config_reg = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_MULTI_CS_CONFIG_REG));
printk(KERN_INFO "\tversion_reg = 0x%08x\n",
(unsigned int)flex_readreg(EMINAND_VERSION_REG));
}
#endif /* CONFIG_MTD_DEBUG */
static struct stm_nand_flex_controller * __init
flex_init_controller(struct platform_device *pdev)
{
struct stm_plat_nand_flex_data *pdata = pdev->dev.platform_data;
struct resource *resource;
int res;
struct stm_nand_flex_controller *flex;
flex = kzalloc(sizeof(struct stm_nand_flex_controller) +
(sizeof(struct stm_nand_flex_device *) * pdata->nr_banks),
GFP_KERNEL);
if (!flex)
return ERR_PTR(-ENOMEM);
/* Request IO Memory */
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"flex_mem");
if (!resource) {
printk(KERN_ERR NAME ": Failed to get FLEX IORESOURCE_MEM.\n");
res = -ENODEV;
goto out1;
}
flex->mem_region = request_mem_region(resource->start,
resource->end -
resource->start + 1,
pdev->name);
if (!flex->mem_region) {
printk(KERN_ERR NAME ": Failed request memory region 0x%08x.\n",
pdev->resource[0].start);
res = -EBUSY;
goto out1;
}
/* Map base address */
flex->base_addr = ioremap_nocache(resource->start,
resource->end - resource->start + 1);
if (!flex->base_addr) {
printk(KERN_ERR NAME " Failed tp map base address 0x%08x\n",
resource->start);
res = -EINVAL;
goto out2;
}
#ifdef CONFIG_STM_NAND_FLEX_CACHED
flex->data_phys = resource->start + EMINAND_FLEX_DATA;
flex->data_cached = ioremap_cache(flex->data_phys, L1_CACHE_BYTES);
if (!flex->data_cached) {
printk(KERN_ERR NAME " Failed to map data reg 0x%08x\n",
resource->start + EMINAND_FLEX_DATA);
res = -EINVAL;
goto out3;
}
spin_lock_init(&flex->lock);
#endif
flex->buf = kmalloc(NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE,
GFP_KERNEL | __GFP_DMA);
if (!flex->buf) {
printk(KERN_ERR NAME " Failed allocate bounce buffer\n");
res = -ENOMEM;
goto out4;
}
flex->current_csn = -1;
/* Initialise 'controller' structure */
spin_lock_init(&flex->hwcontrol.lock);
init_waitqueue_head(&flex->hwcontrol.wq);
/* Disable boot_not_flex */
flex_writereg(0x00000000, EMINAND_BOOTBANK_CONFIG);
/* Reset FLEX Controller */
flex_writereg((0x1 << 3), EMINAND_FLEXMODE_CONFIG);
udelay(1);
flex_writereg(0x00, EMINAND_FLEXMODE_CONFIG);
/* Set Controller to FLEX mode */
flex_writereg(0x00000001, EMINAND_FLEXMODE_CONFIG);
/* Not using interrupts in FLEX mode */
flex_writereg(0x00, EMINAND_INTERRUPT_ENABLE);
/* To fit with MTD framework, configure FLEX_DATA reg for 1-byte
* read/writes, and deassert CSn
*/
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAWRITE_CONFIG);
flex_writereg(FLX_DATA_CFG_BEAT_1 | FLX_DATA_CFG_CSN_STATUS,
EMINAND_FLEX_DATAREAD_CONFIG);
#ifdef CONFIG_MTD_DEBUG
flex_print_regs(flex);
#endif
return flex;
out4:
#ifdef CONFIG_STM_NAND_FLEX_CACHED
iounmap(flex->data_cached);
out3:
#endif
iounmap(flex->base_addr);
out2:
release_resource(flex->mem_region);
out1:
return ERR_PTR(res);
}
static void __devexit flex_exit_controller(struct platform_device *pdev)
{
struct stm_nand_flex_controller *flex = platform_get_drvdata(pdev);
kfree(flex->buf);
iounmap(flex->base_addr);
#ifdef CONFIG_STM_NAND_FLEX_CACHED
iounmap(flex->data_cached);
#endif
release_resource(flex->mem_region);
}
static struct stm_nand_flex_device * __init
flex_init_bank(struct stm_nand_flex_controller *flex,
struct stm_nand_bank_data *bank,
int rbn_connected, const char *name)
{
struct stm_nand_flex_device *data;
int res;
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
struct mtd_info *slave;
struct mtd_part *part;
char *boot_part_name;
#endif
/* Allocate memory for the device structure (and zero it) */
data = kzalloc(sizeof(struct stm_nand_flex_device), GFP_KERNEL);
if (!data) {
printk(KERN_ERR NAME
": Failed to allocate device structure.\n");
res = -ENOMEM;
goto out1;
}
/* House keeping :-) */
data->chip.priv = data;
data->mtd.priv = &data->chip;
data->mtd.owner = THIS_MODULE;
/* Assign more sensible name (default is string from nand_ids.c!) */
data->mtd.name = name;
data->csn = bank->csn;
/* Use hwcontrol structure to manage access to FLEX Controller */
data->chip.controller = &flex->hwcontrol;
data->chip.state = FL_READY;
/* Get chip's timing data */
data->timing_data = bank->timing_data;
/* Copy over chip specific platform data */
data->chip.chip_delay = data->timing_data->chip_delay;
data->chip.options = bank->options;
data->chip.options |= NAND_NO_AUTOINCR; /* Not tested, disable */
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
/* Handle STM H/W ECC layouts when performing initial scan for
* bad-blocks */
data->chip.scan_bbt = scan_bbt_stmecc;
#endif
/* Callbacks for FLEX mode operation */
data->chip.cmd_ctrl = flex_cmd_ctrl;
data->chip.select_chip = flex_select_chip;
data->chip.read_byte = flex_read_byte;
#ifdef CONFIG_STM_NAND_FLEX_CACHED
data->chip.read_buf = flex_read_buf_cached;
#else
data->chip.read_buf = flex_read_buf;
#endif
data->chip.write_buf = flex_write_buf;
data->chip.verify_buf = flex_verify_buf;
data->chip.waitfunc = flex_nand_wait;
if (rbn_connected)
data->chip.dev_ready = flex_rbn;
/* For now, use NAND_ECC_SOFT. Callbacks filled in during scan() */
data->chip.ecc.mode = NAND_ECC_SOFT;
/* Data IO */
data->chip.IO_ADDR_R = flex->base_addr + EMINAND_FLEX_DATA;
data->chip.IO_ADDR_W = flex->base_addr + EMINAND_FLEX_DATA;
#if defined(CONFIG_CPU_SUBTYPE_STX7200)
/* Reset AFM program. Why!?! */
flex_readreg(EMINAND_AFM_SEQUENCE_STATUS_REG);
memset(flex->base_addr + EMINAND_AFM_SEQUENCE_REG_1, 0, 32);
#endif
/* Scan to find existance of the device */
if (nand_scan(&data->mtd, 1)) {
printk(KERN_ERR NAME ":nand_scan failed\n");
res = -ENXIO;
goto out2;
}
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
if (data->chip.ecc.mode == NAND_ECC_4BITONDIE) {
printk(KERN_ERR NAME ": boot-mode ECC not supported on "
"4-bit on-die ECC devices\n");
res = -ENXIO;
goto out2;
}
/* Setup ECC params, for NORMAL and BOOT operation */
flex_setup_eccparams(&data->mtd);
/* Override MTD NAND interface, to allow us to provide BOOT SUPPORT */
data->mtd.read = nand_read;
data->mtd.write = nand_write;
data->mtd.read_oob = nand_read_oob;
data->mtd.write_oob = nand_write_oob;
/* Set name of boot partition */
boot_part_name = cmdline ? cmdline : CONFIG_STM_NAND_FLEX_BOOTPARTITION;
printk(KERN_INFO NAME ": Using boot partition name [%s] (from %s)\n",
boot_part_name, cmdline ? "command line" : "kernel config");
#endif
#ifdef CONFIG_MTD_PARTITIONS
/* Try parsing commandline paritions */
data->nr_parts = parse_mtd_partitions(&data->mtd, part_probes,
&data->parts, 0);
/* Try platfotm data */
if (!data->nr_parts && bank->partitions) {
data->parts = bank->partitions;
data->nr_parts = bank->nr_partitions;
}
/* Add any partitions that were found */
if (data->nr_parts) {
res = add_mtd_partitions(&data->mtd,
data->parts, data->nr_parts);
if (res)
goto out2;
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
/* Update boot-mode slave partition */
slave = get_mtd_partition_slave(&data->mtd, boot_part_name);
if (slave) {
printk(KERN_INFO NAME ": Found BOOT parition"
"[%s], updating ECC paramters\n",
slave->name);
part = PART(slave);
data->boot_start = part->offset;
data->boot_end = part->offset + slave->size;
slave->oobavail =
data->ecc_boot.ecc_ctrl.layout->oobavail;
slave->subpage_sft =
data->ecc_boot.subpage_sft;
slave->ecclayout =
data->ecc_boot.ecc_ctrl.layout;
printk("boot-ECC 0x%08x->0x%08x\n",
(unsigned int)data->boot_start,
(unsigned int)data->boot_end);
} else {
printk(KERN_WARNING NAME ": Failed to find boot "
"partition [%s]\n", boot_part_name);
}
#endif
} else
#endif
res = add_mtd_device(&data->mtd);
if (!res)
return data;
out2:
#ifdef CONFIG_MTD_PARTITIONS
if (data->parts && data->parts != bank->partitions)
kfree(data->parts);
#endif
kfree(data);
out1:
return ERR_PTR(res);
}
static int __init stm_nand_flex_probe(struct platform_device *pdev)
{
struct stm_plat_nand_flex_data *pdata = pdev->dev.platform_data;
int res;
int n;
struct stm_nand_bank_data *bank;
struct stm_nand_flex_controller *flex;
flex = flex_init_controller(pdev);
if (IS_ERR(flex)) {
dev_err(&pdev->dev, "Failed to initialise NAND Controller.\n");
res = PTR_ERR(flex);
return res;
}
bank = pdata->banks;
for (n=0; n<pdata->nr_banks; n++) {
flex->devices[n] = flex_init_bank(flex, bank,
pdata->flex_rbn_connected,
dev_name(&pdev->dev));
bank++;
}
platform_set_drvdata(pdev, flex);
return 0;
}
static int __devexit stm_nand_flex_remove(struct platform_device *pdev)
{
struct stm_plat_nand_flex_data *pdata = pdev->dev.platform_data;
struct stm_nand_flex_controller *flex = platform_get_drvdata(pdev);
int n;
for (n=0; n<pdata->nr_banks; n++) {
struct stm_nand_flex_device *data = flex->devices[n];
nand_release(&data->mtd);
#ifdef CONFIG_MTD_PARTITIONS
if (data->parts && data->parts != pdata->banks[n].partitions)
kfree(data->parts);
#endif
kfree(data);
}
flex_exit_controller(pdev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver stm_nand_flex_driver = {
.probe = stm_nand_flex_probe,
.remove = stm_nand_flex_remove,
.driver = {
.name = NAME,
.owner = THIS_MODULE,
},
};
#ifdef CONFIG_STM_NAND_FLEX_BOOTMODESUPPORT
static int __init bootpart_setup(char *s)
{
cmdline = s;
return 1;
}
__setup("nbootpart=", bootpart_setup);
#endif
static int __init stm_nand_flex_init(void)
{
return platform_driver_register(&stm_nand_flex_driver);
}
static void __exit stm_nand_flex_exit(void)
{
platform_driver_unregister(&stm_nand_flex_driver);
}
module_init(stm_nand_flex_init);
module_exit(stm_nand_flex_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Angus Clark");
MODULE_DESCRIPTION("STMicroelectronics NAND driver: H/W FLEX mode");