1138 lines
27 KiB
C
Raw Normal View History

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <asm/mach/flash.h>
#include <mach/mxc_nand.h>
#define DRIVER_NAME "mxc_nand"
/* Addresses for NFC registers */
#define NFC_BUF_SIZE 0xE00
#define NFC_BUF_ADDR 0xE04
#define NFC_FLASH_ADDR 0xE06
#define NFC_FLASH_CMD 0xE08
#define NFC_CONFIG 0xE0A
#define NFC_ECC_STATUS_RESULT 0xE0C
#define NFC_RSLTMAIN_AREA 0xE0E
#define NFC_RSLTSPARE_AREA 0xE10
#define NFC_WRPROT 0xE12
#define NFC_UNLOCKSTART_BLKADDR 0xE14
#define NFC_UNLOCKEND_BLKADDR 0xE16
#define NFC_NF_WRPRST 0xE18
#define NFC_CONFIG1 0xE1A
#define NFC_CONFIG2 0xE1C
/* Addresses for NFC RAM BUFFER Main area 0 */
#define MAIN_AREA0 0x000
#define MAIN_AREA1 0x200
#define MAIN_AREA2 0x400
#define MAIN_AREA3 0x600
/* Addresses for NFC SPARE BUFFER Spare area 0 */
#define SPARE_AREA0 0x800
#define SPARE_AREA1 0x810
#define SPARE_AREA2 0x820
#define SPARE_AREA3 0x830
/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
* for Command operation */
#define NFC_CMD 0x1
/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
* for Address operation */
#define NFC_ADDR 0x2
/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
* for Input operation */
#define NFC_INPUT 0x4
/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
* for Data Output operation */
#define NFC_OUTPUT 0x8
/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
* for Read ID operation */
#define NFC_ID 0x10
/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
* for Read Status operation */
#define NFC_STATUS 0x20
/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
* Status operation */
#define NFC_INT 0x8000
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct mtd_partition *parts;
struct device *dev;
void __iomem *regs;
int spare_only;
int status_request;
int pagesize_2k;
uint16_t col_addr;
struct clk *clk;
int clk_act;
int irq;
wait_queue_head_t irq_waitq;
};
/* Define delays in microsec for NAND device operations */
#define TROP_US_DELAY 2000
/* Macros to get byte and bit positions of ECC */
#define COLPOS(x) ((x) >> 3)
#define BITPOS(x) ((x) & 0xf)
/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1
/* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nand_hw_eccoob_8 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}, }
};
static struct nand_ecclayout nand_hw_eccoob_16 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}, }
};
static struct nand_ecclayout nand_hw_eccoob_64 = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
#endif
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
uint16_t tmp;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK; /* Disable interrupt */
writew(tmp, host->regs + NFC_CONFIG1);
wake_up(&host->irq_waitq);
return IRQ_HANDLED;
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint16_t param, int useirq)
{
uint32_t tmp;
if (useirq) {
if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_INT_MSK; /* Enable interrupt */
writew(tmp, host->regs + NFC_CONFIG1);
wait_event(host->irq_waitq,
readw(host->regs + NFC_CONFIG2) & NFC_INT);
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
}
} else {
while (max_retries-- > 0) {
if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
break;
}
udelay(1);
}
if (max_retries < 0)
DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
__func__, param);
}
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, host->regs + NFC_FLASH_CMD);
writew(NFC_CMD, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd, useirq);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, host->regs + NFC_FLASH_ADDR);
writew(NFC_ADDR, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr, islast);
}
/* This function requests the NANDFC to initate the transfer
* of data currently in the NANDFC RAM buffer to the NAND device. */
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
/* NANDFC buffer 0 is used for page read/write */
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint16_t config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~(NFC_SP_EN);
writew(config1, host->regs + NFC_CONFIG1);
}
writew(NFC_INPUT, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only, true);
}
/* Requests NANDFC to initated the transfer of data from the
* NAND device into in the NANDFC ram buffer. */
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
/* NANDFC buffer 0 is used for page read/write */
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, host->regs + NFC_CONFIG1);
}
writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only, true);
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host)
{
struct nand_chip *this = &host->nand;
uint16_t tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, host->regs + NFC_BUF_ADDR);
/* Read ID into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_ID, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0, true);
if (this->options & NAND_BUSWIDTH_16) {
void __iomem *main_buf = host->regs + MAIN_AREA0;
/* compress the ID info */
writeb(readb(main_buf + 2), main_buf + 1);
writeb(readb(main_buf + 4), main_buf + 2);
writeb(readb(main_buf + 6), main_buf + 3);
writeb(readb(main_buf + 8), main_buf + 4);
writeb(readb(main_buf + 10), main_buf + 5);
}
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->regs + MAIN_AREA1;
uint32_t store;
uint16_t ret, tmp;
/* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status to prevent
* corruption of read/write buffer on status requests. */
writew(1, host->regs + NFC_BUF_ADDR);
/* Read status into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_STATUS, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0, true);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
DEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint8_t ret = 0;
uint16_t col, rd_word;
uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
/* Get column for 16-bit access */
col = host->col_addr >> 1;
/* If we are accessing the spare region */
if (host->spare_only)
rd_word = readw(&spare_buf[col]);
else
rd_word = readw(&main_buf[col]);
/* Pick upper/lower byte of word from RAM buffer */
if (host->col_addr & 0x1)
ret = (rd_word >> 8) & 0xFF;
else
ret = rd_word & 0xFF;
/* Update saved column address */
host->col_addr++;
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t col, rd_word, ret;
uint16_t __iomem *p;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_read_word(col = %d)\n", host->col_addr);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
if (col < mtd->writesize)
p = (host->regs + MAIN_AREA0) + (col >> 1);
else
p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
if (col & 1) {
rd_word = readw(p);
ret = (rd_word >> 8) & 0xff;
rd_word = readw(&p[1]);
ret |= (rd_word << 8) & 0xff00;
} else
ret = readw(p);
/* Update saved column address */
host->col_addr = col + 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int n, col, i = 0;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
DEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
while (n) {
void __iomem *p;
if (col < mtd->writesize)
p = host->regs + MAIN_AREA0 + (col & ~3);
else
p = host->regs + SPARE_AREA0 -
mtd->writesize + (col & ~3);
DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
__LINE__, p);
if (((col | (int)&buf[i]) & 3) || n < 16) {
uint32_t data = 0;
if (col & 3 || n < 4)
data = readl(p);
switch (col & 3) {
case 0:
if (n) {
data = (data & 0xffffff00) |
(buf[i++] << 0);
n--;
col++;
}
case 1:
if (n) {
data = (data & 0xffff00ff) |
(buf[i++] << 8);
n--;
col++;
}
case 2:
if (n) {
data = (data & 0xff00ffff) |
(buf[i++] << 16);
n--;
col++;
}
case 3:
if (n) {
data = (data & 0x00ffffff) |
(buf[i++] << 24);
n--;
col++;
}
}
writel(data, p);
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
DEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
__func__, __LINE__, n, m, i, col);
memcpy(p, &buf[i], m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int n, col, i = 0;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
while (n) {
void __iomem *p;
if (col < mtd->writesize)
p = host->regs + MAIN_AREA0 + (col & ~3);
else
p = host->regs + SPARE_AREA0 -
mtd->writesize + (col & ~3);
if (((col | (int)&buf[i]) & 3) || n < 16) {
uint32_t data;
data = readl(p);
switch (col & 3) {
case 0:
if (n) {
buf[i++] = (uint8_t) (data);
n--;
col++;
}
case 1:
if (n) {
buf[i++] = (uint8_t) (data >> 8);
n--;
col++;
}
case 2:
if (n) {
buf[i++] = (uint8_t) (data >> 16);
n--;
col++;
}
case 3:
if (n) {
buf[i++] = (uint8_t) (data >> 24);
n--;
col++;
}
}
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
memcpy(&buf[i], p, m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/* Used by the upper layer to verify the data in NAND Flash
* with the data in the buf. */
static int mxc_nand_verify_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
return -EFAULT;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
if (chip > 0) {
DEBUG(MTD_DEBUG_LEVEL0,
"ERROR: Illegal chip select (chip = %d)\n", chip);
return;
}
if (chip == -1) {
writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
host->regs + NFC_CONFIG1);
return;
}
writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
host->regs + NFC_CONFIG1);
#endif
switch (chip) {
case -1:
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable(host->clk);
host->clk_act = 0;
}
break;
case 0:
/* Enable the NFC clock */
if (!host->clk_act) {
clk_enable(host->clk);
host->clk_act = 1;
}
break;
default:
break;
}
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int useirq = true;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_STATUS:
host->col_addr = 0;
host->status_request = true;
break;
case NAND_CMD_READ0:
host->col_addr = column;
host->spare_only = false;
useirq = false;
break;
case NAND_CMD_READOOB:
host->col_addr = column;
host->spare_only = true;
useirq = false;
if (host->pagesize_2k)
command = NAND_CMD_READ0; /* only READ0 is valid */
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
/*
* FIXME: before send SEQIN command for write OOB,
* We must read one page out.
* For K9F1GXX has no READ1 command to set current HW
* pointer to spare area, we must write the whole page
* including OOB together.
*/
if (host->pagesize_2k)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
host->col_addr = column - mtd->writesize;
host->spare_only = true;
/* Set program pointer to spare region */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READOOB, false);
} else {
host->spare_only = false;
host->col_addr = column;
/* Set program pointer to page start */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READ0, false);
}
useirq = false;
break;
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k) {
/* data in 4 areas datas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
send_prog_page(host, 3, host->spare_only);
}
break;
case NAND_CMD_ERASE1:
useirq = false;
break;
}
/* Write out the command to the device. */
send_cmd(host, command, useirq);
/* Write out column address, if necessary */
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column adress to index into
* the full page.
*/
send_addr(host, 0, page_addr == -1);
if (host->pagesize_2k)
/* another col addr cycle for 2k page */
send_addr(host, 0, false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
send_addr(host, (page_addr & 0xff), false);
if (host->pagesize_2k) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, false);
send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, true);
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, false);
send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, true);
}
}
/* Command post-processing step */
switch (command) {
case NAND_CMD_RESET:
break;
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
if (host->pagesize_2k) {
/* send read confirm command */
send_cmd(host, NAND_CMD_READSTART, true);
/* read for each AREA */
send_read_page(host, 0, host->spare_only);
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
} else
send_read_page(host, 0, host->spare_only);
break;
case NAND_CMD_READID:
host->col_addr = 0;
send_read_id(host);
break;
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
break;
case NAND_CMD_ERASE2:
break;
}
}
/* Define some generic bad / good block scan pattern which are used
* while scanning a device for factory marked good / bad blocks. */
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr smallpage_memorybased = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
};
static int __init mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
struct mxc_nand_host *host;
struct resource *res;
uint16_t tmp;
int err = 0, nr_parts = 0;
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev;
mtd->name = "mxc_nand";
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->select_chip = mxc_nand_select_chip;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
host->clk = clk_get(&pdev->dev, "nfc");
if (IS_ERR(host->clk)) {
err = PTR_ERR(host->clk);
goto eclk;
}
clk_enable(host->clk);
host->clk_act = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
err = -ENODEV;
goto eres;
}
host->regs = ioremap(res->start, res->end - res->start + 1);
if (!host->regs) {
err = -ENOMEM;
goto eres;
}
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK;
writew(tmp, host->regs + NFC_CONFIG1);
init_waitqueue_head(&host->irq_waitq);
host->irq = platform_get_irq(pdev, 0);
err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
if (err)
goto eirq;
if (pdata->hw_ecc) {
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
this->ecc.bytes = 3;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
} else {
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
}
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2) {
this->options |= NAND_BUSWIDTH_16;
this->ecc.layout = &nand_hw_eccoob_16;
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
goto escan;
}
if (mtd->writesize == 2048) {
host->pagesize_2k = 1;
this->badblock_pattern = &smallpage_memorybased;
}
if (this->ecc.mode == NAND_ECC_HW) {
switch (mtd->oobsize) {
case 8:
this->ecc.layout = &nand_hw_eccoob_8;
break;
case 16:
this->ecc.layout = &nand_hw_eccoob_16;
break;
case 64:
this->ecc.layout = &nand_hw_eccoob_64;
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.calculate = NULL;
this->ecc.correct = NULL;
this->ecc.hwctl = NULL;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
break;
}
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
/* Register the partitions */
#ifdef CONFIG_MTD_PARTITIONS
nr_parts =
parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
if (nr_parts > 0)
add_mtd_partitions(mtd, host->parts, nr_parts);
else
#endif
{
pr_info("Registering %s as whole device\n", mtd->name);
add_mtd_device(mtd);
}
platform_set_drvdata(pdev, host);
return 0;
escan:
free_irq(host->irq, host);
eirq:
iounmap(host->regs);
eres:
clk_put(host->clk);
eclk:
kfree(host);
return err;
}
static int __devexit mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
clk_put(host->clk);
platform_set_drvdata(pdev, NULL);
nand_release(&host->mtd);
free_irq(host->irq, host);
iounmap(host->regs);
kfree(host);
return 0;
}
#ifdef CONFIG_PM
static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
if (mtd) {
ret = mtd->suspend(mtd);
/* Disable the NFC clock */
clk_disable(host->clk);
}
return ret;
}
static int mxcnd_resume(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
if (mtd) {
/* Enable the NFC clock */
clk_enable(host->clk);
mtd->resume(mtd);
}
return ret;
}
#else
# define mxcnd_suspend NULL
# define mxcnd_resume NULL
#endif /* CONFIG_PM */
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
},
.remove = __exit_p(mxcnd_remove),
.suspend = mxcnd_suspend,
.resume = mxcnd_resume,
};
static int __init mxc_nd_init(void)
{
return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
}
static void __exit mxc_nd_cleanup(void)
{
/* Unregister the device structure */
platform_driver_unregister(&mxcnd_driver);
}
module_init(mxc_nd_init);
module_exit(mxc_nd_cleanup);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");