1154 lines
26 KiB
C
Raw Normal View History

/*
* stm_spi_fsm.c Support for STM SPI Serial Flash Controller
*
* Author: Angus Clark <angus.clark@st.com>
*
* Copyright (C) 2010 STMicroelectronics Limited
*
* JEDEC probe based on drivers/mtd/devices/m25p80.c
*
* May be copied or modified under the terms of the GNU General Public
* License. See linux/COPYING for more information.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/stm/platform.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include "stm_spi_fsm.h"
#define NAME "stm-spi-fsm"
#define FLASH_DEFAULT_FREQ 10000000 /* Default and probe freq. */
#define FLASH_PAGESIZE 256
#define FLASH_MAX_BUSY_WAIT (10 * HZ) /* Maximum erase time */
/*
* SPI FSM Controller data
*/
struct stm_spi_fsm {
struct mtd_info mtd;
struct device *dev;
struct resource *region;
void __iomem *base;
struct mutex lock;
unsigned partitioned;
uint8_t page_buf[FLASH_PAGESIZE]__attribute__((aligned(4)));
uint32_t read_mask;
struct fsm_seq *seq_read_data;
};
/*
* SPI FLASH
*/
/* Commands */
#define FLASH_CMD_WREN 0x06
#define FLASH_CMD_WRDI 0x04
#define FLASH_CMD_RDID 0x9f
#define FLASH_CMD_RDSR 0x05
#define FLASH_CMD_WRSR 0x01
#define FLASH_CMD_READ 0x03
#define FLASH_CMD_READ_FAST 0x0b
#define FLASH_CMD_READ_DUAL 0x3b
#define FLASH_CMD_PAGEPROGRAM 0x02
#define FLASH_CMD_SE_4K 0x20
#define FLASH_CMD_SE_32K 0x52
#define FLASH_CMD_SE 0xd8
#define FLASH_CMD_CHIPERASE 0xc7
/* Status register */
#define FLASH_STATUS_BUSY 0x01
#define FLASH_STATUS_WEL 0x02
#define FLASH_STATUS_BP0 0x04
#define FLASH_STATUS_BP1 0x08
#define FLASH_STATUS_BP2 0x10
#define FLASH_STATUS_TB 0x20
#define FLASH_STATUS_SP 0x40
#define FLASH_STATUS_SRWP0 0x80
/* Device capabilities */
#define SECT_4K 0x01 /* Supports FLASH_CMD_SE_4K */
#define SECT_32K 0x02 /* Supports FLASH_CMD_SE_32K */
#define FAST_READ 0x04 /* Supports FLASH_CMD_FAST_READ */
#define DUAL_READ 0x08 /* Supports FLASH_CMD_DUAL_READ */
#define QUAD_READ 0x10 /* Supports FLASH_CMD_DUAL_READ */
/*
* FSM template sequences
* (Note, various fields are modified on-the-fly)
*/
struct fsm_seq {
uint32_t data_size;
uint32_t addr1;
uint32_t addr2;
uint32_t addr_cfg;
uint32_t seq_opc[5];
uint32_t mode;
uint32_t dummy;
uint32_t status;
uint8_t seq[16];
uint32_t seq_cfg;
} __attribute__((__packed__, aligned(4)));
#define FSM_SEQ_SIZE sizeof(struct fsm_seq)
static struct fsm_seq seq_dummy = {
.data_size = TRANSFER_SIZE(0),
.seq = {
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_read_jedec = {
.data_size = TRANSFER_SIZE(8),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
.seq = {
FSM_INST_CMD1,
FSM_INST_DATA_READ,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_read_status = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_RDSR)),
.seq = {
FSM_INST_CMD1,
FSM_INST_DATA_READ,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_read_data_default = {
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_READ)),
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
.seq = {
FSM_INST_CMD1,
FSM_INST_ADD1,
FSM_INST_DATA_READ,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_read_data_dual = {
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_READ_DUAL)),
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
.dummy = DUMMY_PADS_1 | DUMMY_CYCLES(8),
.seq = {
FSM_INST_CMD1,
FSM_INST_ADD1,
FSM_INST_DUMMY,
FSM_INST_DATA_READ,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_2 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_read_data_fast = {
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_READ_FAST)),
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
.dummy = DUMMY_PADS_1 | DUMMY_CYCLES(8),
.seq = {
FSM_INST_CMD1,
FSM_INST_ADD1,
FSM_INST_DUMMY,
FSM_INST_DATA_READ,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_write_data = {
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_PAGEPROGRAM)),
},
.seq = {
FSM_INST_CMD1,
FSM_INST_CMD2,
FSM_INST_ADD1,
FSM_INST_DATA_WRITE,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_erase_sector = {
.addr_cfg = (ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD1(24) |
ADR_CFG_CSDEASSERT_ADD1),
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_SE)),
},
.seq = {
FSM_INST_CMD1,
FSM_INST_CMD2,
FSM_INST_ADD1,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct fsm_seq seq_erase_chip = {
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(FLASH_CMD_CHIPERASE)),
},
.seq = {
FSM_INST_CMD1,
FSM_INST_CMD2,
FSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
/*
* FSM interface
*/
static inline int fsm_is_idle(struct stm_spi_fsm *fsm)
{
return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
}
static inline uint32_t fsm_fifo_available(struct stm_spi_fsm *fsm)
{
return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
}
static inline void fsm_load_seq(struct stm_spi_fsm *fsm,
const struct fsm_seq *const seq)
{
BUG_ON(!fsm_is_idle(fsm));
memcpy_toio(fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE,
seq, FSM_SEQ_SIZE);
}
static int fsm_wait_seq(struct stm_spi_fsm *fsm)
{
unsigned long timeo = jiffies + HZ;
while (time_before(jiffies, timeo)) {
if (fsm_is_idle(fsm))
return 0;
cond_resched();
}
dev_err(fsm->dev, "timeout on sequence completion\n");
return 1;
}
static void fsm_clear_fifo(struct stm_spi_fsm *fsm)
{
uint32_t avail;
while ((avail = fsm_fifo_available(fsm)) > 0) {
dev_dbg(fsm->dev, "clearing %d bytes from FIFO\n", avail*4);
while (avail) {
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
avail--;
}
}
}
static int fsm_read_fifo(struct stm_spi_fsm *fsm,
uint32_t *buf, const uint32_t size)
{
uint32_t avail;
uint32_t remaining = size >> 2;
uint32_t words;
dev_dbg(fsm->dev, "reading %d bytes from FIFO\n", size);
BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
do {
while (!(avail = fsm_fifo_available(fsm)))
;
words = min(avail, remaining);
remaining -= words;
readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
buf += words;
} while (remaining);
return size;
}
static int fsm_write_fifo(struct stm_spi_fsm *fsm,
const uint32_t *buf, const uint32_t size)
{
uint32_t words = size >> 2;
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
return size;
}
/*
* Serial Flash operations
*/
/* [AAC: The following contradicts validation GNBvd79303/GNBvd79597. Awaiting
* clarification from validation/design.]
*/
static int fsm_wait_busy(struct stm_spi_fsm *fsm)
{
const struct fsm_seq *seq = &seq_read_status;
unsigned long deadline;
uint8_t status[4] = {0x00, 0x00, 0x00, 0x00};
/* Load read_status sequence */
fsm_load_seq(fsm, seq);
/* Repeat until busy bit is deasserted, or timeout */
deadline = jiffies + FLASH_MAX_BUSY_WAIT;
do {
fsm_read_fifo(fsm, (uint32_t *)status, 4);
if ((status[3] & FLASH_STATUS_BUSY) == 0) {
fsm_wait_seq(fsm);
return 0;
}
cond_resched();
/* Wait for sequence to end, then restart */
fsm_wait_seq(fsm);
writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
} while (!time_after_eq(jiffies, deadline));
fsm_wait_seq(fsm);
dev_err(fsm->dev, "timeout on wait_busy\n");
return 1;
}
static int fsm_read_jedec(struct stm_spi_fsm *fsm, uint8_t *const jedec)
{
const struct fsm_seq *seq = &seq_read_jedec;
uint32_t tmp[2];
fsm_load_seq(fsm, seq);
fsm_read_fifo(fsm, tmp, 8);
memcpy(jedec, tmp, 5);
return 0;
}
static int fsm_erase_sector(struct stm_spi_fsm *fsm, const uint32_t offset)
{
struct fsm_seq *seq = &seq_erase_sector;
dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
seq->addr1 = offset;
fsm_load_seq(fsm, seq);
fsm_wait_seq(fsm);
fsm_wait_busy(fsm);
return 0;
}
static int fsm_erase_chip(struct stm_spi_fsm *fsm)
{
const struct fsm_seq *seq = &seq_erase_chip;
dev_dbg(fsm->dev, "erasing chip\n");
fsm_load_seq(fsm, seq);
fsm_wait_seq(fsm);
fsm_wait_busy(fsm);
return 0;
}
static int fsm_read(struct stm_spi_fsm *fsm, uint8_t *const buf,
const uint32_t size, const uint32_t offset)
{
struct fsm_seq *seq = fsm->seq_read_data;
uint32_t read_mask = fsm->read_mask;
uint8_t *page_buf = fsm->page_buf;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp[2];
uint8_t *p;
dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
/* Handle non-aligned buf */
p = ((uint32_t)buf & 0x3) ? page_buf : buf;
/* Handle non-aligned size */
size_ub = (size + read_mask) & ~read_mask;
size_lb = size & ~read_mask;
size_mop = size & read_mask;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = offset;
fsm_load_seq(fsm, seq);
fsm_read_fifo(fsm, (uint32_t *)p, size_lb);
if (size_mop) {
fsm_read_fifo(fsm, tmp, read_mask + 1);
memcpy(p + size_lb, &tmp, size_mop);
}
/* Handle non-aligned buf */
if ((uint32_t)buf & 0x3)
memcpy(buf, page_buf, size);
/* Wait for sequence to finish */
fsm_wait_seq(fsm);
return 0;
}
static int fsm_write(struct stm_spi_fsm *fsm, const uint8_t *const buf,
const uint32_t size, const uint32_t offset)
{
struct fsm_seq *seq = &seq_write_data;
uint8_t *page_buf = fsm->page_buf;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp;
uint8_t *t = (uint8_t *)&tmp;
int i;
const uint8_t *p;
dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
/* Handle non-aligned buf */
if ((uint32_t)buf & 0x3) {
memcpy(page_buf, buf, size);
p = page_buf;
} else {
p = buf;
}
/* Handle non-aligned size */
size_ub = (size + 0x3) & ~0x3;
size_lb = size & ~0x3;
size_mop = size & 0x3;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = offset;
if (cpu_data->type == CPU_STX7106) {
/* Requires starting "dummy" sequence on stx7106 (seems vaguely
* related to GNBvd79464) [AAC: check with validation/design:
* Not down to erase sequence, setting FIFO-write bit only seems
* to work properly if dummy sequence has been run.]
*/
fsm_load_seq(fsm, &seq_dummy);
readl(fsm->base + SPI_FAST_SEQ_CFG);
}
/* Need to set FIFO to write mode, before writing data to FIFO (see
* GNBvb79594)
*/
writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
readl(fsm->base + SPI_FAST_SEQ_CFG);
/* Write data to FIFO, before starting sequence (see GNBvd79593) */
fsm_write_fifo(fsm, (uint32_t *)p, size_lb);
p += size_lb;
/* Handle non-aligned size */
if (size_mop) {
tmp = ~0ul; /* fill with 0xff's */
for (i = 0; i < size_mop; i++)
t[i] = *p++;
fsm_write_fifo(fsm, &tmp, 4);
}
/* Start sequence */
fsm_load_seq(fsm, seq);
/* Wait for sequence to finish */
fsm_wait_seq(fsm);
/* Wait for completion */
fsm_wait_busy(fsm);
return 0;
}
/*
* FSM Configuration
*/
static int fsm_set_mode(struct stm_spi_fsm *fsm, uint32_t mode)
{
/* Wait for controller to accept mode change */
if (!cpu_data->type == CPU_STX7108) {
/* Does not work correctly on stx7108 */
while (!(readl(fsm->base + SPI_STA_MODE_CHANGE) & 0x1))
;
}
writel(mode, fsm->base + SPI_MODESELECT);
return 0;
}
static int fsm_set_freq(struct stm_spi_fsm *fsm, uint32_t freq)
{
struct clk *emi_clk;
uint32_t emi_freq;
uint32_t clk_div;
/* Timings set in terms of EMI clock... */
emi_clk = clk_get(NULL, "emi_clk");
if (IS_ERR(emi_clk)) {
dev_warn(fsm->dev, "Failed to find EMI clock. "
"Using default 100MHz.\n");
emi_freq = 100000000UL;
} else {
emi_freq = clk_get_rate(emi_clk);
}
/* Calculate clk_div: multiple of 2, round up, 2 -> 128. Note, clk_div =
* 4 is not supported on current SoCs, use 6 instead (RnDHV00020914) */
clk_div = 2*((emi_freq + (2*freq - 1))/(2*freq));
if (clk_div < 2)
clk_div = 2;
else if (clk_div == 4)
clk_div = 6;
else if (clk_div > 128)
clk_div = 128;
dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clock_div = %u\n",
emi_freq, freq, clk_div);
/* Set SPI_CLOCKDIV */
writel(clk_div, fsm->base + SPI_CLOCKDIV);
return 0;
}
static int fsm_configure_reads(struct stm_spi_fsm *fsm, uint32_t capabilities)
{
/* Disable DUAL mode on stx7106 (see GNBvd78843) */
if (cpu_data->type == CPU_STX7106) {
dev_info(fsm->dev, "disabling DUAL mode reads on stx7106\n");
capabilities &= ~DUAL_READ;
}
if (capabilities & DUAL_READ) {
/* Do DUAL mode read */
fsm->seq_read_data = &seq_read_data_dual;
fsm->read_mask = 0x7; /* Dual Mode seems to require multiple
* of 8-byte transfers! [ACC: check
* with validation/design: attempts with
* 4-byte transfers -> subsequent
* non-dual reads shift in 2 dummy
* bytes.] */
dev_dbg(fsm->dev, "setting DUAL mode reads\n");
} else if (capabilities & FAST_READ) {
/* Do FAST read */
fsm->seq_read_data = &seq_read_data_fast;
fsm->read_mask = 0x3;
dev_dbg(fsm->dev, "setting FAST reads\n");
} else {
/* Fall-back to normal read */
fsm->seq_read_data = &seq_read_data_default;
fsm->read_mask = 0x3;
}
return 0;
}
static int fsm_init(struct stm_spi_fsm *fsm)
{
/* Perform a soft reset of the FSM controller */
if (!cpu_data->type == CPU_STX7106) {
/* This fails on stx7106 [AAC: check with validation. Reset
* results in non-clearable data in the FIFO.]
*/
writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
udelay(1);
writel(0, fsm->base + SPI_FAST_SEQ_CFG);
}
/* Set clock frequency to safe default */
fsm_set_freq(fsm, FLASH_DEFAULT_FREQ);
/* Switch to FSM */
fsm_set_mode(fsm, SPI_MODESELECT_FSM);
/* Set timing parameters (use reset values for now (awaiting information
* from Validation Team)
*/
writel(SPI_CFG_DEVICE_ST |
SPI_CFG_MIN_CS_HIGH(0x0AA) |
SPI_CFG_CS_SETUPHOLD(0xa0) |
SPI_CFG_DATA_HOLD(0x00), fsm->base + SPI_CONFIGDATA);
/* Clear FIFO, just in case */
fsm_clear_fifo(fsm);
return 0;
}
static void fsm_exit(struct stm_spi_fsm *fsm)
{
}
/*
* MTD interface
*/
/*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct stm_spi_fsm *fsm = mtd->priv;
uint32_t bytes;
dev_dbg(fsm->dev, "%s %s 0x%08x, len %zd\n", __func__,
"from", (u32)from, len);
/* Byte count starts at zero. */
if (retlen)
*retlen = 0;
if (!len)
return 0;
if (from + len > mtd->size)
return -EINVAL;
mutex_lock(&fsm->lock);
while (len > 0) {
bytes = min(len, (size_t)FLASH_PAGESIZE);
fsm_read(fsm, buf, bytes, from);
buf += bytes;
from += bytes;
len -= bytes;
if (retlen)
*retlen += bytes;
}
mutex_unlock(&fsm->lock);
return 0;
}
/*
* Write an address range to the flash chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct stm_spi_fsm *fsm = mtd->priv;
u32 page_offs;
u32 bytes;
uint8_t *b = (uint8_t *)buf;
dev_dbg(fsm->dev, "%s %s 0x%08x, len %zd\n", __func__,
"to", (u32)to, len);
if (retlen)
*retlen = 0;
if (!len)
return 0;
if (to + len > mtd->size)
return -EINVAL;
/* offset within page */
page_offs = to % FLASH_PAGESIZE;
mutex_lock(&fsm->lock);
while (len) {
/* write up to page boundary */
bytes = min(FLASH_PAGESIZE - page_offs, len);
fsm_write(fsm, b, bytes, to);
b += bytes;
len -= bytes;
to += bytes;
/* We are now page-aligned */
page_offs = 0;
if (retlen)
*retlen += bytes;
}
mutex_unlock(&fsm->lock);
return 0;
}
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct stm_spi_fsm *fsm = mtd->priv;
u32 addr, len;
dev_dbg(fsm->dev, "%s %s 0x%llx, len %lld\n", __func__,
"at", (long long)instr->addr, (long long)instr->len);
if (instr->addr + instr->len > mtd->size)
return -EINVAL;
if (instr->len & (mtd->erasesize - 1))
return -EINVAL;
addr = instr->addr;
len = instr->len;
mutex_lock(&fsm->lock);
/* whole-chip erase? */
if (len == mtd->size) {
if (fsm_erase_chip(fsm)) {
instr->state = MTD_ERASE_FAILED;
mutex_unlock(&fsm->lock);
return -EIO;
}
} else {
while (len) {
if (fsm_erase_sector(fsm, addr)) {
instr->state = MTD_ERASE_FAILED;
mutex_unlock(&fsm->lock);
return -EIO;
}
addr += mtd->erasesize;
len -= mtd->erasesize;
}
}
mutex_unlock(&fsm->lock);
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
/*
* SPI FLASH devices
*/
struct flash_info {
char *name;
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/* The size listed here is what works with FLASH_CMD_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
/* FLASH device capabilities */
u16 capabilities;
/* Maximum operating frequency. Note, where FAST_READ is supported,
* freq_max specifies the FAST_READ frequency, not the READ frequency.
*/
u32 max_freq;
};
/* Device table adapted from drivers/mtd/devices/m25p80.c
*
* In order to configure features supported by SPI FSM controller, we have added
* FAST_READ, DUAL_READ, and QUAD_READ as device capabilities, and added a field
* specifying the device operating frequency.
*/
static struct flash_info __devinitdata flash_types[] = {
/* ST Microelectronics/Numonyx --
* (newer production versions may have feature updates (eg faster
* operating frequency) */
{ "m25p40", 0x202013, 0, 64 * 1024, 8, FAST_READ, 25000000},
{ "m25p80", 0x202014, 0, 64 * 1024, 16, FAST_READ, 25000000},
{ "m25p16", 0x202015, 0, 64 * 1024, 32, FAST_READ, 25000000},
{ "m25p32", 0x202016, 0, 64 * 1024, 64, FAST_READ, 50000000},
{ "m25p64", 0x202017, 0, 64 * 1024, 128, FAST_READ, 50000000},
{ "m25p128", 0x202018, 0, 256 * 1024, 64, FAST_READ, 50000000},
#define M25PX_CAPS (SECT_4K | FAST_READ | DUAL_READ)
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_CAPS, 75000000},
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_CAPS, 75000000},
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
#define W25X_CAPS (SECT_4K | FAST_READ | DUAL_READ)
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_CAPS, 75000000},
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_CAPS, 75000000},
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_CAPS, 75000000},
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_CAPS, 75000000},
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_CAPS, 75000000},
#define N25Q_CAPS (FAST_READ | DUAL_READ)
{ "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_CAPS, 108000000},
/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
#define W25Q_CAPS (SECT_4K | SECT_32K | FAST_READ | DUAL_READ | QUAD_READ)
{ "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_CAPS, 80000000},
{ "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_CAPS, 80000000},
{ "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_CAPS, 80000000},
{ "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_CAPS, 80000000},
{ NULL, 0x000000, 0, 0, 0, 0, },
};
static struct flash_info *__devinit fsm_jedec_probe(struct stm_spi_fsm *fsm)
{
u8 id[5];
u32 jedec;
u16 ext_jedec;
struct flash_info *info;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
if (fsm_read_jedec(fsm, id) != 0) {
dev_info(fsm->dev, "error reading JEDEC ID\n");
return NULL;
}
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
jedec, id[0], id[1], id[2], id[3], id[4]);
ext_jedec = id[3] << 8 | id[4];
for (info = flash_types; info->name; info++) {
if (info->jedec_id == jedec) {
if (info->ext_id != 0 && info->ext_id != ext_jedec)
continue;
return info;
}
}
dev_err(fsm->dev, "unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
/*
* STM SPI FSM driver setup
*/
static int __init stm_spi_fsm_probe(struct platform_device *pdev)
{
struct stm_plat_spifsm_data *data = pdev->dev.platform_data;
struct stm_spi_fsm *fsm;
struct resource *resource;
int ret = 0;
struct flash_info *info;
unsigned i;
uint32_t freq;
/* Allocate memory for the driver structure (and zero it) */
fsm = kzalloc(sizeof(struct stm_spi_fsm), GFP_KERNEL);
if (!fsm) {
dev_err(&pdev->dev, "failed to allocate fsm controller data\n");
return -ENOMEM;
}
fsm->dev = &pdev->dev;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
dev_err(&pdev->dev, "failed to find IORESOURCE_MEM\n");
ret = -ENODEV;
goto out1;
}
fsm->region = request_mem_region(resource->start,
resource_size(resource), pdev->name);
if (!fsm->region) {
dev_err(&pdev->dev, "failed to reserve memory region "
"[0x%08x-0x%08x]\n", resource->start, resource->end);
ret = -EBUSY;
goto out1;
}
fsm->base = ioremap_nocache(resource->start, resource_size(resource));
if (!fsm->base) {
dev_err(&pdev->dev, "failed to ioremap [0x%08x]\n",
resource->start);
ret = -EINVAL;
goto out2;
}
mutex_init(&fsm->lock);
/* Initialise FSM */
if (fsm_init(fsm) != 0) {
dev_err(&pdev->dev, "failed to initialise SPI FSM "
"Controller\n");
ret = -EINVAL;
goto out3;
}
/* Detect SPI FLASH device */
info = fsm_jedec_probe(fsm);
if (!info) {
ret = -ENODEV;
goto out4;
}
platform_set_drvdata(pdev, fsm);
/* Set operating frequency, from table or overridden by platform data */
if (data->max_freq)
freq = data->max_freq;
else if (info->max_freq)
freq = info->max_freq;
else
freq = FLASH_DEFAULT_FREQ;
fsm_set_freq(fsm, freq);
/* Configure read operations based on device capabilities */
fsm_configure_reads(fsm, info->capabilities);
/* Set up MTD parameters */
fsm->mtd.priv = fsm;
if (data && data->name)
fsm->mtd.name = data->name;
else
fsm->mtd.name = NAME;
fsm->mtd.type = MTD_NORFLASH;
fsm->mtd.writesize = 4;
fsm->mtd.flags = MTD_CAP_NORFLASH;
fsm->mtd.size = info->sector_size * info->n_sectors;
fsm->mtd.erasesize = info->sector_size;
fsm->mtd.read = mtd_read;
fsm->mtd.write = mtd_write;
fsm->mtd.erase = mtd_erase;
dev_info(&pdev->dev, "found device: %s, size = %llx (%lldMiB) "
"erasesize = 0x%08x (%uKiB)\n",
info->name,
(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
/* Add partitions */
if (mtd_has_partitions()) {
struct mtd_partition *parts = NULL;
int nr_parts = 0;
if (mtd_has_cmdlinepart()) {
static const char *part_probes[]
= { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(&fsm->mtd,
part_probes, &parts, 0);
}
if (nr_parts <= 0 && data && data->parts) {
parts = data->parts;
nr_parts = data->nr_parts;
}
if (nr_parts > 0) {
for (i = 0; i < nr_parts; i++) {
dev_dbg(fsm->dev, "partitions[%d] = "
"{.name = %s, .offset = 0x%llx, "
".size = 0x%llx (%lldKiB) }\n",
i, parts[i].name,
(long long)parts[i].offset,
(long long)parts[i].size,
(long long)(parts[i].size >> 10));
}
fsm->partitioned = 1;
if (add_mtd_partitions(&fsm->mtd, parts, nr_parts)) {
ret = -ENODEV;
goto out4;
}
/* Success :-) */
return 0;
}
} else if (data->nr_parts) {
dev_info(&pdev->dev, " ignoring %d default partitions on %s\n",
data->nr_parts, data->name);
}
if (add_mtd_device(&fsm->mtd)) {
ret = -ENODEV;
goto out4;
}
/* Success :-) */
return 0;
out4:
fsm_exit(fsm);
platform_set_drvdata(pdev, NULL);
out3:
iounmap(fsm->base);
out2:
release_resource(fsm->region);
out1:
kfree(fsm);
return ret;
}
static int __devexit stm_spi_fsm_remove(struct platform_device *pdev)
{
struct stm_spi_fsm *fsm = platform_get_drvdata(pdev);
if (mtd_has_partitions() && fsm->partitioned)
del_mtd_partitions(&fsm->mtd);
else
del_mtd_device(&fsm->mtd);
fsm_exit(fsm);
iounmap(fsm->base);
release_resource(fsm->region);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver stm_spi_fsm_driver = {
.probe = stm_spi_fsm_probe,
.remove = stm_spi_fsm_remove,
.driver = {
.name = NAME,
.owner = THIS_MODULE,
},
};
static int __init stm_spi_fsm_init(void)
{
return platform_driver_register(&stm_spi_fsm_driver);
}
static void __exit stm_spi_fsm_exit(void)
{
platform_driver_unregister(&stm_spi_fsm_driver);
}
module_init(stm_spi_fsm_init);
module_exit(stm_spi_fsm_exit);
MODULE_AUTHOR("Angus Clark <Angus.Clark@st.com>");
MODULE_DESCRIPTION("STM SPI FSM driver");
MODULE_LICENSE("GPL");