204 lines
6.9 KiB
C
204 lines
6.9 KiB
C
|
/*
|
||
|
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
|
||
|
*/
|
||
|
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/reiserfs_fs.h>
|
||
|
#include <linux/reiserfs_fs_sb.h>
|
||
|
|
||
|
// find where objectid map starts
|
||
|
#define objectid_map(s,rs) (old_format_only (s) ? \
|
||
|
(__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
|
||
|
(__le32 *)((rs) + 1))
|
||
|
|
||
|
#ifdef CONFIG_REISERFS_CHECK
|
||
|
|
||
|
static void check_objectid_map(struct super_block *s, __le32 * map)
|
||
|
{
|
||
|
if (le32_to_cpu(map[0]) != 1)
|
||
|
reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
|
||
|
(long unsigned int)le32_to_cpu(map[0]));
|
||
|
|
||
|
// FIXME: add something else here
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static void check_objectid_map(struct super_block *s, __le32 * map)
|
||
|
{;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* When we allocate objectids we allocate the first unused objectid.
|
||
|
Each sequence of objectids in use (the odd sequences) is followed
|
||
|
by a sequence of objectids not in use (the even sequences). We
|
||
|
only need to record the last objectid in each of these sequences
|
||
|
(both the odd and even sequences) in order to fully define the
|
||
|
boundaries of the sequences. A consequence of allocating the first
|
||
|
objectid not in use is that under most conditions this scheme is
|
||
|
extremely compact. The exception is immediately after a sequence
|
||
|
of operations which deletes a large number of objects of
|
||
|
non-sequential objectids, and even then it will become compact
|
||
|
again as soon as more objects are created. Note that many
|
||
|
interesting optimizations of layout could result from complicating
|
||
|
objectid assignment, but we have deferred making them for now. */
|
||
|
|
||
|
/* get unique object identifier */
|
||
|
__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
|
||
|
{
|
||
|
struct super_block *s = th->t_super;
|
||
|
struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
|
||
|
__le32 *map = objectid_map(s, rs);
|
||
|
__u32 unused_objectid;
|
||
|
|
||
|
BUG_ON(!th->t_trans_id);
|
||
|
|
||
|
check_objectid_map(s, map);
|
||
|
|
||
|
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
|
||
|
/* comment needed -Hans */
|
||
|
unused_objectid = le32_to_cpu(map[1]);
|
||
|
if (unused_objectid == U32_MAX) {
|
||
|
reiserfs_warning(s, "reiserfs-15100", "no more object ids");
|
||
|
reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* This incrementation allocates the first unused objectid. That
|
||
|
is to say, the first entry on the objectid map is the first
|
||
|
unused objectid, and by incrementing it we use it. See below
|
||
|
where we check to see if we eliminated a sequence of unused
|
||
|
objectids.... */
|
||
|
map[1] = cpu_to_le32(unused_objectid + 1);
|
||
|
|
||
|
/* Now we check to see if we eliminated the last remaining member of
|
||
|
the first even sequence (and can eliminate the sequence by
|
||
|
eliminating its last objectid from oids), and can collapse the
|
||
|
first two odd sequences into one sequence. If so, then the net
|
||
|
result is to eliminate a pair of objectids from oids. We do this
|
||
|
by shifting the entire map to the left. */
|
||
|
if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
|
||
|
memmove(map + 1, map + 3,
|
||
|
(sb_oid_cursize(rs) - 3) * sizeof(__u32));
|
||
|
set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
|
||
|
}
|
||
|
|
||
|
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
|
||
|
return unused_objectid;
|
||
|
}
|
||
|
|
||
|
/* makes object identifier unused */
|
||
|
void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
|
||
|
__u32 objectid_to_release)
|
||
|
{
|
||
|
struct super_block *s = th->t_super;
|
||
|
struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
|
||
|
__le32 *map = objectid_map(s, rs);
|
||
|
int i = 0;
|
||
|
|
||
|
BUG_ON(!th->t_trans_id);
|
||
|
//return;
|
||
|
check_objectid_map(s, map);
|
||
|
|
||
|
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
|
||
|
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
|
||
|
|
||
|
/* start at the beginning of the objectid map (i = 0) and go to
|
||
|
the end of it (i = disk_sb->s_oid_cursize). Linear search is
|
||
|
what we use, though it is possible that binary search would be
|
||
|
more efficient after performing lots of deletions (which is
|
||
|
when oids is large.) We only check even i's. */
|
||
|
while (i < sb_oid_cursize(rs)) {
|
||
|
if (objectid_to_release == le32_to_cpu(map[i])) {
|
||
|
/* This incrementation unallocates the objectid. */
|
||
|
//map[i]++;
|
||
|
le32_add_cpu(&map[i], 1);
|
||
|
|
||
|
/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
|
||
|
if (map[i] == map[i + 1]) {
|
||
|
/* shrink objectid map */
|
||
|
memmove(map + i, map + i + 2,
|
||
|
(sb_oid_cursize(rs) - i -
|
||
|
2) * sizeof(__u32));
|
||
|
//disk_sb->s_oid_cursize -= 2;
|
||
|
set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
|
||
|
|
||
|
RFALSE(sb_oid_cursize(rs) < 2 ||
|
||
|
sb_oid_cursize(rs) > sb_oid_maxsize(rs),
|
||
|
"vs-15005: objectid map corrupted cur_size == %d (max == %d)",
|
||
|
sb_oid_cursize(rs), sb_oid_maxsize(rs));
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (objectid_to_release > le32_to_cpu(map[i]) &&
|
||
|
objectid_to_release < le32_to_cpu(map[i + 1])) {
|
||
|
/* size of objectid map is not changed */
|
||
|
if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
|
||
|
//objectid_map[i+1]--;
|
||
|
le32_add_cpu(&map[i + 1], -1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* JDM comparing two little-endian values for equality -- safe */
|
||
|
if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
|
||
|
/* objectid map must be expanded, but there is no space */
|
||
|
PROC_INFO_INC(s, leaked_oid);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* expand the objectid map */
|
||
|
memmove(map + i + 3, map + i + 1,
|
||
|
(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
|
||
|
map[i + 1] = cpu_to_le32(objectid_to_release);
|
||
|
map[i + 2] = cpu_to_le32(objectid_to_release + 1);
|
||
|
set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
|
||
|
return;
|
||
|
}
|
||
|
i += 2;
|
||
|
}
|
||
|
|
||
|
reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
|
||
|
(long unsigned)objectid_to_release);
|
||
|
}
|
||
|
|
||
|
int reiserfs_convert_objectid_map_v1(struct super_block *s)
|
||
|
{
|
||
|
struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
|
||
|
int cur_size = sb_oid_cursize(disk_sb);
|
||
|
int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
|
||
|
int old_max = sb_oid_maxsize(disk_sb);
|
||
|
struct reiserfs_super_block_v1 *disk_sb_v1;
|
||
|
__le32 *objectid_map, *new_objectid_map;
|
||
|
int i;
|
||
|
|
||
|
disk_sb_v1 =
|
||
|
(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
|
||
|
objectid_map = (__le32 *) (disk_sb_v1 + 1);
|
||
|
new_objectid_map = (__le32 *) (disk_sb + 1);
|
||
|
|
||
|
if (cur_size > new_size) {
|
||
|
/* mark everyone used that was listed as free at the end of the objectid
|
||
|
** map
|
||
|
*/
|
||
|
objectid_map[new_size - 1] = objectid_map[cur_size - 1];
|
||
|
set_sb_oid_cursize(disk_sb, new_size);
|
||
|
}
|
||
|
/* move the smaller objectid map past the end of the new super */
|
||
|
for (i = new_size - 1; i >= 0; i--) {
|
||
|
objectid_map[i + (old_max - new_size)] = objectid_map[i];
|
||
|
}
|
||
|
|
||
|
/* set the max size so we don't overflow later */
|
||
|
set_sb_oid_maxsize(disk_sb, new_size);
|
||
|
|
||
|
/* Zero out label and generate random UUID */
|
||
|
memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
|
||
|
generate_random_uuid(disk_sb->s_uuid);
|
||
|
|
||
|
/* finally, zero out the unused chunk of the new super */
|
||
|
memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
|
||
|
return 0;
|
||
|
}
|