493 lines
13 KiB
C
493 lines
13 KiB
C
|
/*********************************************************************
|
||
|
*
|
||
|
* Filename: wrapper.c
|
||
|
* Version: 1.2
|
||
|
* Description: IrDA SIR async wrapper layer
|
||
|
* Status: Stable
|
||
|
* Author: Dag Brattli <dagb@cs.uit.no>
|
||
|
* Created at: Mon Aug 4 20:40:53 1997
|
||
|
* Modified at: Fri Jan 28 13:21:09 2000
|
||
|
* Modified by: Dag Brattli <dagb@cs.uit.no>
|
||
|
* Modified at: Fri May 28 3:11 CST 1999
|
||
|
* Modified by: Horst von Brand <vonbrand@sleipnir.valparaiso.cl>
|
||
|
*
|
||
|
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
|
||
|
* All Rights Reserved.
|
||
|
* Copyright (c) 2000-2002 Jean Tourrilhes <jt@hpl.hp.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License as
|
||
|
* published by the Free Software Foundation; either version 2 of
|
||
|
* the License, or (at your option) any later version.
|
||
|
*
|
||
|
* Neither Dag Brattli nor University of Tromsø admit liability nor
|
||
|
* provide warranty for any of this software. This material is
|
||
|
* provided "AS-IS" and at no charge.
|
||
|
*
|
||
|
********************************************************************/
|
||
|
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
|
||
|
#include <net/irda/irda.h>
|
||
|
#include <net/irda/wrapper.h>
|
||
|
#include <net/irda/crc.h>
|
||
|
#include <net/irda/irlap.h>
|
||
|
#include <net/irda/irlap_frame.h>
|
||
|
#include <net/irda/irda_device.h>
|
||
|
|
||
|
/************************** FRAME WRAPPING **************************/
|
||
|
/*
|
||
|
* Unwrap and unstuff SIR frames
|
||
|
*
|
||
|
* Note : at FIR and MIR, HDLC framing is used and usually handled
|
||
|
* by the controller, so we come here only for SIR... Jean II
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Function stuff_byte (byte, buf)
|
||
|
*
|
||
|
* Byte stuff one single byte and put the result in buffer pointed to by
|
||
|
* buf. The buffer must at all times be able to have two bytes inserted.
|
||
|
*
|
||
|
* This is in a tight loop, better inline it, so need to be prior to callers.
|
||
|
* (2000 bytes on P6 200MHz, non-inlined ~370us, inline ~170us) - Jean II
|
||
|
*/
|
||
|
static inline int stuff_byte(__u8 byte, __u8 *buf)
|
||
|
{
|
||
|
switch (byte) {
|
||
|
case BOF: /* FALLTHROUGH */
|
||
|
case EOF: /* FALLTHROUGH */
|
||
|
case CE:
|
||
|
/* Insert transparently coded */
|
||
|
buf[0] = CE; /* Send link escape */
|
||
|
buf[1] = byte^IRDA_TRANS; /* Complement bit 5 */
|
||
|
return 2;
|
||
|
/* break; */
|
||
|
default:
|
||
|
/* Non-special value, no transparency required */
|
||
|
buf[0] = byte;
|
||
|
return 1;
|
||
|
/* break; */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_wrap (skb, *tx_buff, buffsize)
|
||
|
*
|
||
|
* Makes a new buffer with wrapping and stuffing, should check that
|
||
|
* we don't get tx buffer overflow.
|
||
|
*/
|
||
|
int async_wrap_skb(struct sk_buff *skb, __u8 *tx_buff, int buffsize)
|
||
|
{
|
||
|
struct irda_skb_cb *cb = (struct irda_skb_cb *) skb->cb;
|
||
|
int xbofs;
|
||
|
int i;
|
||
|
int n;
|
||
|
union {
|
||
|
__u16 value;
|
||
|
__u8 bytes[2];
|
||
|
} fcs;
|
||
|
|
||
|
/* Initialize variables */
|
||
|
fcs.value = INIT_FCS;
|
||
|
n = 0;
|
||
|
|
||
|
/*
|
||
|
* Send XBOF's for required min. turn time and for the negotiated
|
||
|
* additional XBOFS
|
||
|
*/
|
||
|
|
||
|
if (cb->magic != LAP_MAGIC) {
|
||
|
/*
|
||
|
* This will happen for all frames sent from user-space.
|
||
|
* Nothing to worry about, but we set the default number of
|
||
|
* BOF's
|
||
|
*/
|
||
|
IRDA_DEBUG(1, "%s(), wrong magic in skb!\n", __func__);
|
||
|
xbofs = 10;
|
||
|
} else
|
||
|
xbofs = cb->xbofs + cb->xbofs_delay;
|
||
|
|
||
|
IRDA_DEBUG(4, "%s(), xbofs=%d\n", __func__, xbofs);
|
||
|
|
||
|
/* Check that we never use more than 115 + 48 xbofs */
|
||
|
if (xbofs > 163) {
|
||
|
IRDA_DEBUG(0, "%s(), too many xbofs (%d)\n", __func__,
|
||
|
xbofs);
|
||
|
xbofs = 163;
|
||
|
}
|
||
|
|
||
|
memset(tx_buff + n, XBOF, xbofs);
|
||
|
n += xbofs;
|
||
|
|
||
|
/* Start of packet character BOF */
|
||
|
tx_buff[n++] = BOF;
|
||
|
|
||
|
/* Insert frame and calc CRC */
|
||
|
for (i=0; i < skb->len; i++) {
|
||
|
/*
|
||
|
* Check for the possibility of tx buffer overflow. We use
|
||
|
* bufsize-5 since the maximum number of bytes that can be
|
||
|
* transmitted after this point is 5.
|
||
|
*/
|
||
|
if(n >= (buffsize-5)) {
|
||
|
IRDA_ERROR("%s(), tx buffer overflow (n=%d)\n",
|
||
|
__func__, n);
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
n += stuff_byte(skb->data[i], tx_buff+n);
|
||
|
fcs.value = irda_fcs(fcs.value, skb->data[i]);
|
||
|
}
|
||
|
|
||
|
/* Insert CRC in little endian format (LSB first) */
|
||
|
fcs.value = ~fcs.value;
|
||
|
#ifdef __LITTLE_ENDIAN
|
||
|
n += stuff_byte(fcs.bytes[0], tx_buff+n);
|
||
|
n += stuff_byte(fcs.bytes[1], tx_buff+n);
|
||
|
#else /* ifdef __BIG_ENDIAN */
|
||
|
n += stuff_byte(fcs.bytes[1], tx_buff+n);
|
||
|
n += stuff_byte(fcs.bytes[0], tx_buff+n);
|
||
|
#endif
|
||
|
tx_buff[n++] = EOF;
|
||
|
|
||
|
return n;
|
||
|
}
|
||
|
EXPORT_SYMBOL(async_wrap_skb);
|
||
|
|
||
|
/************************* FRAME UNWRAPPING *************************/
|
||
|
/*
|
||
|
* Unwrap and unstuff SIR frames
|
||
|
*
|
||
|
* Complete rewrite by Jean II :
|
||
|
* More inline, faster, more compact, more logical. Jean II
|
||
|
* (16 bytes on P6 200MHz, old 5 to 7 us, new 4 to 6 us)
|
||
|
* (24 bytes on P6 200MHz, old 9 to 10 us, new 7 to 8 us)
|
||
|
* (for reference, 115200 b/s is 1 byte every 69 us)
|
||
|
* And reduce wrapper.o by ~900B in the process ;-)
|
||
|
*
|
||
|
* Then, we have the addition of ZeroCopy, which is optional
|
||
|
* (i.e. the driver must initiate it) and improve final processing.
|
||
|
* (2005 B frame + EOF on P6 200MHz, without 30 to 50 us, with 10 to 25 us)
|
||
|
*
|
||
|
* Note : at FIR and MIR, HDLC framing is used and usually handled
|
||
|
* by the controller, so we come here only for SIR... Jean II
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* We can also choose where we want to do the CRC calculation. We can
|
||
|
* do it "inline", as we receive the bytes, or "postponed", when
|
||
|
* receiving the End-Of-Frame.
|
||
|
* (16 bytes on P6 200MHz, inlined 4 to 6 us, postponed 4 to 5 us)
|
||
|
* (24 bytes on P6 200MHz, inlined 7 to 8 us, postponed 5 to 7 us)
|
||
|
* With ZeroCopy :
|
||
|
* (2005 B frame on P6 200MHz, inlined 10 to 25 us, postponed 140 to 180 us)
|
||
|
* Without ZeroCopy :
|
||
|
* (2005 B frame on P6 200MHz, inlined 30 to 50 us, postponed 150 to 180 us)
|
||
|
* (Note : numbers taken with irq disabled)
|
||
|
*
|
||
|
* From those numbers, it's not clear which is the best strategy, because
|
||
|
* we end up running through a lot of data one way or another (i.e. cache
|
||
|
* misses). I personally prefer to avoid the huge latency spike of the
|
||
|
* "postponed" solution, because it come just at the time when we have
|
||
|
* lot's of protocol processing to do and it will hurt our ability to
|
||
|
* reach low link turnaround times... Jean II
|
||
|
*/
|
||
|
//#define POSTPONE_RX_CRC
|
||
|
|
||
|
/*
|
||
|
* Function async_bump (buf, len, stats)
|
||
|
*
|
||
|
* Got a frame, make a copy of it, and pass it up the stack! We can try
|
||
|
* to inline it since it's only called from state_inside_frame
|
||
|
*/
|
||
|
static inline void
|
||
|
async_bump(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff)
|
||
|
{
|
||
|
struct sk_buff *newskb;
|
||
|
struct sk_buff *dataskb;
|
||
|
int docopy;
|
||
|
|
||
|
/* Check if we need to copy the data to a new skb or not.
|
||
|
* If the driver doesn't use ZeroCopy Rx, we have to do it.
|
||
|
* With ZeroCopy Rx, the rx_buff already point to a valid
|
||
|
* skb. But, if the frame is small, it is more efficient to
|
||
|
* copy it to save memory (copy will be fast anyway - that's
|
||
|
* called Rx-copy-break). Jean II */
|
||
|
docopy = ((rx_buff->skb == NULL) ||
|
||
|
(rx_buff->len < IRDA_RX_COPY_THRESHOLD));
|
||
|
|
||
|
/* Allocate a new skb */
|
||
|
newskb = dev_alloc_skb(docopy ? rx_buff->len + 1 : rx_buff->truesize);
|
||
|
if (!newskb) {
|
||
|
stats->rx_dropped++;
|
||
|
/* We could deliver the current skb if doing ZeroCopy Rx,
|
||
|
* but this would stall the Rx path. Better drop the
|
||
|
* packet... Jean II */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Align IP header to 20 bytes (i.e. increase skb->data)
|
||
|
* Note this is only useful with IrLAN, as PPP has a variable
|
||
|
* header size (2 or 1 bytes) - Jean II */
|
||
|
skb_reserve(newskb, 1);
|
||
|
|
||
|
if(docopy) {
|
||
|
/* Copy data without CRC (length already checked) */
|
||
|
skb_copy_to_linear_data(newskb, rx_buff->data,
|
||
|
rx_buff->len - 2);
|
||
|
/* Deliver this skb */
|
||
|
dataskb = newskb;
|
||
|
} else {
|
||
|
/* We are using ZeroCopy. Deliver old skb */
|
||
|
dataskb = rx_buff->skb;
|
||
|
/* And hook the new skb to the rx_buff */
|
||
|
rx_buff->skb = newskb;
|
||
|
rx_buff->head = newskb->data; /* NOT newskb->head */
|
||
|
//printk(KERN_DEBUG "ZeroCopy : len = %d, dataskb = %p, newskb = %p\n", rx_buff->len, dataskb, newskb);
|
||
|
}
|
||
|
|
||
|
/* Set proper length on skb (without CRC) */
|
||
|
skb_put(dataskb, rx_buff->len - 2);
|
||
|
|
||
|
/* Feed it to IrLAP layer */
|
||
|
dataskb->dev = dev;
|
||
|
skb_reset_mac_header(dataskb);
|
||
|
dataskb->protocol = htons(ETH_P_IRDA);
|
||
|
|
||
|
netif_rx(dataskb);
|
||
|
|
||
|
stats->rx_packets++;
|
||
|
stats->rx_bytes += rx_buff->len;
|
||
|
|
||
|
/* Clean up rx_buff (redundant with async_unwrap_bof() ???) */
|
||
|
rx_buff->data = rx_buff->head;
|
||
|
rx_buff->len = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_unwrap_bof(dev, byte)
|
||
|
*
|
||
|
* Handle Beginning Of Frame character received within a frame
|
||
|
*
|
||
|
*/
|
||
|
static inline void
|
||
|
async_unwrap_bof(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff, __u8 byte)
|
||
|
{
|
||
|
switch(rx_buff->state) {
|
||
|
case LINK_ESCAPE:
|
||
|
case INSIDE_FRAME:
|
||
|
/* Not supposed to happen, the previous frame is not
|
||
|
* finished - Jean II */
|
||
|
IRDA_DEBUG(1, "%s(), Discarding incomplete frame\n",
|
||
|
__func__);
|
||
|
stats->rx_errors++;
|
||
|
stats->rx_missed_errors++;
|
||
|
irda_device_set_media_busy(dev, TRUE);
|
||
|
break;
|
||
|
|
||
|
case OUTSIDE_FRAME:
|
||
|
case BEGIN_FRAME:
|
||
|
default:
|
||
|
/* We may receive multiple BOF at the start of frame */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Now receiving frame */
|
||
|
rx_buff->state = BEGIN_FRAME;
|
||
|
rx_buff->in_frame = TRUE;
|
||
|
|
||
|
/* Time to initialize receive buffer */
|
||
|
rx_buff->data = rx_buff->head;
|
||
|
rx_buff->len = 0;
|
||
|
rx_buff->fcs = INIT_FCS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_unwrap_eof(dev, byte)
|
||
|
*
|
||
|
* Handle End Of Frame character received within a frame
|
||
|
*
|
||
|
*/
|
||
|
static inline void
|
||
|
async_unwrap_eof(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff, __u8 byte)
|
||
|
{
|
||
|
#ifdef POSTPONE_RX_CRC
|
||
|
int i;
|
||
|
#endif
|
||
|
|
||
|
switch(rx_buff->state) {
|
||
|
case OUTSIDE_FRAME:
|
||
|
/* Probably missed the BOF */
|
||
|
stats->rx_errors++;
|
||
|
stats->rx_missed_errors++;
|
||
|
irda_device_set_media_busy(dev, TRUE);
|
||
|
break;
|
||
|
|
||
|
case BEGIN_FRAME:
|
||
|
case LINK_ESCAPE:
|
||
|
case INSIDE_FRAME:
|
||
|
default:
|
||
|
/* Note : in the case of BEGIN_FRAME and LINK_ESCAPE,
|
||
|
* the fcs will most likely not match and generate an
|
||
|
* error, as expected - Jean II */
|
||
|
rx_buff->state = OUTSIDE_FRAME;
|
||
|
rx_buff->in_frame = FALSE;
|
||
|
|
||
|
#ifdef POSTPONE_RX_CRC
|
||
|
/* If we haven't done the CRC as we receive bytes, we
|
||
|
* must do it now... Jean II */
|
||
|
for(i = 0; i < rx_buff->len; i++)
|
||
|
rx_buff->fcs = irda_fcs(rx_buff->fcs,
|
||
|
rx_buff->data[i]);
|
||
|
#endif
|
||
|
|
||
|
/* Test FCS and signal success if the frame is good */
|
||
|
if (rx_buff->fcs == GOOD_FCS) {
|
||
|
/* Deliver frame */
|
||
|
async_bump(dev, stats, rx_buff);
|
||
|
break;
|
||
|
} else {
|
||
|
/* Wrong CRC, discard frame! */
|
||
|
irda_device_set_media_busy(dev, TRUE);
|
||
|
|
||
|
IRDA_DEBUG(1, "%s(), crc error\n", __func__);
|
||
|
stats->rx_errors++;
|
||
|
stats->rx_crc_errors++;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_unwrap_ce(dev, byte)
|
||
|
*
|
||
|
* Handle Character Escape character received within a frame
|
||
|
*
|
||
|
*/
|
||
|
static inline void
|
||
|
async_unwrap_ce(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff, __u8 byte)
|
||
|
{
|
||
|
switch(rx_buff->state) {
|
||
|
case OUTSIDE_FRAME:
|
||
|
/* Activate carrier sense */
|
||
|
irda_device_set_media_busy(dev, TRUE);
|
||
|
break;
|
||
|
|
||
|
case LINK_ESCAPE:
|
||
|
IRDA_WARNING("%s: state not defined\n", __func__);
|
||
|
break;
|
||
|
|
||
|
case BEGIN_FRAME:
|
||
|
case INSIDE_FRAME:
|
||
|
default:
|
||
|
/* Stuffed byte coming */
|
||
|
rx_buff->state = LINK_ESCAPE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_unwrap_other(dev, byte)
|
||
|
*
|
||
|
* Handle other characters received within a frame
|
||
|
*
|
||
|
*/
|
||
|
static inline void
|
||
|
async_unwrap_other(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff, __u8 byte)
|
||
|
{
|
||
|
switch(rx_buff->state) {
|
||
|
/* This is on the critical path, case are ordered by
|
||
|
* probability (most frequent first) - Jean II */
|
||
|
case INSIDE_FRAME:
|
||
|
/* Must be the next byte of the frame */
|
||
|
if (rx_buff->len < rx_buff->truesize) {
|
||
|
rx_buff->data[rx_buff->len++] = byte;
|
||
|
#ifndef POSTPONE_RX_CRC
|
||
|
rx_buff->fcs = irda_fcs(rx_buff->fcs, byte);
|
||
|
#endif
|
||
|
} else {
|
||
|
IRDA_DEBUG(1, "%s(), Rx buffer overflow, aborting\n",
|
||
|
__func__);
|
||
|
rx_buff->state = OUTSIDE_FRAME;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case LINK_ESCAPE:
|
||
|
/*
|
||
|
* Stuffed char, complement bit 5 of byte
|
||
|
* following CE, IrLAP p.114
|
||
|
*/
|
||
|
byte ^= IRDA_TRANS;
|
||
|
if (rx_buff->len < rx_buff->truesize) {
|
||
|
rx_buff->data[rx_buff->len++] = byte;
|
||
|
#ifndef POSTPONE_RX_CRC
|
||
|
rx_buff->fcs = irda_fcs(rx_buff->fcs, byte);
|
||
|
#endif
|
||
|
rx_buff->state = INSIDE_FRAME;
|
||
|
} else {
|
||
|
IRDA_DEBUG(1, "%s(), Rx buffer overflow, aborting\n",
|
||
|
__func__);
|
||
|
rx_buff->state = OUTSIDE_FRAME;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case OUTSIDE_FRAME:
|
||
|
/* Activate carrier sense */
|
||
|
if(byte != XBOF)
|
||
|
irda_device_set_media_busy(dev, TRUE);
|
||
|
break;
|
||
|
|
||
|
case BEGIN_FRAME:
|
||
|
default:
|
||
|
rx_buff->data[rx_buff->len++] = byte;
|
||
|
#ifndef POSTPONE_RX_CRC
|
||
|
rx_buff->fcs = irda_fcs(rx_buff->fcs, byte);
|
||
|
#endif
|
||
|
rx_buff->state = INSIDE_FRAME;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Function async_unwrap_char (dev, rx_buff, byte)
|
||
|
*
|
||
|
* Parse and de-stuff frame received from the IrDA-port
|
||
|
*
|
||
|
* This is the main entry point for SIR drivers.
|
||
|
*/
|
||
|
void async_unwrap_char(struct net_device *dev,
|
||
|
struct net_device_stats *stats,
|
||
|
iobuff_t *rx_buff, __u8 byte)
|
||
|
{
|
||
|
switch(byte) {
|
||
|
case CE:
|
||
|
async_unwrap_ce(dev, stats, rx_buff, byte);
|
||
|
break;
|
||
|
case BOF:
|
||
|
async_unwrap_bof(dev, stats, rx_buff, byte);
|
||
|
break;
|
||
|
case EOF:
|
||
|
async_unwrap_eof(dev, stats, rx_buff, byte);
|
||
|
break;
|
||
|
default:
|
||
|
async_unwrap_other(dev, stats, rx_buff, byte);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(async_unwrap_char);
|
||
|
|