340 lines
8.8 KiB
C
340 lines
8.8 KiB
C
|
/*
|
||
|
* Software WEP encryption implementation
|
||
|
* Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
|
||
|
* Copyright 2003, Instant802 Networks, Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/crypto.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <asm/unaligned.h>
|
||
|
|
||
|
#include <net/mac80211.h>
|
||
|
#include "ieee80211_i.h"
|
||
|
#include "wep.h"
|
||
|
|
||
|
|
||
|
int ieee80211_wep_init(struct ieee80211_local *local)
|
||
|
{
|
||
|
/* start WEP IV from a random value */
|
||
|
get_random_bytes(&local->wep_iv, WEP_IV_LEN);
|
||
|
|
||
|
local->wep_tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
|
||
|
CRYPTO_ALG_ASYNC);
|
||
|
if (IS_ERR(local->wep_tx_tfm))
|
||
|
return PTR_ERR(local->wep_tx_tfm);
|
||
|
|
||
|
local->wep_rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
|
||
|
CRYPTO_ALG_ASYNC);
|
||
|
if (IS_ERR(local->wep_rx_tfm)) {
|
||
|
crypto_free_blkcipher(local->wep_tx_tfm);
|
||
|
return PTR_ERR(local->wep_rx_tfm);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void ieee80211_wep_free(struct ieee80211_local *local)
|
||
|
{
|
||
|
crypto_free_blkcipher(local->wep_tx_tfm);
|
||
|
crypto_free_blkcipher(local->wep_rx_tfm);
|
||
|
}
|
||
|
|
||
|
static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen)
|
||
|
{
|
||
|
/*
|
||
|
* Fluhrer, Mantin, and Shamir have reported weaknesses in the
|
||
|
* key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
|
||
|
* 0xff, N) can be used to speedup attacks, so avoid using them.
|
||
|
*/
|
||
|
if ((iv & 0xff00) == 0xff00) {
|
||
|
u8 B = (iv >> 16) & 0xff;
|
||
|
if (B >= 3 && B < 3 + keylen)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void ieee80211_wep_get_iv(struct ieee80211_local *local,
|
||
|
int keylen, int keyidx, u8 *iv)
|
||
|
{
|
||
|
local->wep_iv++;
|
||
|
if (ieee80211_wep_weak_iv(local->wep_iv, keylen))
|
||
|
local->wep_iv += 0x0100;
|
||
|
|
||
|
if (!iv)
|
||
|
return;
|
||
|
|
||
|
*iv++ = (local->wep_iv >> 16) & 0xff;
|
||
|
*iv++ = (local->wep_iv >> 8) & 0xff;
|
||
|
*iv++ = local->wep_iv & 0xff;
|
||
|
*iv++ = keyidx << 6;
|
||
|
}
|
||
|
|
||
|
|
||
|
static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb,
|
||
|
int keylen, int keyidx)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
unsigned int hdrlen;
|
||
|
u8 *newhdr;
|
||
|
|
||
|
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
|
||
|
|
||
|
if (WARN_ON(skb_tailroom(skb) < WEP_ICV_LEN ||
|
||
|
skb_headroom(skb) < WEP_IV_LEN))
|
||
|
return NULL;
|
||
|
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
newhdr = skb_push(skb, WEP_IV_LEN);
|
||
|
memmove(newhdr, newhdr + WEP_IV_LEN, hdrlen);
|
||
|
ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen);
|
||
|
return newhdr + hdrlen;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb,
|
||
|
struct ieee80211_key *key)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
unsigned int hdrlen;
|
||
|
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
|
||
|
skb_pull(skb, WEP_IV_LEN);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP encryption using given key. data buffer must have tailroom
|
||
|
* for 4-byte ICV. data_len must not include this ICV. Note: this function
|
||
|
* does _not_ add IV. data = RC4(data | CRC32(data)) */
|
||
|
void ieee80211_wep_encrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
|
||
|
size_t klen, u8 *data, size_t data_len)
|
||
|
{
|
||
|
struct blkcipher_desc desc = { .tfm = tfm };
|
||
|
struct scatterlist sg;
|
||
|
__le32 icv;
|
||
|
|
||
|
icv = cpu_to_le32(~crc32_le(~0, data, data_len));
|
||
|
put_unaligned(icv, (__le32 *)(data + data_len));
|
||
|
|
||
|
crypto_blkcipher_setkey(tfm, rc4key, klen);
|
||
|
sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
|
||
|
crypto_blkcipher_encrypt(&desc, &sg, &sg, sg.length);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
|
||
|
* beginning of the buffer 4 bytes of extra space (ICV) in the end of the
|
||
|
* buffer will be added. Both IV and ICV will be transmitted, so the
|
||
|
* payload length increases with 8 bytes.
|
||
|
*
|
||
|
* WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
|
||
|
*/
|
||
|
int ieee80211_wep_encrypt(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb,
|
||
|
const u8 *key, int keylen, int keyidx)
|
||
|
{
|
||
|
u8 *iv;
|
||
|
size_t len;
|
||
|
u8 rc4key[3 + WLAN_KEY_LEN_WEP104];
|
||
|
|
||
|
iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx);
|
||
|
if (!iv)
|
||
|
return -1;
|
||
|
|
||
|
len = skb->len - (iv + WEP_IV_LEN - skb->data);
|
||
|
|
||
|
/* Prepend 24-bit IV to RC4 key */
|
||
|
memcpy(rc4key, iv, 3);
|
||
|
|
||
|
/* Copy rest of the WEP key (the secret part) */
|
||
|
memcpy(rc4key + 3, key, keylen);
|
||
|
|
||
|
/* Add room for ICV */
|
||
|
skb_put(skb, WEP_ICV_LEN);
|
||
|
|
||
|
ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, keylen + 3,
|
||
|
iv + WEP_IV_LEN, len);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP decryption using given key. data buffer includes encrypted
|
||
|
* payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
|
||
|
* Return 0 on success and -1 on ICV mismatch. */
|
||
|
int ieee80211_wep_decrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
|
||
|
size_t klen, u8 *data, size_t data_len)
|
||
|
{
|
||
|
struct blkcipher_desc desc = { .tfm = tfm };
|
||
|
struct scatterlist sg;
|
||
|
__le32 crc;
|
||
|
|
||
|
crypto_blkcipher_setkey(tfm, rc4key, klen);
|
||
|
sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
|
||
|
crypto_blkcipher_decrypt(&desc, &sg, &sg, sg.length);
|
||
|
|
||
|
crc = cpu_to_le32(~crc32_le(~0, data, data_len));
|
||
|
if (memcmp(&crc, data + data_len, WEP_ICV_LEN) != 0)
|
||
|
/* ICV mismatch */
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP decryption on given skb. Buffer includes whole WEP part of
|
||
|
* the frame: IV (4 bytes), encrypted payload (including SNAP header),
|
||
|
* ICV (4 bytes). skb->len includes both IV and ICV.
|
||
|
*
|
||
|
* Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
|
||
|
* failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
|
||
|
* is moved to the beginning of the skb and skb length will be reduced.
|
||
|
*/
|
||
|
static int ieee80211_wep_decrypt(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb,
|
||
|
struct ieee80211_key *key)
|
||
|
{
|
||
|
u32 klen;
|
||
|
u8 *rc4key;
|
||
|
u8 keyidx;
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
unsigned int hdrlen;
|
||
|
size_t len;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!ieee80211_has_protected(hdr->frame_control))
|
||
|
return -1;
|
||
|
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
if (skb->len < hdrlen + WEP_IV_LEN + WEP_ICV_LEN)
|
||
|
return -1;
|
||
|
|
||
|
len = skb->len - hdrlen - WEP_IV_LEN - WEP_ICV_LEN;
|
||
|
|
||
|
keyidx = skb->data[hdrlen + 3] >> 6;
|
||
|
|
||
|
if (!key || keyidx != key->conf.keyidx || key->conf.alg != ALG_WEP)
|
||
|
return -1;
|
||
|
|
||
|
klen = 3 + key->conf.keylen;
|
||
|
|
||
|
rc4key = kmalloc(klen, GFP_ATOMIC);
|
||
|
if (!rc4key)
|
||
|
return -1;
|
||
|
|
||
|
/* Prepend 24-bit IV to RC4 key */
|
||
|
memcpy(rc4key, skb->data + hdrlen, 3);
|
||
|
|
||
|
/* Copy rest of the WEP key (the secret part) */
|
||
|
memcpy(rc4key + 3, key->conf.key, key->conf.keylen);
|
||
|
|
||
|
if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen,
|
||
|
skb->data + hdrlen + WEP_IV_LEN,
|
||
|
len))
|
||
|
ret = -1;
|
||
|
|
||
|
kfree(rc4key);
|
||
|
|
||
|
/* Trim ICV */
|
||
|
skb_trim(skb, skb->len - WEP_ICV_LEN);
|
||
|
|
||
|
/* Remove IV */
|
||
|
memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
|
||
|
skb_pull(skb, WEP_IV_LEN);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool ieee80211_wep_is_weak_iv(struct sk_buff *skb, struct ieee80211_key *key)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
unsigned int hdrlen;
|
||
|
u8 *ivpos;
|
||
|
u32 iv;
|
||
|
|
||
|
if (!ieee80211_has_protected(hdr->frame_control))
|
||
|
return false;
|
||
|
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
ivpos = skb->data + hdrlen;
|
||
|
iv = (ivpos[0] << 16) | (ivpos[1] << 8) | ivpos[2];
|
||
|
|
||
|
return ieee80211_wep_weak_iv(iv, key->conf.keylen);
|
||
|
}
|
||
|
|
||
|
ieee80211_rx_result
|
||
|
ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
|
||
|
|
||
|
if (!ieee80211_is_data(hdr->frame_control) &&
|
||
|
!ieee80211_is_auth(hdr->frame_control))
|
||
|
return RX_CONTINUE;
|
||
|
|
||
|
if (!(rx->status->flag & RX_FLAG_DECRYPTED)) {
|
||
|
if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key))
|
||
|
return RX_DROP_UNUSABLE;
|
||
|
} else if (!(rx->status->flag & RX_FLAG_IV_STRIPPED)) {
|
||
|
ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
|
||
|
/* remove ICV */
|
||
|
skb_trim(rx->skb, rx->skb->len - WEP_ICV_LEN);
|
||
|
}
|
||
|
|
||
|
return RX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
if (!(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) {
|
||
|
if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key,
|
||
|
tx->key->conf.keylen,
|
||
|
tx->key->conf.keyidx))
|
||
|
return -1;
|
||
|
} else {
|
||
|
info->control.hw_key = &tx->key->conf;
|
||
|
if (tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) {
|
||
|
if (!ieee80211_wep_add_iv(tx->local, skb,
|
||
|
tx->key->conf.keylen,
|
||
|
tx->key->conf.keyidx))
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ieee80211_tx_result
|
||
|
ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
ieee80211_tx_set_protected(tx);
|
||
|
|
||
|
skb = tx->skb;
|
||
|
do {
|
||
|
if (wep_encrypt_skb(tx, skb) < 0) {
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
|
||
|
return TX_DROP;
|
||
|
}
|
||
|
} while ((skb = skb->next));
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|