satip-axe/kernel/drivers/media/video/gspca/ov519.c

3427 lines
86 KiB
C
Raw Normal View History

/**
* OV519 driver
*
* Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
*
* This module is adapted from the ov51x-jpeg package, which itself
* was adapted from the ov511 driver.
*
* Original copyright for the ov511 driver is:
*
* Copyright (c) 1999-2004 Mark W. McClelland
* Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
*
* ov51x-jpeg original copyright is:
*
* Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
* Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#define MODULE_NAME "ov519"
#include "gspca.h"
MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
MODULE_DESCRIPTION("OV519 USB Camera Driver");
MODULE_LICENSE("GPL");
/* global parameters */
static int frame_rate;
/* Number of times to retry a failed I2C transaction. Increase this if you
* are getting "Failed to read sensor ID..." */
static int i2c_detect_tries = 10;
/* ov519 device descriptor */
struct sd {
struct gspca_dev gspca_dev; /* !! must be the first item */
__u8 packet_nr;
char bridge;
#define BRIDGE_OV511 0
#define BRIDGE_OV511PLUS 1
#define BRIDGE_OV518 2
#define BRIDGE_OV518PLUS 3
#define BRIDGE_OV519 4
#define BRIDGE_MASK 7
char invert_led;
#define BRIDGE_INVERT_LED 8
/* Determined by sensor type */
__u8 sif;
__u8 brightness;
__u8 contrast;
__u8 colors;
__u8 hflip;
__u8 vflip;
__u8 autobrightness;
__u8 freq;
__u8 stopped; /* Streaming is temporarily paused */
__u8 frame_rate; /* current Framerate */
__u8 clockdiv; /* clockdiv override */
char sensor; /* Type of image sensor chip (SEN_*) */
#define SEN_UNKNOWN 0
#define SEN_OV6620 1
#define SEN_OV6630 2
#define SEN_OV66308AF 3
#define SEN_OV7610 4
#define SEN_OV7620 5
#define SEN_OV7640 6
#define SEN_OV7670 7
#define SEN_OV76BE 8
#define SEN_OV8610 9
};
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val);
static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
static void setbrightness(struct gspca_dev *gspca_dev);
static void setcontrast(struct gspca_dev *gspca_dev);
static void setcolors(struct gspca_dev *gspca_dev);
static void setautobrightness(struct sd *sd);
static void setfreq(struct sd *sd);
static const struct ctrl sd_ctrls[] = {
{
{
.id = V4L2_CID_BRIGHTNESS,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Brightness",
.minimum = 0,
.maximum = 255,
.step = 1,
#define BRIGHTNESS_DEF 127
.default_value = BRIGHTNESS_DEF,
},
.set = sd_setbrightness,
.get = sd_getbrightness,
},
{
{
.id = V4L2_CID_CONTRAST,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Contrast",
.minimum = 0,
.maximum = 255,
.step = 1,
#define CONTRAST_DEF 127
.default_value = CONTRAST_DEF,
},
.set = sd_setcontrast,
.get = sd_getcontrast,
},
{
{
.id = V4L2_CID_SATURATION,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Color",
.minimum = 0,
.maximum = 255,
.step = 1,
#define COLOR_DEF 127
.default_value = COLOR_DEF,
},
.set = sd_setcolors,
.get = sd_getcolors,
},
/* The flip controls work with ov7670 only */
#define HFLIP_IDX 3
{
{
.id = V4L2_CID_HFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Mirror",
.minimum = 0,
.maximum = 1,
.step = 1,
#define HFLIP_DEF 0
.default_value = HFLIP_DEF,
},
.set = sd_sethflip,
.get = sd_gethflip,
},
#define VFLIP_IDX 4
{
{
.id = V4L2_CID_VFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Vflip",
.minimum = 0,
.maximum = 1,
.step = 1,
#define VFLIP_DEF 0
.default_value = VFLIP_DEF,
},
.set = sd_setvflip,
.get = sd_getvflip,
},
#define AUTOBRIGHT_IDX 5
{
{
.id = V4L2_CID_AUTOBRIGHTNESS,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Auto Brightness",
.minimum = 0,
.maximum = 1,
.step = 1,
#define AUTOBRIGHT_DEF 1
.default_value = AUTOBRIGHT_DEF,
},
.set = sd_setautobrightness,
.get = sd_getautobrightness,
},
#define FREQ_IDX 6
{
{
.id = V4L2_CID_POWER_LINE_FREQUENCY,
.type = V4L2_CTRL_TYPE_MENU,
.name = "Light frequency filter",
.minimum = 0,
.maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
.step = 1,
#define FREQ_DEF 0
.default_value = FREQ_DEF,
},
.set = sd_setfreq,
.get = sd_getfreq,
},
#define OV7670_FREQ_IDX 7
{
{
.id = V4L2_CID_POWER_LINE_FREQUENCY,
.type = V4L2_CTRL_TYPE_MENU,
.name = "Light frequency filter",
.minimum = 0,
.maximum = 3, /* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */
.step = 1,
#define OV7670_FREQ_DEF 3
.default_value = OV7670_FREQ_DEF,
},
.set = sd_setfreq,
.get = sd_getfreq,
},
};
static const struct v4l2_pix_format ov519_vga_mode[] = {
{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 640,
.sizeimage = 640 * 480 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
static const struct v4l2_pix_format ov519_sif_mode[] = {
{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 160,
.sizeimage = 160 * 120 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 3},
{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 176,
.sizeimage = 176 * 144 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 2},
{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 352,
.sizeimage = 352 * 288 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
/* Note some of the sizeimage values for the ov511 / ov518 may seem
larger then necessary, however they need to be this big as the ov511 /
ov518 always fills the entire isoc frame, using 0 padding bytes when
it doesn't have any data. So with low framerates the amount of data
transfered can become quite large (libv4l will remove all the 0 padding
in userspace). */
static const struct v4l2_pix_format ov518_vga_mode[] = {
{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 640,
.sizeimage = 640 * 480 * 2,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
static const struct v4l2_pix_format ov518_sif_mode[] = {
{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 160,
.sizeimage = 70000,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 3},
{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 176,
.sizeimage = 70000,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 2},
{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
.bytesperline = 352,
.sizeimage = 352 * 288 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
static const struct v4l2_pix_format ov511_vga_mode[] = {
{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 640,
.sizeimage = 640 * 480 * 2,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
static const struct v4l2_pix_format ov511_sif_mode[] = {
{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 160,
.sizeimage = 70000,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 3},
{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 176,
.sizeimage = 70000,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 1},
{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 2},
{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
.bytesperline = 352,
.sizeimage = 352 * 288 * 3,
.colorspace = V4L2_COLORSPACE_JPEG,
.priv = 0},
};
/* Registers common to OV511 / OV518 */
#define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
#define R51x_SYS_RESET 0x50
/* Reset type flags */
#define OV511_RESET_OMNICE 0x08
#define R51x_SYS_INIT 0x53
#define R51x_SYS_SNAP 0x52
#define R51x_SYS_CUST_ID 0x5F
#define R51x_COMP_LUT_BEGIN 0x80
/* OV511 Camera interface register numbers */
#define R511_CAM_DELAY 0x10
#define R511_CAM_EDGE 0x11
#define R511_CAM_PXCNT 0x12
#define R511_CAM_LNCNT 0x13
#define R511_CAM_PXDIV 0x14
#define R511_CAM_LNDIV 0x15
#define R511_CAM_UV_EN 0x16
#define R511_CAM_LINE_MODE 0x17
#define R511_CAM_OPTS 0x18
#define R511_SNAP_FRAME 0x19
#define R511_SNAP_PXCNT 0x1A
#define R511_SNAP_LNCNT 0x1B
#define R511_SNAP_PXDIV 0x1C
#define R511_SNAP_LNDIV 0x1D
#define R511_SNAP_UV_EN 0x1E
#define R511_SNAP_UV_EN 0x1E
#define R511_SNAP_OPTS 0x1F
#define R511_DRAM_FLOW_CTL 0x20
#define R511_FIFO_OPTS 0x31
#define R511_I2C_CTL 0x40
#define R511_SYS_LED_CTL 0x55 /* OV511+ only */
#define R511_COMP_EN 0x78
#define R511_COMP_LUT_EN 0x79
/* OV518 Camera interface register numbers */
#define R518_GPIO_OUT 0x56 /* OV518(+) only */
#define R518_GPIO_CTL 0x57 /* OV518(+) only */
/* OV519 Camera interface register numbers */
#define OV519_R10_H_SIZE 0x10
#define OV519_R11_V_SIZE 0x11
#define OV519_R12_X_OFFSETL 0x12
#define OV519_R13_X_OFFSETH 0x13
#define OV519_R14_Y_OFFSETL 0x14
#define OV519_R15_Y_OFFSETH 0x15
#define OV519_R16_DIVIDER 0x16
#define OV519_R20_DFR 0x20
#define OV519_R25_FORMAT 0x25
/* OV519 System Controller register numbers */
#define OV519_SYS_RESET1 0x51
#define OV519_SYS_EN_CLK1 0x54
#define OV519_GPIO_DATA_OUT0 0x71
#define OV519_GPIO_IO_CTRL0 0x72
#define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
/* I2C registers */
#define R51x_I2C_W_SID 0x41
#define R51x_I2C_SADDR_3 0x42
#define R51x_I2C_SADDR_2 0x43
#define R51x_I2C_R_SID 0x44
#define R51x_I2C_DATA 0x45
#define R518_I2C_CTL 0x47 /* OV518(+) only */
/* I2C ADDRESSES */
#define OV7xx0_SID 0x42
#define OV8xx0_SID 0xa0
#define OV6xx0_SID 0xc0
/* OV7610 registers */
#define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
#define OV7610_REG_BLUE 0x01 /* blue channel balance */
#define OV7610_REG_RED 0x02 /* red channel balance */
#define OV7610_REG_SAT 0x03 /* saturation */
#define OV8610_REG_HUE 0x04 /* 04 reserved */
#define OV7610_REG_CNT 0x05 /* Y contrast */
#define OV7610_REG_BRT 0x06 /* Y brightness */
#define OV7610_REG_COM_C 0x14 /* misc common regs */
#define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
#define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
#define OV7610_REG_COM_I 0x29 /* misc settings */
/* OV7670 registers */
#define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
#define OV7670_REG_BLUE 0x01 /* blue gain */
#define OV7670_REG_RED 0x02 /* red gain */
#define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
#define OV7670_REG_COM1 0x04 /* Control 1 */
#define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
#define OV7670_REG_COM3 0x0c /* Control 3 */
#define OV7670_REG_COM4 0x0d /* Control 4 */
#define OV7670_REG_COM5 0x0e /* All "reserved" */
#define OV7670_REG_COM6 0x0f /* Control 6 */
#define OV7670_REG_AECH 0x10 /* More bits of AEC value */
#define OV7670_REG_CLKRC 0x11 /* Clock control */
#define OV7670_REG_COM7 0x12 /* Control 7 */
#define OV7670_COM7_FMT_VGA 0x00
#define OV7670_COM7_YUV 0x00 /* YUV */
#define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
#define OV7670_COM7_FMT_MASK 0x38
#define OV7670_COM7_RESET 0x80 /* Register reset */
#define OV7670_REG_COM8 0x13 /* Control 8 */
#define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
#define OV7670_COM8_AWB 0x02 /* White balance enable */
#define OV7670_COM8_AGC 0x04 /* Auto gain enable */
#define OV7670_COM8_BFILT 0x20 /* Band filter enable */
#define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
#define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
#define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
#define OV7670_REG_COM10 0x15 /* Control 10 */
#define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
#define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
#define OV7670_REG_VSTART 0x19 /* Vert start high bits */
#define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
#define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
#define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
#define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
#define OV7670_REG_AEW 0x24 /* AGC upper limit */
#define OV7670_REG_AEB 0x25 /* AGC lower limit */
#define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
#define OV7670_REG_HREF 0x32 /* HREF pieces */
#define OV7670_REG_TSLB 0x3a /* lots of stuff */
#define OV7670_REG_COM11 0x3b /* Control 11 */
#define OV7670_COM11_EXP 0x02
#define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
#define OV7670_REG_COM12 0x3c /* Control 12 */
#define OV7670_REG_COM13 0x3d /* Control 13 */
#define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
#define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
#define OV7670_REG_COM14 0x3e /* Control 14 */
#define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
#define OV7670_REG_COM15 0x40 /* Control 15 */
#define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
#define OV7670_REG_COM16 0x41 /* Control 16 */
#define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
#define OV7670_REG_BRIGHT 0x55 /* Brightness */
#define OV7670_REG_CONTRAS 0x56 /* Contrast control */
#define OV7670_REG_GFIX 0x69 /* Fix gain control */
#define OV7670_REG_RGB444 0x8c /* RGB 444 control */
#define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
#define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
#define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
#define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
#define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
#define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
#define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
#define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
#define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
struct ov_regvals {
__u8 reg;
__u8 val;
};
struct ov_i2c_regvals {
__u8 reg;
__u8 val;
};
static const struct ov_i2c_regvals norm_6x20[] = {
{ 0x12, 0x80 }, /* reset */
{ 0x11, 0x01 },
{ 0x03, 0x60 },
{ 0x05, 0x7f }, /* For when autoadjust is off */
{ 0x07, 0xa8 },
/* The ratio of 0x0c and 0x0d controls the white point */
{ 0x0c, 0x24 },
{ 0x0d, 0x24 },
{ 0x0f, 0x15 }, /* COMS */
{ 0x10, 0x75 }, /* AEC Exposure time */
{ 0x12, 0x24 }, /* Enable AGC */
{ 0x14, 0x04 },
/* 0x16: 0x06 helps frame stability with moving objects */
{ 0x16, 0x06 },
/* { 0x20, 0x30 }, * Aperture correction enable */
{ 0x26, 0xb2 }, /* BLC enable */
/* 0x28: 0x05 Selects RGB format if RGB on */
{ 0x28, 0x05 },
{ 0x2a, 0x04 }, /* Disable framerate adjust */
/* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
{ 0x2d, 0x85 },
{ 0x33, 0xa0 }, /* Color Processing Parameter */
{ 0x34, 0xd2 }, /* Max A/D range */
{ 0x38, 0x8b },
{ 0x39, 0x40 },
{ 0x3c, 0x39 }, /* Enable AEC mode changing */
{ 0x3c, 0x3c }, /* Change AEC mode */
{ 0x3c, 0x24 }, /* Disable AEC mode changing */
{ 0x3d, 0x80 },
/* These next two registers (0x4a, 0x4b) are undocumented.
* They control the color balance */
{ 0x4a, 0x80 },
{ 0x4b, 0x80 },
{ 0x4d, 0xd2 }, /* This reduces noise a bit */
{ 0x4e, 0xc1 },
{ 0x4f, 0x04 },
/* Do 50-53 have any effect? */
/* Toggle 0x12[2] off and on here? */
};
static const struct ov_i2c_regvals norm_6x30[] = {
{ 0x12, 0x80 }, /* Reset */
{ 0x00, 0x1f }, /* Gain */
{ 0x01, 0x99 }, /* Blue gain */
{ 0x02, 0x7c }, /* Red gain */
{ 0x03, 0xc0 }, /* Saturation */
{ 0x05, 0x0a }, /* Contrast */
{ 0x06, 0x95 }, /* Brightness */
{ 0x07, 0x2d }, /* Sharpness */
{ 0x0c, 0x20 },
{ 0x0d, 0x20 },
{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
{ 0x0f, 0x05 },
{ 0x10, 0x9a },
{ 0x11, 0x00 }, /* Pixel clock = fastest */
{ 0x12, 0x24 }, /* Enable AGC and AWB */
{ 0x13, 0x21 },
{ 0x14, 0x80 },
{ 0x15, 0x01 },
{ 0x16, 0x03 },
{ 0x17, 0x38 },
{ 0x18, 0xea },
{ 0x19, 0x04 },
{ 0x1a, 0x93 },
{ 0x1b, 0x00 },
{ 0x1e, 0xc4 },
{ 0x1f, 0x04 },
{ 0x20, 0x20 },
{ 0x21, 0x10 },
{ 0x22, 0x88 },
{ 0x23, 0xc0 }, /* Crystal circuit power level */
{ 0x25, 0x9a }, /* Increase AEC black ratio */
{ 0x26, 0xb2 }, /* BLC enable */
{ 0x27, 0xa2 },
{ 0x28, 0x00 },
{ 0x29, 0x00 },
{ 0x2a, 0x84 }, /* 60 Hz power */
{ 0x2b, 0xa8 }, /* 60 Hz power */
{ 0x2c, 0xa0 },
{ 0x2d, 0x95 }, /* Enable auto-brightness */
{ 0x2e, 0x88 },
{ 0x33, 0x26 },
{ 0x34, 0x03 },
{ 0x36, 0x8f },
{ 0x37, 0x80 },
{ 0x38, 0x83 },
{ 0x39, 0x80 },
{ 0x3a, 0x0f },
{ 0x3b, 0x3c },
{ 0x3c, 0x1a },
{ 0x3d, 0x80 },
{ 0x3e, 0x80 },
{ 0x3f, 0x0e },
{ 0x40, 0x00 }, /* White bal */
{ 0x41, 0x00 }, /* White bal */
{ 0x42, 0x80 },
{ 0x43, 0x3f }, /* White bal */
{ 0x44, 0x80 },
{ 0x45, 0x20 },
{ 0x46, 0x20 },
{ 0x47, 0x80 },
{ 0x48, 0x7f },
{ 0x49, 0x00 },
{ 0x4a, 0x00 },
{ 0x4b, 0x80 },
{ 0x4c, 0xd0 },
{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
{ 0x4e, 0x40 },
{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
{ 0x50, 0xff },
{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
{ 0x55, 0xff },
{ 0x56, 0x12 },
{ 0x57, 0x81 },
{ 0x58, 0x75 },
{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
{ 0x5a, 0x2c },
{ 0x5b, 0x0f }, /* AWB chrominance levels */
{ 0x5c, 0x10 },
{ 0x3d, 0x80 },
{ 0x27, 0xa6 },
{ 0x12, 0x20 }, /* Toggle AWB */
{ 0x12, 0x24 },
};
/* Lawrence Glaister <lg@jfm.bc.ca> reports:
*
* Register 0x0f in the 7610 has the following effects:
*
* 0x85 (AEC method 1): Best overall, good contrast range
* 0x45 (AEC method 2): Very overexposed
* 0xa5 (spec sheet default): Ok, but the black level is
* shifted resulting in loss of contrast
* 0x05 (old driver setting): very overexposed, too much
* contrast
*/
static const struct ov_i2c_regvals norm_7610[] = {
{ 0x10, 0xff },
{ 0x16, 0x06 },
{ 0x28, 0x24 },
{ 0x2b, 0xac },
{ 0x12, 0x00 },
{ 0x38, 0x81 },
{ 0x28, 0x24 }, /* 0c */
{ 0x0f, 0x85 }, /* lg's setting */
{ 0x15, 0x01 },
{ 0x20, 0x1c },
{ 0x23, 0x2a },
{ 0x24, 0x10 },
{ 0x25, 0x8a },
{ 0x26, 0xa2 },
{ 0x27, 0xc2 },
{ 0x2a, 0x04 },
{ 0x2c, 0xfe },
{ 0x2d, 0x93 },
{ 0x30, 0x71 },
{ 0x31, 0x60 },
{ 0x32, 0x26 },
{ 0x33, 0x20 },
{ 0x34, 0x48 },
{ 0x12, 0x24 },
{ 0x11, 0x01 },
{ 0x0c, 0x24 },
{ 0x0d, 0x24 },
};
static const struct ov_i2c_regvals norm_7620[] = {
{ 0x00, 0x00 }, /* gain */
{ 0x01, 0x80 }, /* blue gain */
{ 0x02, 0x80 }, /* red gain */
{ 0x03, 0xc0 }, /* OV7670_REG_VREF */
{ 0x06, 0x60 },
{ 0x07, 0x00 },
{ 0x0c, 0x24 },
{ 0x0c, 0x24 },
{ 0x0d, 0x24 },
{ 0x11, 0x01 },
{ 0x12, 0x24 },
{ 0x13, 0x01 },
{ 0x14, 0x84 },
{ 0x15, 0x01 },
{ 0x16, 0x03 },
{ 0x17, 0x2f },
{ 0x18, 0xcf },
{ 0x19, 0x06 },
{ 0x1a, 0xf5 },
{ 0x1b, 0x00 },
{ 0x20, 0x18 },
{ 0x21, 0x80 },
{ 0x22, 0x80 },
{ 0x23, 0x00 },
{ 0x26, 0xa2 },
{ 0x27, 0xea },
{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
{ 0x29, 0x00 },
{ 0x2a, 0x10 },
{ 0x2b, 0x00 },
{ 0x2c, 0x88 },
{ 0x2d, 0x91 },
{ 0x2e, 0x80 },
{ 0x2f, 0x44 },
{ 0x60, 0x27 },
{ 0x61, 0x02 },
{ 0x62, 0x5f },
{ 0x63, 0xd5 },
{ 0x64, 0x57 },
{ 0x65, 0x83 },
{ 0x66, 0x55 },
{ 0x67, 0x92 },
{ 0x68, 0xcf },
{ 0x69, 0x76 },
{ 0x6a, 0x22 },
{ 0x6b, 0x00 },
{ 0x6c, 0x02 },
{ 0x6d, 0x44 },
{ 0x6e, 0x80 },
{ 0x6f, 0x1d },
{ 0x70, 0x8b },
{ 0x71, 0x00 },
{ 0x72, 0x14 },
{ 0x73, 0x54 },
{ 0x74, 0x00 },
{ 0x75, 0x8e },
{ 0x76, 0x00 },
{ 0x77, 0xff },
{ 0x78, 0x80 },
{ 0x79, 0x80 },
{ 0x7a, 0x80 },
{ 0x7b, 0xe2 },
{ 0x7c, 0x00 },
};
/* 7640 and 7648. The defaults should be OK for most registers. */
static const struct ov_i2c_regvals norm_7640[] = {
{ 0x12, 0x80 },
{ 0x12, 0x14 },
};
/* 7670. Defaults taken from OmniVision provided data,
* as provided by Jonathan Corbet of OLPC */
static const struct ov_i2c_regvals norm_7670[] = {
{ OV7670_REG_COM7, OV7670_COM7_RESET },
{ OV7670_REG_TSLB, 0x04 }, /* OV */
{ OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
{ OV7670_REG_CLKRC, 0x01 },
/*
* Set the hardware window. These values from OV don't entirely
* make sense - hstop is less than hstart. But they work...
*/
{ OV7670_REG_HSTART, 0x13 },
{ OV7670_REG_HSTOP, 0x01 },
{ OV7670_REG_HREF, 0xb6 },
{ OV7670_REG_VSTART, 0x02 },
{ OV7670_REG_VSTOP, 0x7a },
{ OV7670_REG_VREF, 0x0a },
{ OV7670_REG_COM3, 0x00 },
{ OV7670_REG_COM14, 0x00 },
/* Mystery scaling numbers */
{ 0x70, 0x3a },
{ 0x71, 0x35 },
{ 0x72, 0x11 },
{ 0x73, 0xf0 },
{ 0xa2, 0x02 },
/* { OV7670_REG_COM10, 0x0 }, */
/* Gamma curve values */
{ 0x7a, 0x20 },
{ 0x7b, 0x10 },
{ 0x7c, 0x1e },
{ 0x7d, 0x35 },
{ 0x7e, 0x5a },
{ 0x7f, 0x69 },
{ 0x80, 0x76 },
{ 0x81, 0x80 },
{ 0x82, 0x88 },
{ 0x83, 0x8f },
{ 0x84, 0x96 },
{ 0x85, 0xa3 },
{ 0x86, 0xaf },
{ 0x87, 0xc4 },
{ 0x88, 0xd7 },
{ 0x89, 0xe8 },
/* AGC and AEC parameters. Note we start by disabling those features,
then turn them only after tweaking the values. */
{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
| OV7670_COM8_AECSTEP
| OV7670_COM8_BFILT },
{ OV7670_REG_GAIN, 0x00 },
{ OV7670_REG_AECH, 0x00 },
{ OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
{ OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
{ OV7670_REG_BD50MAX, 0x05 },
{ OV7670_REG_BD60MAX, 0x07 },
{ OV7670_REG_AEW, 0x95 },
{ OV7670_REG_AEB, 0x33 },
{ OV7670_REG_VPT, 0xe3 },
{ OV7670_REG_HAECC1, 0x78 },
{ OV7670_REG_HAECC2, 0x68 },
{ 0xa1, 0x03 }, /* magic */
{ OV7670_REG_HAECC3, 0xd8 },
{ OV7670_REG_HAECC4, 0xd8 },
{ OV7670_REG_HAECC5, 0xf0 },
{ OV7670_REG_HAECC6, 0x90 },
{ OV7670_REG_HAECC7, 0x94 },
{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
| OV7670_COM8_AECSTEP
| OV7670_COM8_BFILT
| OV7670_COM8_AGC
| OV7670_COM8_AEC },
/* Almost all of these are magic "reserved" values. */
{ OV7670_REG_COM5, 0x61 },
{ OV7670_REG_COM6, 0x4b },
{ 0x16, 0x02 },
{ OV7670_REG_MVFP, 0x07 },
{ 0x21, 0x02 },
{ 0x22, 0x91 },
{ 0x29, 0x07 },
{ 0x33, 0x0b },
{ 0x35, 0x0b },
{ 0x37, 0x1d },
{ 0x38, 0x71 },
{ 0x39, 0x2a },
{ OV7670_REG_COM12, 0x78 },
{ 0x4d, 0x40 },
{ 0x4e, 0x20 },
{ OV7670_REG_GFIX, 0x00 },
{ 0x6b, 0x4a },
{ 0x74, 0x10 },
{ 0x8d, 0x4f },
{ 0x8e, 0x00 },
{ 0x8f, 0x00 },
{ 0x90, 0x00 },
{ 0x91, 0x00 },
{ 0x96, 0x00 },
{ 0x9a, 0x00 },
{ 0xb0, 0x84 },
{ 0xb1, 0x0c },
{ 0xb2, 0x0e },
{ 0xb3, 0x82 },
{ 0xb8, 0x0a },
/* More reserved magic, some of which tweaks white balance */
{ 0x43, 0x0a },
{ 0x44, 0xf0 },
{ 0x45, 0x34 },
{ 0x46, 0x58 },
{ 0x47, 0x28 },
{ 0x48, 0x3a },
{ 0x59, 0x88 },
{ 0x5a, 0x88 },
{ 0x5b, 0x44 },
{ 0x5c, 0x67 },
{ 0x5d, 0x49 },
{ 0x5e, 0x0e },
{ 0x6c, 0x0a },
{ 0x6d, 0x55 },
{ 0x6e, 0x11 },
{ 0x6f, 0x9f },
/* "9e for advance AWB" */
{ 0x6a, 0x40 },
{ OV7670_REG_BLUE, 0x40 },
{ OV7670_REG_RED, 0x60 },
{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
| OV7670_COM8_AECSTEP
| OV7670_COM8_BFILT
| OV7670_COM8_AGC
| OV7670_COM8_AEC
| OV7670_COM8_AWB },
/* Matrix coefficients */
{ 0x4f, 0x80 },
{ 0x50, 0x80 },
{ 0x51, 0x00 },
{ 0x52, 0x22 },
{ 0x53, 0x5e },
{ 0x54, 0x80 },
{ 0x58, 0x9e },
{ OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
{ OV7670_REG_EDGE, 0x00 },
{ 0x75, 0x05 },
{ 0x76, 0xe1 },
{ 0x4c, 0x00 },
{ 0x77, 0x01 },
{ OV7670_REG_COM13, OV7670_COM13_GAMMA
| OV7670_COM13_UVSAT
| 2}, /* was 3 */
{ 0x4b, 0x09 },
{ 0xc9, 0x60 },
{ OV7670_REG_COM16, 0x38 },
{ 0x56, 0x40 },
{ 0x34, 0x11 },
{ OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
{ 0xa4, 0x88 },
{ 0x96, 0x00 },
{ 0x97, 0x30 },
{ 0x98, 0x20 },
{ 0x99, 0x30 },
{ 0x9a, 0x84 },
{ 0x9b, 0x29 },
{ 0x9c, 0x03 },
{ 0x9d, 0x4c },
{ 0x9e, 0x3f },
{ 0x78, 0x04 },
/* Extra-weird stuff. Some sort of multiplexor register */
{ 0x79, 0x01 },
{ 0xc8, 0xf0 },
{ 0x79, 0x0f },
{ 0xc8, 0x00 },
{ 0x79, 0x10 },
{ 0xc8, 0x7e },
{ 0x79, 0x0a },
{ 0xc8, 0x80 },
{ 0x79, 0x0b },
{ 0xc8, 0x01 },
{ 0x79, 0x0c },
{ 0xc8, 0x0f },
{ 0x79, 0x0d },
{ 0xc8, 0x20 },
{ 0x79, 0x09 },
{ 0xc8, 0x80 },
{ 0x79, 0x02 },
{ 0xc8, 0xc0 },
{ 0x79, 0x03 },
{ 0xc8, 0x40 },
{ 0x79, 0x05 },
{ 0xc8, 0x30 },
{ 0x79, 0x26 },
};
static const struct ov_i2c_regvals norm_8610[] = {
{ 0x12, 0x80 },
{ 0x00, 0x00 },
{ 0x01, 0x80 },
{ 0x02, 0x80 },
{ 0x03, 0xc0 },
{ 0x04, 0x30 },
{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
{ 0x0a, 0x86 },
{ 0x0b, 0xb0 },
{ 0x0c, 0x20 },
{ 0x0d, 0x20 },
{ 0x11, 0x01 },
{ 0x12, 0x25 },
{ 0x13, 0x01 },
{ 0x14, 0x04 },
{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
{ 0x16, 0x03 },
{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
{ 0x1a, 0xf5 },
{ 0x1b, 0x00 },
{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
{ 0x26, 0xa2 },
{ 0x27, 0xea },
{ 0x28, 0x00 },
{ 0x29, 0x00 },
{ 0x2a, 0x80 },
{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
{ 0x2c, 0xac },
{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
{ 0x2e, 0x80 },
{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
{ 0x4c, 0x00 },
{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
{ 0x63, 0xff },
{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
* maybe thats wrong */
{ 0x65, 0x00 },
{ 0x66, 0x55 },
{ 0x67, 0xb0 },
{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
{ 0x69, 0x02 },
{ 0x6a, 0x22 },
{ 0x6b, 0x00 },
{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
* deleting bit7 colors the first images red */
{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
{ 0x6f, 0x01 },
{ 0x70, 0x8b },
{ 0x71, 0x00 },
{ 0x72, 0x14 },
{ 0x73, 0x54 },
{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
{ 0x75, 0x0e },
{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
{ 0x77, 0xff },
{ 0x78, 0x80 },
{ 0x79, 0x80 },
{ 0x7a, 0x80 },
{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
{ 0x7c, 0x00 },
{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
{ 0x7f, 0xfb },
{ 0x80, 0x28 },
{ 0x81, 0x00 },
{ 0x82, 0x23 },
{ 0x83, 0x0b },
{ 0x84, 0x00 },
{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
{ 0x86, 0xc9 },
{ 0x87, 0x00 },
{ 0x88, 0x00 },
{ 0x89, 0x01 },
{ 0x12, 0x20 },
{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
};
static unsigned char ov7670_abs_to_sm(unsigned char v)
{
if (v > 127)
return v & 0x7f;
return (128 - v) | 0x80;
}
/* Write a OV519 register */
static int reg_w(struct sd *sd, __u16 index, __u8 value)
{
int ret;
int req = (sd->bridge <= BRIDGE_OV511PLUS) ? 2 : 1;
sd->gspca_dev.usb_buf[0] = value;
ret = usb_control_msg(sd->gspca_dev.dev,
usb_sndctrlpipe(sd->gspca_dev.dev, 0),
req,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index,
sd->gspca_dev.usb_buf, 1, 500);
if (ret < 0)
PDEBUG(D_ERR, "Write reg [%02x] %02x failed", index, value);
return ret;
}
/* Read from a OV519 register */
/* returns: negative is error, pos or zero is data */
static int reg_r(struct sd *sd, __u16 index)
{
int ret;
int req = (sd->bridge <= BRIDGE_OV511PLUS) ? 3 : 1;
ret = usb_control_msg(sd->gspca_dev.dev,
usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
req,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, sd->gspca_dev.usb_buf, 1, 500);
if (ret >= 0)
ret = sd->gspca_dev.usb_buf[0];
else
PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
return ret;
}
/* Read 8 values from a OV519 register */
static int reg_r8(struct sd *sd,
__u16 index)
{
int ret;
ret = usb_control_msg(sd->gspca_dev.dev,
usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1, /* REQ_IO */
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, sd->gspca_dev.usb_buf, 8, 500);
if (ret >= 0)
ret = sd->gspca_dev.usb_buf[0];
else
PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
return ret;
}
/*
* Writes bits at positions specified by mask to an OV51x reg. Bits that are in
* the same position as 1's in "mask" are cleared and set to "value". Bits
* that are in the same position as 0's in "mask" are preserved, regardless
* of their respective state in "value".
*/
static int reg_w_mask(struct sd *sd,
__u16 index,
__u8 value,
__u8 mask)
{
int ret;
__u8 oldval;
if (mask != 0xff) {
value &= mask; /* Enforce mask on value */
ret = reg_r(sd, index);
if (ret < 0)
return ret;
oldval = ret & ~mask; /* Clear the masked bits */
value |= oldval; /* Set the desired bits */
}
return reg_w(sd, index, value);
}
/*
* Writes multiple (n) byte value to a single register. Only valid with certain
* registers (0x30 and 0xc4 - 0xce).
*/
static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
{
int ret;
*((u32 *)sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
ret = usb_control_msg(sd->gspca_dev.dev,
usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1 /* REG_IO */,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index,
sd->gspca_dev.usb_buf, n, 500);
if (ret < 0)
PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value);
return ret;
}
static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
{
int rc, retries;
PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
/* Three byte write cycle */
for (retries = 6; ; ) {
/* Select camera register */
rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
if (rc < 0)
return rc;
/* Write "value" to I2C data port of OV511 */
rc = reg_w(sd, R51x_I2C_DATA, value);
if (rc < 0)
return rc;
/* Initiate 3-byte write cycle */
rc = reg_w(sd, R511_I2C_CTL, 0x01);
if (rc < 0)
return rc;
do
rc = reg_r(sd, R511_I2C_CTL);
while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
if (rc < 0)
return rc;
if ((rc & 2) == 0) /* Ack? */
break;
if (--retries < 0) {
PDEBUG(D_USBO, "i2c write retries exhausted");
return -1;
}
}
return 0;
}
static int ov511_i2c_r(struct sd *sd, __u8 reg)
{
int rc, value, retries;
/* Two byte write cycle */
for (retries = 6; ; ) {
/* Select camera register */
rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
if (rc < 0)
return rc;
/* Initiate 2-byte write cycle */
rc = reg_w(sd, R511_I2C_CTL, 0x03);
if (rc < 0)
return rc;
do
rc = reg_r(sd, R511_I2C_CTL);
while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
if (rc < 0)
return rc;
if ((rc & 2) == 0) /* Ack? */
break;
/* I2C abort */
reg_w(sd, R511_I2C_CTL, 0x10);
if (--retries < 0) {
PDEBUG(D_USBI, "i2c write retries exhausted");
return -1;
}
}
/* Two byte read cycle */
for (retries = 6; ; ) {
/* Initiate 2-byte read cycle */
rc = reg_w(sd, R511_I2C_CTL, 0x05);
if (rc < 0)
return rc;
do
rc = reg_r(sd, R511_I2C_CTL);
while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
if (rc < 0)
return rc;
if ((rc & 2) == 0) /* Ack? */
break;
/* I2C abort */
rc = reg_w(sd, R511_I2C_CTL, 0x10);
if (rc < 0)
return rc;
if (--retries < 0) {
PDEBUG(D_USBI, "i2c read retries exhausted");
return -1;
}
}
value = reg_r(sd, R51x_I2C_DATA);
PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
/* This is needed to make i2c_w() work */
rc = reg_w(sd, R511_I2C_CTL, 0x05);
if (rc < 0)
return rc;
return value;
}
/*
* The OV518 I2C I/O procedure is different, hence, this function.
* This is normally only called from i2c_w(). Note that this function
* always succeeds regardless of whether the sensor is present and working.
*/
static int ov518_i2c_w(struct sd *sd,
__u8 reg,
__u8 value)
{
int rc;
PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
/* Select camera register */
rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
if (rc < 0)
return rc;
/* Write "value" to I2C data port of OV511 */
rc = reg_w(sd, R51x_I2C_DATA, value);
if (rc < 0)
return rc;
/* Initiate 3-byte write cycle */
rc = reg_w(sd, R518_I2C_CTL, 0x01);
if (rc < 0)
return rc;
/* wait for write complete */
msleep(4);
return reg_r8(sd, R518_I2C_CTL);
}
/*
* returns: negative is error, pos or zero is data
*
* The OV518 I2C I/O procedure is different, hence, this function.
* This is normally only called from i2c_r(). Note that this function
* always succeeds regardless of whether the sensor is present and working.
*/
static int ov518_i2c_r(struct sd *sd, __u8 reg)
{
int rc, value;
/* Select camera register */
rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
if (rc < 0)
return rc;
/* Initiate 2-byte write cycle */
rc = reg_w(sd, R518_I2C_CTL, 0x03);
if (rc < 0)
return rc;
/* Initiate 2-byte read cycle */
rc = reg_w(sd, R518_I2C_CTL, 0x05);
if (rc < 0)
return rc;
value = reg_r(sd, R51x_I2C_DATA);
PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
return value;
}
static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
{
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
return ov511_i2c_w(sd, reg, value);
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
case BRIDGE_OV519:
return ov518_i2c_w(sd, reg, value);
}
return -1; /* Should never happen */
}
static int i2c_r(struct sd *sd, __u8 reg)
{
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
return ov511_i2c_r(sd, reg);
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
case BRIDGE_OV519:
return ov518_i2c_r(sd, reg);
}
return -1; /* Should never happen */
}
/* Writes bits at positions specified by mask to an I2C reg. Bits that are in
* the same position as 1's in "mask" are cleared and set to "value". Bits
* that are in the same position as 0's in "mask" are preserved, regardless
* of their respective state in "value".
*/
static int i2c_w_mask(struct sd *sd,
__u8 reg,
__u8 value,
__u8 mask)
{
int rc;
__u8 oldval;
value &= mask; /* Enforce mask on value */
rc = i2c_r(sd, reg);
if (rc < 0)
return rc;
oldval = rc & ~mask; /* Clear the masked bits */
value |= oldval; /* Set the desired bits */
return i2c_w(sd, reg, value);
}
/* Temporarily stops OV511 from functioning. Must do this before changing
* registers while the camera is streaming */
static inline int ov51x_stop(struct sd *sd)
{
PDEBUG(D_STREAM, "stopping");
sd->stopped = 1;
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
return reg_w(sd, R51x_SYS_RESET, 0x3d);
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
case BRIDGE_OV519:
return reg_w(sd, OV519_SYS_RESET1, 0x0f);
}
return 0;
}
/* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
* actually stopped (for performance). */
static inline int ov51x_restart(struct sd *sd)
{
int rc;
PDEBUG(D_STREAM, "restarting");
if (!sd->stopped)
return 0;
sd->stopped = 0;
/* Reinitialize the stream */
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
return reg_w(sd, R51x_SYS_RESET, 0x00);
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
rc = reg_w(sd, 0x2f, 0x80);
if (rc < 0)
return rc;
return reg_w(sd, R51x_SYS_RESET, 0x00);
case BRIDGE_OV519:
return reg_w(sd, OV519_SYS_RESET1, 0x00);
}
return 0;
}
/* This does an initial reset of an OmniVision sensor and ensures that I2C
* is synchronized. Returns <0 on failure.
*/
static int init_ov_sensor(struct sd *sd)
{
int i;
/* Reset the sensor */
if (i2c_w(sd, 0x12, 0x80) < 0)
return -EIO;
/* Wait for it to initialize */
msleep(150);
for (i = 0; i < i2c_detect_tries; i++) {
if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
return 0;
}
/* Reset the sensor */
if (i2c_w(sd, 0x12, 0x80) < 0)
return -EIO;
/* Wait for it to initialize */
msleep(150);
/* Dummy read to sync I2C */
if (i2c_r(sd, 0x00) < 0)
return -EIO;
}
return -EIO;
}
/* Set the read and write slave IDs. The "slave" argument is the write slave,
* and the read slave will be set to (slave + 1).
* This should not be called from outside the i2c I/O functions.
* Sets I2C read and write slave IDs. Returns <0 for error
*/
static int ov51x_set_slave_ids(struct sd *sd,
__u8 slave)
{
int rc;
rc = reg_w(sd, R51x_I2C_W_SID, slave);
if (rc < 0)
return rc;
return reg_w(sd, R51x_I2C_R_SID, slave + 1);
}
static int write_regvals(struct sd *sd,
const struct ov_regvals *regvals,
int n)
{
int rc;
while (--n >= 0) {
rc = reg_w(sd, regvals->reg, regvals->val);
if (rc < 0)
return rc;
regvals++;
}
return 0;
}
static int write_i2c_regvals(struct sd *sd,
const struct ov_i2c_regvals *regvals,
int n)
{
int rc;
while (--n >= 0) {
rc = i2c_w(sd, regvals->reg, regvals->val);
if (rc < 0)
return rc;
regvals++;
}
return 0;
}
/****************************************************************************
*
* OV511 and sensor configuration
*
***************************************************************************/
/* This initializes the OV8110, OV8610 sensor. The OV8110 uses
* the same register settings as the OV8610, since they are very similar.
*/
static int ov8xx0_configure(struct sd *sd)
{
int rc;
PDEBUG(D_PROBE, "starting ov8xx0 configuration");
/* Detect sensor (sub)type */
rc = i2c_r(sd, OV7610_REG_COM_I);
if (rc < 0) {
PDEBUG(D_ERR, "Error detecting sensor type");
return -1;
}
if ((rc & 3) == 1) {
sd->sensor = SEN_OV8610;
} else {
PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
return -1;
}
/* Set sensor-specific vars */
return 0;
}
/* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
* the same register settings as the OV7610, since they are very similar.
*/
static int ov7xx0_configure(struct sd *sd)
{
int rc, high, low;
PDEBUG(D_PROBE, "starting OV7xx0 configuration");
/* Detect sensor (sub)type */
rc = i2c_r(sd, OV7610_REG_COM_I);
/* add OV7670 here
* it appears to be wrongly detected as a 7610 by default */
if (rc < 0) {
PDEBUG(D_ERR, "Error detecting sensor type");
return -1;
}
if ((rc & 3) == 3) {
/* quick hack to make OV7670s work */
high = i2c_r(sd, 0x0a);
low = i2c_r(sd, 0x0b);
/* info("%x, %x", high, low); */
if (high == 0x76 && low == 0x73) {
PDEBUG(D_PROBE, "Sensor is an OV7670");
sd->sensor = SEN_OV7670;
} else {
PDEBUG(D_PROBE, "Sensor is an OV7610");
sd->sensor = SEN_OV7610;
}
} else if ((rc & 3) == 1) {
/* I don't know what's different about the 76BE yet. */
if (i2c_r(sd, 0x15) & 1) {
PDEBUG(D_PROBE, "Sensor is an OV7620AE");
sd->sensor = SEN_OV7620;
} else {
PDEBUG(D_PROBE, "Sensor is an OV76BE");
sd->sensor = SEN_OV76BE;
}
} else if ((rc & 3) == 0) {
/* try to read product id registers */
high = i2c_r(sd, 0x0a);
if (high < 0) {
PDEBUG(D_ERR, "Error detecting camera chip PID");
return high;
}
low = i2c_r(sd, 0x0b);
if (low < 0) {
PDEBUG(D_ERR, "Error detecting camera chip VER");
return low;
}
if (high == 0x76) {
switch (low) {
case 0x30:
PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
PDEBUG(D_ERR,
"7630 is not supported by this driver");
return -1;
case 0x40:
PDEBUG(D_PROBE, "Sensor is an OV7645");
sd->sensor = SEN_OV7640; /* FIXME */
break;
case 0x45:
PDEBUG(D_PROBE, "Sensor is an OV7645B");
sd->sensor = SEN_OV7640; /* FIXME */
break;
case 0x48:
PDEBUG(D_PROBE, "Sensor is an OV7648");
sd->sensor = SEN_OV7640; /* FIXME */
break;
default:
PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
return -1;
}
} else {
PDEBUG(D_PROBE, "Sensor is an OV7620");
sd->sensor = SEN_OV7620;
}
} else {
PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
return -1;
}
/* Set sensor-specific vars */
return 0;
}
/* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
static int ov6xx0_configure(struct sd *sd)
{
int rc;
PDEBUG(D_PROBE, "starting OV6xx0 configuration");
/* Detect sensor (sub)type */
rc = i2c_r(sd, OV7610_REG_COM_I);
if (rc < 0) {
PDEBUG(D_ERR, "Error detecting sensor type");
return -1;
}
/* Ugh. The first two bits are the version bits, but
* the entire register value must be used. I guess OVT
* underestimated how many variants they would make. */
switch (rc) {
case 0x00:
sd->sensor = SEN_OV6630;
PDEBUG(D_ERR,
"WARNING: Sensor is an OV66308. Your camera may have");
PDEBUG(D_ERR, "been misdetected in previous driver versions.");
break;
case 0x01:
sd->sensor = SEN_OV6620;
PDEBUG(D_PROBE, "Sensor is an OV6620");
break;
case 0x02:
sd->sensor = SEN_OV6630;
PDEBUG(D_PROBE, "Sensor is an OV66308AE");
break;
case 0x03:
sd->sensor = SEN_OV66308AF;
PDEBUG(D_PROBE, "Sensor is an OV66308AF");
break;
case 0x90:
sd->sensor = SEN_OV6630;
PDEBUG(D_ERR,
"WARNING: Sensor is an OV66307. Your camera may have");
PDEBUG(D_ERR, "been misdetected in previous driver versions.");
break;
default:
PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
return -1;
}
/* Set sensor-specific vars */
sd->sif = 1;
return 0;
}
/* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
static void ov51x_led_control(struct sd *sd, int on)
{
if (sd->invert_led)
on = !on;
switch (sd->bridge) {
/* OV511 has no LED control */
case BRIDGE_OV511PLUS:
reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
break;
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
break;
case BRIDGE_OV519:
reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
break;
}
}
static int ov51x_upload_quan_tables(struct sd *sd)
{
const unsigned char yQuanTable511[] = {
0, 1, 1, 2, 2, 3, 3, 4,
1, 1, 1, 2, 2, 3, 4, 4,
1, 1, 2, 2, 3, 4, 4, 4,
2, 2, 2, 3, 4, 4, 4, 4,
2, 2, 3, 4, 4, 5, 5, 5,
3, 3, 4, 4, 5, 5, 5, 5,
3, 4, 4, 4, 5, 5, 5, 5,
4, 4, 4, 4, 5, 5, 5, 5
};
const unsigned char uvQuanTable511[] = {
0, 2, 2, 3, 4, 4, 4, 4,
2, 2, 2, 4, 4, 4, 4, 4,
2, 2, 3, 4, 4, 4, 4, 4,
3, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4
};
/* OV518 quantization tables are 8x4 (instead of 8x8) */
const unsigned char yQuanTable518[] = {
5, 4, 5, 6, 6, 7, 7, 7,
5, 5, 5, 5, 6, 7, 7, 7,
6, 6, 6, 6, 7, 7, 7, 8,
7, 7, 6, 7, 7, 7, 8, 8
};
const unsigned char uvQuanTable518[] = {
6, 6, 6, 7, 7, 7, 7, 7,
6, 6, 6, 7, 7, 7, 7, 7,
6, 6, 6, 7, 7, 7, 7, 8,
7, 7, 7, 7, 7, 7, 8, 8
};
const unsigned char *pYTable, *pUVTable;
unsigned char val0, val1;
int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
PDEBUG(D_PROBE, "Uploading quantization tables");
if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
pYTable = yQuanTable511;
pUVTable = uvQuanTable511;
size = 32;
} else {
pYTable = yQuanTable518;
pUVTable = uvQuanTable518;
size = 16;
}
for (i = 0; i < size; i++) {
val0 = *pYTable++;
val1 = *pYTable++;
val0 &= 0x0f;
val1 &= 0x0f;
val0 |= val1 << 4;
rc = reg_w(sd, reg, val0);
if (rc < 0)
return rc;
val0 = *pUVTable++;
val1 = *pUVTable++;
val0 &= 0x0f;
val1 &= 0x0f;
val0 |= val1 << 4;
rc = reg_w(sd, reg + size, val0);
if (rc < 0)
return rc;
reg++;
}
return 0;
}
/* This initializes the OV511/OV511+ and the sensor */
static int ov511_configure(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int rc;
/* For 511 and 511+ */
const struct ov_regvals init_511[] = {
{ R51x_SYS_RESET, 0x7f },
{ R51x_SYS_INIT, 0x01 },
{ R51x_SYS_RESET, 0x7f },
{ R51x_SYS_INIT, 0x01 },
{ R51x_SYS_RESET, 0x3f },
{ R51x_SYS_INIT, 0x01 },
{ R51x_SYS_RESET, 0x3d },
};
const struct ov_regvals norm_511[] = {
{ R511_DRAM_FLOW_CTL, 0x01 },
{ R51x_SYS_SNAP, 0x00 },
{ R51x_SYS_SNAP, 0x02 },
{ R51x_SYS_SNAP, 0x00 },
{ R511_FIFO_OPTS, 0x1f },
{ R511_COMP_EN, 0x00 },
{ R511_COMP_LUT_EN, 0x03 },
};
const struct ov_regvals norm_511_p[] = {
{ R511_DRAM_FLOW_CTL, 0xff },
{ R51x_SYS_SNAP, 0x00 },
{ R51x_SYS_SNAP, 0x02 },
{ R51x_SYS_SNAP, 0x00 },
{ R511_FIFO_OPTS, 0xff },
{ R511_COMP_EN, 0x00 },
{ R511_COMP_LUT_EN, 0x03 },
};
const struct ov_regvals compress_511[] = {
{ 0x70, 0x1f },
{ 0x71, 0x05 },
{ 0x72, 0x06 },
{ 0x73, 0x06 },
{ 0x74, 0x14 },
{ 0x75, 0x03 },
{ 0x76, 0x04 },
{ 0x77, 0x04 },
};
PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
if (rc < 0)
return rc;
switch (sd->bridge) {
case BRIDGE_OV511:
rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
if (rc < 0)
return rc;
break;
case BRIDGE_OV511PLUS:
rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
if (rc < 0)
return rc;
break;
}
/* Init compression */
rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
if (rc < 0)
return rc;
rc = ov51x_upload_quan_tables(sd);
if (rc < 0) {
PDEBUG(D_ERR, "Error uploading quantization tables");
return rc;
}
return 0;
}
/* This initializes the OV518/OV518+ and the sensor */
static int ov518_configure(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int rc;
/* For 518 and 518+ */
const struct ov_regvals init_518[] = {
{ R51x_SYS_RESET, 0x40 },
{ R51x_SYS_INIT, 0xe1 },
{ R51x_SYS_RESET, 0x3e },
{ R51x_SYS_INIT, 0xe1 },
{ R51x_SYS_RESET, 0x00 },
{ R51x_SYS_INIT, 0xe1 },
{ 0x46, 0x00 },
{ 0x5d, 0x03 },
};
const struct ov_regvals norm_518[] = {
{ R51x_SYS_SNAP, 0x02 }, /* Reset */
{ R51x_SYS_SNAP, 0x01 }, /* Enable */
{ 0x31, 0x0f },
{ 0x5d, 0x03 },
{ 0x24, 0x9f },
{ 0x25, 0x90 },
{ 0x20, 0x00 },
{ 0x51, 0x04 },
{ 0x71, 0x19 },
{ 0x2f, 0x80 },
};
const struct ov_regvals norm_518_p[] = {
{ R51x_SYS_SNAP, 0x02 }, /* Reset */
{ R51x_SYS_SNAP, 0x01 }, /* Enable */
{ 0x31, 0x0f },
{ 0x5d, 0x03 },
{ 0x24, 0x9f },
{ 0x25, 0x90 },
{ 0x20, 0x60 },
{ 0x51, 0x02 },
{ 0x71, 0x19 },
{ 0x40, 0xff },
{ 0x41, 0x42 },
{ 0x46, 0x00 },
{ 0x33, 0x04 },
{ 0x21, 0x19 },
{ 0x3f, 0x10 },
{ 0x2f, 0x80 },
};
/* First 5 bits of custom ID reg are a revision ID on OV518 */
PDEBUG(D_PROBE, "Device revision %d",
0x1F & reg_r(sd, R51x_SYS_CUST_ID));
rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
if (rc < 0)
return rc;
/* Set LED GPIO pin to output mode */
rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
if (rc < 0)
return rc;
switch (sd->bridge) {
case BRIDGE_OV518:
rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
if (rc < 0)
return rc;
break;
case BRIDGE_OV518PLUS:
rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
if (rc < 0)
return rc;
break;
}
rc = ov51x_upload_quan_tables(sd);
if (rc < 0) {
PDEBUG(D_ERR, "Error uploading quantization tables");
return rc;
}
rc = reg_w(sd, 0x2f, 0x80);
if (rc < 0)
return rc;
return 0;
}
static int ov519_configure(struct sd *sd)
{
static const struct ov_regvals init_519[] = {
{ 0x5a, 0x6d }, /* EnableSystem */
{ 0x53, 0x9b },
{ 0x54, 0xff }, /* set bit2 to enable jpeg */
{ 0x5d, 0x03 },
{ 0x49, 0x01 },
{ 0x48, 0x00 },
/* Set LED pin to output mode. Bit 4 must be cleared or sensor
* detection will fail. This deserves further investigation. */
{ OV519_GPIO_IO_CTRL0, 0xee },
{ 0x51, 0x0f }, /* SetUsbInit */
{ 0x51, 0x00 },
{ 0x22, 0x00 },
/* windows reads 0x55 at this point*/
};
return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
}
/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
const struct usb_device_id *id)
{
struct sd *sd = (struct sd *) gspca_dev;
struct cam *cam;
int ret = 0;
sd->bridge = id->driver_info & BRIDGE_MASK;
sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
ret = ov511_configure(gspca_dev);
break;
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
ret = ov518_configure(gspca_dev);
break;
case BRIDGE_OV519:
ret = ov519_configure(sd);
break;
}
if (ret)
goto error;
ov51x_led_control(sd, 0); /* turn LED off */
/* Test for 76xx */
if (ov51x_set_slave_ids(sd, OV7xx0_SID) < 0)
goto error;
/* The OV519 must be more aggressive about sensor detection since
* I2C write will never fail if the sensor is not present. We have
* to try to initialize the sensor to detect its presence */
if (init_ov_sensor(sd) >= 0) {
if (ov7xx0_configure(sd) < 0) {
PDEBUG(D_ERR, "Failed to configure OV7xx0");
goto error;
}
} else {
/* Test for 6xx0 */
if (ov51x_set_slave_ids(sd, OV6xx0_SID) < 0)
goto error;
if (init_ov_sensor(sd) >= 0) {
if (ov6xx0_configure(sd) < 0) {
PDEBUG(D_ERR, "Failed to configure OV6xx0");
goto error;
}
} else {
/* Test for 8xx0 */
if (ov51x_set_slave_ids(sd, OV8xx0_SID) < 0)
goto error;
if (init_ov_sensor(sd) < 0) {
PDEBUG(D_ERR,
"Can't determine sensor slave IDs");
goto error;
}
if (ov8xx0_configure(sd) < 0) {
PDEBUG(D_ERR,
"Failed to configure OV8xx0 sensor");
goto error;
}
}
}
cam = &gspca_dev->cam;
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
if (!sd->sif) {
cam->cam_mode = ov511_vga_mode;
cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
} else {
cam->cam_mode = ov511_sif_mode;
cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
}
break;
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
if (!sd->sif) {
cam->cam_mode = ov518_vga_mode;
cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
} else {
cam->cam_mode = ov518_sif_mode;
cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
}
break;
case BRIDGE_OV519:
if (!sd->sif) {
cam->cam_mode = ov519_vga_mode;
cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
} else {
cam->cam_mode = ov519_sif_mode;
cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
}
break;
}
sd->brightness = BRIGHTNESS_DEF;
if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF)
sd->contrast = 200; /* The default is too low for the ov6630 */
else
sd->contrast = CONTRAST_DEF;
sd->colors = COLOR_DEF;
sd->hflip = HFLIP_DEF;
sd->vflip = VFLIP_DEF;
sd->autobrightness = AUTOBRIGHT_DEF;
if (sd->sensor == SEN_OV7670) {
sd->freq = OV7670_FREQ_DEF;
gspca_dev->ctrl_dis = 1 << FREQ_IDX;
} else {
sd->freq = FREQ_DEF;
gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) |
(1 << OV7670_FREQ_IDX);
}
if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670)
gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX;
/* OV8610 Frequency filter control should work but needs testing */
if (sd->sensor == SEN_OV8610)
gspca_dev->ctrl_dis |= 1 << FREQ_IDX;
return 0;
error:
PDEBUG(D_ERR, "OV519 Config failed");
return -EBUSY;
}
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
/* initialize the sensor */
switch (sd->sensor) {
case SEN_OV6620:
if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
return -EIO;
break;
case SEN_OV6630:
case SEN_OV66308AF:
if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
return -EIO;
break;
default:
/* case SEN_OV7610: */
/* case SEN_OV76BE: */
if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
return -EIO;
if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
return -EIO;
break;
case SEN_OV7620:
if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
return -EIO;
break;
case SEN_OV7640:
if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
return -EIO;
break;
case SEN_OV7670:
if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
return -EIO;
break;
case SEN_OV8610:
if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
return -EIO;
break;
}
return 0;
}
/* Set up the OV511/OV511+ with the given image parameters.
*
* Do not put any sensor-specific code in here (including I2C I/O functions)
*/
static int ov511_mode_init_regs(struct sd *sd)
{
int hsegs, vsegs, packet_size, fps, needed;
int interlaced = 0;
struct usb_host_interface *alt;
struct usb_interface *intf;
intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
if (!alt) {
PDEBUG(D_ERR, "Couldn't get altsetting");
return -EIO;
}
packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
reg_w(sd, R511_CAM_UV_EN, 0x01);
reg_w(sd, R511_SNAP_UV_EN, 0x01);
reg_w(sd, R511_SNAP_OPTS, 0x03);
/* Here I'm assuming that snapshot size == image size.
* I hope that's always true. --claudio
*/
hsegs = (sd->gspca_dev.width >> 3) - 1;
vsegs = (sd->gspca_dev.height >> 3) - 1;
reg_w(sd, R511_CAM_PXCNT, hsegs);
reg_w(sd, R511_CAM_LNCNT, vsegs);
reg_w(sd, R511_CAM_PXDIV, 0x00);
reg_w(sd, R511_CAM_LNDIV, 0x00);
/* YUV420, low pass filter on */
reg_w(sd, R511_CAM_OPTS, 0x03);
/* Snapshot additions */
reg_w(sd, R511_SNAP_PXCNT, hsegs);
reg_w(sd, R511_SNAP_LNCNT, vsegs);
reg_w(sd, R511_SNAP_PXDIV, 0x00);
reg_w(sd, R511_SNAP_LNDIV, 0x00);
/******** Set the framerate ********/
if (frame_rate > 0)
sd->frame_rate = frame_rate;
switch (sd->sensor) {
case SEN_OV6620:
/* No framerate control, doesn't like higher rates yet */
sd->clockdiv = 3;
break;
/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
for more sensors we need to do this for them too */
case SEN_OV7620:
case SEN_OV7640:
case SEN_OV76BE:
if (sd->gspca_dev.width == 320)
interlaced = 1;
/* Fall through */
case SEN_OV6630:
case SEN_OV7610:
case SEN_OV7670:
switch (sd->frame_rate) {
case 30:
case 25:
/* Not enough bandwidth to do 640x480 @ 30 fps */
if (sd->gspca_dev.width != 640) {
sd->clockdiv = 0;
break;
}
/* Fall through for 640x480 case */
default:
/* case 20: */
/* case 15: */
sd->clockdiv = 1;
break;
case 10:
sd->clockdiv = 2;
break;
case 5:
sd->clockdiv = 5;
break;
}
if (interlaced) {
sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
/* Higher then 10 does not work */
if (sd->clockdiv > 10)
sd->clockdiv = 10;
}
break;
case SEN_OV8610:
/* No framerate control ?? */
sd->clockdiv = 0;
break;
}
/* Check if we have enough bandwidth to disable compression */
fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
/* 1400 is a conservative estimate of the max nr of isoc packets/sec */
if (needed > 1400 * packet_size) {
/* Enable Y and UV quantization and compression */
reg_w(sd, R511_COMP_EN, 0x07);
reg_w(sd, R511_COMP_LUT_EN, 0x03);
} else {
reg_w(sd, R511_COMP_EN, 0x06);
reg_w(sd, R511_COMP_LUT_EN, 0x00);
}
reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
reg_w(sd, R51x_SYS_RESET, 0);
return 0;
}
/* Sets up the OV518/OV518+ with the given image parameters
*
* OV518 needs a completely different approach, until we can figure out what
* the individual registers do. Also, only 15 FPS is supported now.
*
* Do not put any sensor-specific code in here (including I2C I/O functions)
*/
static int ov518_mode_init_regs(struct sd *sd)
{
int hsegs, vsegs, packet_size;
struct usb_host_interface *alt;
struct usb_interface *intf;
intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
if (!alt) {
PDEBUG(D_ERR, "Couldn't get altsetting");
return -EIO;
}
packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
/******** Set the mode ********/
reg_w(sd, 0x2b, 0);
reg_w(sd, 0x2c, 0);
reg_w(sd, 0x2d, 0);
reg_w(sd, 0x2e, 0);
reg_w(sd, 0x3b, 0);
reg_w(sd, 0x3c, 0);
reg_w(sd, 0x3d, 0);
reg_w(sd, 0x3e, 0);
if (sd->bridge == BRIDGE_OV518) {
/* Set 8-bit (YVYU) input format */
reg_w_mask(sd, 0x20, 0x08, 0x08);
/* Set 12-bit (4:2:0) output format */
reg_w_mask(sd, 0x28, 0x80, 0xf0);
reg_w_mask(sd, 0x38, 0x80, 0xf0);
} else {
reg_w(sd, 0x28, 0x80);
reg_w(sd, 0x38, 0x80);
}
hsegs = sd->gspca_dev.width / 16;
vsegs = sd->gspca_dev.height / 4;
reg_w(sd, 0x29, hsegs);
reg_w(sd, 0x2a, vsegs);
reg_w(sd, 0x39, hsegs);
reg_w(sd, 0x3a, vsegs);
/* Windows driver does this here; who knows why */
reg_w(sd, 0x2f, 0x80);
/******** Set the framerate ********/
sd->clockdiv = 1;
/* Mode independent, but framerate dependent, regs */
/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
reg_w(sd, 0x51, 0x04);
reg_w(sd, 0x22, 0x18);
reg_w(sd, 0x23, 0xff);
if (sd->bridge == BRIDGE_OV518PLUS) {
switch (sd->sensor) {
case SEN_OV7620:
if (sd->gspca_dev.width == 320) {
reg_w(sd, 0x20, 0x00);
reg_w(sd, 0x21, 0x19);
} else {
reg_w(sd, 0x20, 0x60);
reg_w(sd, 0x21, 0x1f);
}
break;
default:
reg_w(sd, 0x21, 0x19);
}
} else
reg_w(sd, 0x71, 0x17); /* Compression-related? */
/* FIXME: Sensor-specific */
/* Bit 5 is what matters here. Of course, it is "reserved" */
i2c_w(sd, 0x54, 0x23);
reg_w(sd, 0x2f, 0x80);
if (sd->bridge == BRIDGE_OV518PLUS) {
reg_w(sd, 0x24, 0x94);
reg_w(sd, 0x25, 0x90);
ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
} else {
reg_w(sd, 0x24, 0x9f);
reg_w(sd, 0x25, 0x90);
ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
}
reg_w(sd, 0x2f, 0x80);
return 0;
}
/* Sets up the OV519 with the given image parameters
*
* OV519 needs a completely different approach, until we can figure out what
* the individual registers do.
*
* Do not put any sensor-specific code in here (including I2C I/O functions)
*/
static int ov519_mode_init_regs(struct sd *sd)
{
static const struct ov_regvals mode_init_519_ov7670[] = {
{ 0x5d, 0x03 }, /* Turn off suspend mode */
{ 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
{ 0x54, 0x0f }, /* bit2 (jpeg enable) */
{ 0xa2, 0x20 }, /* a2-a5 are undocumented */
{ 0xa3, 0x18 },
{ 0xa4, 0x04 },
{ 0xa5, 0x28 },
{ 0x37, 0x00 }, /* SetUsbInit */
{ 0x55, 0x02 }, /* 4.096 Mhz audio clock */
/* Enable both fields, YUV Input, disable defect comp (why?) */
{ 0x20, 0x0c },
{ 0x21, 0x38 },
{ 0x22, 0x1d },
{ 0x17, 0x50 }, /* undocumented */
{ 0x37, 0x00 }, /* undocumented */
{ 0x40, 0xff }, /* I2C timeout counter */
{ 0x46, 0x00 }, /* I2C clock prescaler */
{ 0x59, 0x04 }, /* new from windrv 090403 */
{ 0xff, 0x00 }, /* undocumented */
/* windows reads 0x55 at this point, why? */
};
static const struct ov_regvals mode_init_519[] = {
{ 0x5d, 0x03 }, /* Turn off suspend mode */
{ 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
{ 0x54, 0x0f }, /* bit2 (jpeg enable) */
{ 0xa2, 0x20 }, /* a2-a5 are undocumented */
{ 0xa3, 0x18 },
{ 0xa4, 0x04 },
{ 0xa5, 0x28 },
{ 0x37, 0x00 }, /* SetUsbInit */
{ 0x55, 0x02 }, /* 4.096 Mhz audio clock */
/* Enable both fields, YUV Input, disable defect comp (why?) */
{ 0x22, 0x1d },
{ 0x17, 0x50 }, /* undocumented */
{ 0x37, 0x00 }, /* undocumented */
{ 0x40, 0xff }, /* I2C timeout counter */
{ 0x46, 0x00 }, /* I2C clock prescaler */
{ 0x59, 0x04 }, /* new from windrv 090403 */
{ 0xff, 0x00 }, /* undocumented */
/* windows reads 0x55 at this point, why? */
};
/******** Set the mode ********/
if (sd->sensor != SEN_OV7670) {
if (write_regvals(sd, mode_init_519,
ARRAY_SIZE(mode_init_519)))
return -EIO;
if (sd->sensor == SEN_OV7640) {
/* Select 8-bit input mode */
reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
}
} else {
if (write_regvals(sd, mode_init_519_ov7670,
ARRAY_SIZE(mode_init_519_ov7670)))
return -EIO;
}
reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
if (sd->sensor == SEN_OV7670 &&
sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
else
reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
reg_w(sd, OV519_R16_DIVIDER, 0x00);
reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
reg_w(sd, 0x26, 0x00); /* Undocumented */
/******** Set the framerate ********/
if (frame_rate > 0)
sd->frame_rate = frame_rate;
/* FIXME: These are only valid at the max resolution. */
sd->clockdiv = 0;
switch (sd->sensor) {
case SEN_OV7640:
switch (sd->frame_rate) {
default:
/* case 30: */
reg_w(sd, 0xa4, 0x0c);
reg_w(sd, 0x23, 0xff);
break;
case 25:
reg_w(sd, 0xa4, 0x0c);
reg_w(sd, 0x23, 0x1f);
break;
case 20:
reg_w(sd, 0xa4, 0x0c);
reg_w(sd, 0x23, 0x1b);
break;
case 15:
reg_w(sd, 0xa4, 0x04);
reg_w(sd, 0x23, 0xff);
sd->clockdiv = 1;
break;
case 10:
reg_w(sd, 0xa4, 0x04);
reg_w(sd, 0x23, 0x1f);
sd->clockdiv = 1;
break;
case 5:
reg_w(sd, 0xa4, 0x04);
reg_w(sd, 0x23, 0x1b);
sd->clockdiv = 1;
break;
}
break;
case SEN_OV8610:
switch (sd->frame_rate) {
default: /* 15 fps */
/* case 15: */
reg_w(sd, 0xa4, 0x06);
reg_w(sd, 0x23, 0xff);
break;
case 10:
reg_w(sd, 0xa4, 0x06);
reg_w(sd, 0x23, 0x1f);
break;
case 5:
reg_w(sd, 0xa4, 0x06);
reg_w(sd, 0x23, 0x1b);
break;
}
break;
case SEN_OV7670: /* guesses, based on 7640 */
PDEBUG(D_STREAM, "Setting framerate to %d fps",
(sd->frame_rate == 0) ? 15 : sd->frame_rate);
reg_w(sd, 0xa4, 0x10);
switch (sd->frame_rate) {
case 30:
reg_w(sd, 0x23, 0xff);
break;
case 20:
reg_w(sd, 0x23, 0x1b);
break;
default:
/* case 15: */
reg_w(sd, 0x23, 0xff);
sd->clockdiv = 1;
break;
}
break;
}
return 0;
}
static int mode_init_ov_sensor_regs(struct sd *sd)
{
struct gspca_dev *gspca_dev;
int qvga;
gspca_dev = &sd->gspca_dev;
qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
/******** Mode (VGA/QVGA) and sensor specific regs ********/
switch (sd->sensor) {
case SEN_OV8610:
/* For OV8610 qvga means qsvga */
i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
break;
case SEN_OV7610:
i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
break;
case SEN_OV7620:
case SEN_OV76BE:
i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
break;
case SEN_OV7640:
i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
/* i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); */
/* i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); */
/* i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); */
/* i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); */
/* i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); */
break;
case SEN_OV7670:
/* set COM7_FMT_VGA or COM7_FMT_QVGA
* do we need to set anything else?
* HSTART etc are set in set_ov_sensor_window itself */
i2c_w_mask(sd, OV7670_REG_COM7,
qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
OV7670_COM7_FMT_MASK);
break;
case SEN_OV6620:
case SEN_OV6630:
case SEN_OV66308AF:
i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
break;
default:
return -EINVAL;
}
/******** Palette-specific regs ********/
/* The OV518 needs special treatment. Although both the OV518
* and the OV6630 support a 16-bit video bus, only the 8 bit Y
* bus is actually used. The UV bus is tied to ground.
* Therefore, the OV6630 needs to be in 8-bit multiplexed
* output mode */
/* OV7640 is 8-bit only */
if (sd->sensor != SEN_OV6630 && sd->sensor != SEN_OV66308AF &&
sd->sensor != SEN_OV7640)
i2c_w_mask(sd, 0x13, 0x00, 0x20);
/******** Clock programming ********/
i2c_w(sd, 0x11, sd->clockdiv);
/******** Special Features ********/
/* no evidence this is possible with OV7670, either */
/* Test Pattern */
if (sd->sensor != SEN_OV7640 && sd->sensor != SEN_OV7670)
i2c_w_mask(sd, 0x12, 0x00, 0x02);
/* Enable auto white balance */
if (sd->sensor == SEN_OV7670)
i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
OV7670_COM8_AWB);
else
i2c_w_mask(sd, 0x12, 0x04, 0x04);
/* This will go away as soon as ov51x_mode_init_sensor_regs() */
/* is fully tested. */
/* 7620/6620/6630? don't have register 0x35, so play it safe */
if (sd->sensor == SEN_OV7610 || sd->sensor == SEN_OV76BE) {
if (!qvga)
i2c_w(sd, 0x35, 0x9e);
else
i2c_w(sd, 0x35, 0x1e);
}
return 0;
}
static void sethvflip(struct sd *sd)
{
if (sd->sensor != SEN_OV7670)
return;
if (sd->gspca_dev.streaming)
ov51x_stop(sd);
i2c_w_mask(sd, OV7670_REG_MVFP,
OV7670_MVFP_MIRROR * sd->hflip
| OV7670_MVFP_VFLIP * sd->vflip,
OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
if (sd->gspca_dev.streaming)
ov51x_restart(sd);
}
static int set_ov_sensor_window(struct sd *sd)
{
struct gspca_dev *gspca_dev;
int qvga, crop;
int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
int ret, hstart, hstop, vstop, vstart;
__u8 v;
gspca_dev = &sd->gspca_dev;
qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
/* The different sensor ICs handle setting up of window differently.
* IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
switch (sd->sensor) {
case SEN_OV8610:
hwsbase = 0x1e;
hwebase = 0x1e;
vwsbase = 0x02;
vwebase = 0x02;
break;
case SEN_OV7610:
case SEN_OV76BE:
hwsbase = 0x38;
hwebase = 0x3a;
vwsbase = vwebase = 0x05;
break;
case SEN_OV6620:
case SEN_OV6630:
case SEN_OV66308AF:
hwsbase = 0x38;
hwebase = 0x3a;
vwsbase = 0x05;
vwebase = 0x06;
if (sd->sensor == SEN_OV66308AF && qvga)
/* HDG: this fixes U and V getting swapped */
hwsbase++;
if (crop) {
hwsbase += 8;
hwebase += 8;
vwsbase += 11;
vwebase += 11;
}
break;
case SEN_OV7620:
hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
hwebase = 0x2f;
vwsbase = vwebase = 0x05;
break;
case SEN_OV7640:
hwsbase = 0x1a;
hwebase = 0x1a;
vwsbase = vwebase = 0x03;
break;
case SEN_OV7670:
/*handling of OV7670 hardware sensor start and stop values
* is very odd, compared to the other OV sensors */
vwsbase = vwebase = hwebase = hwsbase = 0x00;
break;
default:
return -EINVAL;
}
switch (sd->sensor) {
case SEN_OV6620:
case SEN_OV6630:
case SEN_OV66308AF:
if (qvga) { /* QCIF */
hwscale = 0;
vwscale = 0;
} else { /* CIF */
hwscale = 1;
vwscale = 1; /* The datasheet says 0;
* it's wrong */
}
break;
case SEN_OV8610:
if (qvga) { /* QSVGA */
hwscale = 1;
vwscale = 1;
} else { /* SVGA */
hwscale = 2;
vwscale = 2;
}
break;
default: /* SEN_OV7xx0 */
if (qvga) { /* QVGA */
hwscale = 1;
vwscale = 0;
} else { /* VGA */
hwscale = 2;
vwscale = 1;
}
}
ret = mode_init_ov_sensor_regs(sd);
if (ret < 0)
return ret;
if (sd->sensor == SEN_OV8610) {
i2c_w_mask(sd, 0x2d, 0x05, 0x40);
/* old 0x95, new 0x05 from windrv 090403 */
/* bits 5-7: reserved */
i2c_w_mask(sd, 0x28, 0x20, 0x20);
/* bit 5: progressive mode on */
}
/* The below is wrong for OV7670s because their window registers
* only store the high bits in 0x17 to 0x1a */
/* SRH Use sd->max values instead of requested win values */
/* SCS Since we're sticking with only the max hardware widths
* for a given mode */
/* I can hard code this for OV7670s */
/* Yes, these numbers do look odd, but they're tested and work! */
if (sd->sensor == SEN_OV7670) {
if (qvga) { /* QVGA from ov7670.c by
* Jonathan Corbet */
hstart = 164;
hstop = 28;
vstart = 14;
vstop = 494;
} else { /* VGA */
hstart = 158;
hstop = 14;
vstart = 10;
vstop = 490;
}
/* OV7670 hardware window registers are split across
* multiple locations */
i2c_w(sd, OV7670_REG_HSTART, hstart >> 3);
i2c_w(sd, OV7670_REG_HSTOP, hstop >> 3);
v = i2c_r(sd, OV7670_REG_HREF);
v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x07);
msleep(10); /* need to sleep between read and write to
* same reg! */
i2c_w(sd, OV7670_REG_HREF, v);
i2c_w(sd, OV7670_REG_VSTART, vstart >> 2);
i2c_w(sd, OV7670_REG_VSTOP, vstop >> 2);
v = i2c_r(sd, OV7670_REG_VREF);
v = (v & 0xc0) | ((vstop & 0x3) << 2) | (vstart & 0x03);
msleep(10); /* need to sleep between read and write to
* same reg! */
i2c_w(sd, OV7670_REG_VREF, v);
} else {
i2c_w(sd, 0x17, hwsbase);
i2c_w(sd, 0x18, hwebase + (sd->gspca_dev.width >> hwscale));
i2c_w(sd, 0x19, vwsbase);
i2c_w(sd, 0x1a, vwebase + (sd->gspca_dev.height >> vwscale));
}
return 0;
}
/* -- start the camera -- */
static int sd_start(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int ret = 0;
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
ret = ov511_mode_init_regs(sd);
break;
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
ret = ov518_mode_init_regs(sd);
break;
case BRIDGE_OV519:
ret = ov519_mode_init_regs(sd);
break;
}
if (ret < 0)
goto out;
ret = set_ov_sensor_window(sd);
if (ret < 0)
goto out;
setcontrast(gspca_dev);
setbrightness(gspca_dev);
setcolors(gspca_dev);
sethvflip(sd);
setautobrightness(sd);
setfreq(sd);
ret = ov51x_restart(sd);
if (ret < 0)
goto out;
ov51x_led_control(sd, 1);
return 0;
out:
PDEBUG(D_ERR, "camera start error:%d", ret);
return ret;
}
static void sd_stopN(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
ov51x_stop(sd);
ov51x_led_control(sd, 0);
}
static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
struct gspca_frame *frame, /* target */
__u8 *in, /* isoc packet */
int len) /* iso packet length */
{
struct sd *sd = (struct sd *) gspca_dev;
/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
* byte non-zero. The EOF packet has image width/height in the
* 10th and 11th bytes. The 9th byte is given as follows:
*
* bit 7: EOF
* 6: compression enabled
* 5: 422/420/400 modes
* 4: 422/420/400 modes
* 3: 1
* 2: snapshot button on
* 1: snapshot frame
* 0: even/odd field
*/
if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
(in[8] & 0x08)) {
if (in[8] & 0x80) {
/* Frame end */
if ((in[9] + 1) * 8 != gspca_dev->width ||
(in[10] + 1) * 8 != gspca_dev->height) {
PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
" requested: %dx%d\n",
(in[9] + 1) * 8, (in[10] + 1) * 8,
gspca_dev->width, gspca_dev->height);
gspca_dev->last_packet_type = DISCARD_PACKET;
return;
}
/* Add 11 byte footer to frame, might be usefull */
gspca_frame_add(gspca_dev, LAST_PACKET, frame, in, 11);
return;
} else {
/* Frame start */
gspca_frame_add(gspca_dev, FIRST_PACKET, frame, in, 0);
sd->packet_nr = 0;
}
}
/* Ignore the packet number */
len--;
/* intermediate packet */
gspca_frame_add(gspca_dev, INTER_PACKET, frame, in, len);
}
static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
struct gspca_frame *frame, /* target */
__u8 *data, /* isoc packet */
int len) /* iso packet length */
{
struct sd *sd = (struct sd *) gspca_dev;
/* A false positive here is likely, until OVT gives me
* the definitive SOF/EOF format */
if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
frame = gspca_frame_add(gspca_dev, LAST_PACKET, frame, data, 0);
gspca_frame_add(gspca_dev, FIRST_PACKET, frame, data, 0);
sd->packet_nr = 0;
}
if (gspca_dev->last_packet_type == DISCARD_PACKET)
return;
/* Does this device use packet numbers ? */
if (len & 7) {
len--;
if (sd->packet_nr == data[len])
sd->packet_nr++;
/* The last few packets of the frame (which are all 0's
except that they may contain part of the footer), are
numbered 0 */
else if (sd->packet_nr == 0 || data[len]) {
PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
(int)data[len], (int)sd->packet_nr);
gspca_dev->last_packet_type = DISCARD_PACKET;
return;
}
}
/* intermediate packet */
gspca_frame_add(gspca_dev, INTER_PACKET, frame, data, len);
}
static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
struct gspca_frame *frame, /* target */
__u8 *data, /* isoc packet */
int len) /* iso packet length */
{
/* Header of ov519 is 16 bytes:
* Byte Value Description
* 0 0xff magic
* 1 0xff magic
* 2 0xff magic
* 3 0xXX 0x50 = SOF, 0x51 = EOF
* 9 0xXX 0x01 initial frame without data,
* 0x00 standard frame with image
* 14 Lo in EOF: length of image data / 8
* 15 Hi
*/
if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
switch (data[3]) {
case 0x50: /* start of frame */
#define HDRSZ 16
data += HDRSZ;
len -= HDRSZ;
#undef HDRSZ
if (data[0] == 0xff || data[1] == 0xd8)
gspca_frame_add(gspca_dev, FIRST_PACKET, frame,
data, len);
else
gspca_dev->last_packet_type = DISCARD_PACKET;
return;
case 0x51: /* end of frame */
if (data[9] != 0)
gspca_dev->last_packet_type = DISCARD_PACKET;
gspca_frame_add(gspca_dev, LAST_PACKET, frame,
data, 0);
return;
}
}
/* intermediate packet */
gspca_frame_add(gspca_dev, INTER_PACKET, frame,
data, len);
}
static void sd_pkt_scan(struct gspca_dev *gspca_dev,
struct gspca_frame *frame, /* target */
__u8 *data, /* isoc packet */
int len) /* iso packet length */
{
struct sd *sd = (struct sd *) gspca_dev;
switch (sd->bridge) {
case BRIDGE_OV511:
case BRIDGE_OV511PLUS:
ov511_pkt_scan(gspca_dev, frame, data, len);
break;
case BRIDGE_OV518:
case BRIDGE_OV518PLUS:
ov518_pkt_scan(gspca_dev, frame, data, len);
break;
case BRIDGE_OV519:
ov519_pkt_scan(gspca_dev, frame, data, len);
break;
}
}
/* -- management routines -- */
static void setbrightness(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int val;
val = sd->brightness;
switch (sd->sensor) {
case SEN_OV8610:
case SEN_OV7610:
case SEN_OV76BE:
case SEN_OV6620:
case SEN_OV6630:
case SEN_OV66308AF:
case SEN_OV7640:
i2c_w(sd, OV7610_REG_BRT, val);
break;
case SEN_OV7620:
/* 7620 doesn't like manual changes when in auto mode */
if (!sd->autobrightness)
i2c_w(sd, OV7610_REG_BRT, val);
break;
case SEN_OV7670:
/*win trace
* i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
break;
}
}
static void setcontrast(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int val;
val = sd->contrast;
switch (sd->sensor) {
case SEN_OV7610:
case SEN_OV6620:
i2c_w(sd, OV7610_REG_CNT, val);
break;
case SEN_OV6630:
case SEN_OV66308AF:
i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
break;
case SEN_OV8610: {
static const __u8 ctab[] = {
0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
};
/* Use Y gamma control instead. Bit 0 enables it. */
i2c_w(sd, 0x64, ctab[val >> 5]);
break;
}
case SEN_OV7620: {
static const __u8 ctab[] = {
0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
};
/* Use Y gamma control instead. Bit 0 enables it. */
i2c_w(sd, 0x64, ctab[val >> 4]);
break;
}
case SEN_OV7640:
/* Use gain control instead. */
i2c_w(sd, OV7610_REG_GAIN, val >> 2);
break;
case SEN_OV7670:
/* check that this isn't just the same as ov7610 */
i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
break;
}
}
static void setcolors(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int val;
val = sd->colors;
switch (sd->sensor) {
case SEN_OV8610:
case SEN_OV7610:
case SEN_OV76BE:
case SEN_OV6620:
case SEN_OV6630:
case SEN_OV66308AF:
i2c_w(sd, OV7610_REG_SAT, val);
break;
case SEN_OV7620:
/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
/* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
if (rc < 0)
goto out; */
i2c_w(sd, OV7610_REG_SAT, val);
break;
case SEN_OV7640:
i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
break;
case SEN_OV7670:
/* supported later once I work out how to do it
* transparently fail now! */
/* set REG_COM13 values for UV sat auto mode */
break;
}
}
static void setautobrightness(struct sd *sd)
{
if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670)
return;
i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10);
}
static void setfreq(struct sd *sd)
{
if (sd->sensor == SEN_OV7670) {
switch (sd->freq) {
case 0: /* Banding filter disabled */
i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
break;
case 1: /* 50 hz */
i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
OV7670_COM8_BFILT);
i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
break;
case 2: /* 60 hz */
i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
OV7670_COM8_BFILT);
i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
break;
case 3: /* Auto hz */
i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
OV7670_COM8_BFILT);
i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
0x18);
break;
}
} else {
switch (sd->freq) {
case 0: /* Banding filter disabled */
i2c_w_mask(sd, 0x2d, 0x00, 0x04);
i2c_w_mask(sd, 0x2a, 0x00, 0x80);
break;
case 1: /* 50 hz (filter on and framerate adj) */
i2c_w_mask(sd, 0x2d, 0x04, 0x04);
i2c_w_mask(sd, 0x2a, 0x80, 0x80);
/* 20 fps -> 16.667 fps */
if (sd->sensor == SEN_OV6620 ||
sd->sensor == SEN_OV6630 ||
sd->sensor == SEN_OV66308AF)
i2c_w(sd, 0x2b, 0x5e);
else
i2c_w(sd, 0x2b, 0xac);
break;
case 2: /* 60 hz (filter on, ...) */
i2c_w_mask(sd, 0x2d, 0x04, 0x04);
if (sd->sensor == SEN_OV6620 ||
sd->sensor == SEN_OV6630 ||
sd->sensor == SEN_OV66308AF) {
/* 20 fps -> 15 fps */
i2c_w_mask(sd, 0x2a, 0x80, 0x80);
i2c_w(sd, 0x2b, 0xa8);
} else {
/* no framerate adj. */
i2c_w_mask(sd, 0x2a, 0x00, 0x80);
}
break;
}
}
}
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->brightness = val;
if (gspca_dev->streaming)
setbrightness(gspca_dev);
return 0;
}
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->brightness;
return 0;
}
static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->contrast = val;
if (gspca_dev->streaming)
setcontrast(gspca_dev);
return 0;
}
static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->contrast;
return 0;
}
static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->colors = val;
if (gspca_dev->streaming)
setcolors(gspca_dev);
return 0;
}
static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->colors;
return 0;
}
static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->hflip = val;
if (gspca_dev->streaming)
sethvflip(sd);
return 0;
}
static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->hflip;
return 0;
}
static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->vflip = val;
if (gspca_dev->streaming)
sethvflip(sd);
return 0;
}
static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->vflip;
return 0;
}
static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->autobrightness = val;
if (gspca_dev->streaming)
setautobrightness(sd);
return 0;
}
static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->autobrightness;
return 0;
}
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
sd->freq = val;
if (gspca_dev->streaming)
setfreq(sd);
return 0;
}
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
struct sd *sd = (struct sd *) gspca_dev;
*val = sd->freq;
return 0;
}
static int sd_querymenu(struct gspca_dev *gspca_dev,
struct v4l2_querymenu *menu)
{
struct sd *sd = (struct sd *) gspca_dev;
switch (menu->id) {
case V4L2_CID_POWER_LINE_FREQUENCY:
switch (menu->index) {
case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
strcpy((char *) menu->name, "NoFliker");
return 0;
case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
strcpy((char *) menu->name, "50 Hz");
return 0;
case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
strcpy((char *) menu->name, "60 Hz");
return 0;
case 3:
if (sd->sensor != SEN_OV7670)
return -EINVAL;
strcpy((char *) menu->name, "Automatic");
return 0;
}
break;
}
return -EINVAL;
}
/* sub-driver description */
static const struct sd_desc sd_desc = {
.name = MODULE_NAME,
.ctrls = sd_ctrls,
.nctrls = ARRAY_SIZE(sd_ctrls),
.config = sd_config,
.init = sd_init,
.start = sd_start,
.stopN = sd_stopN,
.pkt_scan = sd_pkt_scan,
.querymenu = sd_querymenu,
};
/* -- module initialisation -- */
static const __devinitdata struct usb_device_id device_table[] = {
{USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x041e, 0x4064),
.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x041e, 0x4068),
.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
{USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
{USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
{}
};
MODULE_DEVICE_TABLE(usb, device_table);
/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
THIS_MODULE);
}
static struct usb_driver sd_driver = {
.name = MODULE_NAME,
.id_table = device_table,
.probe = sd_probe,
.disconnect = gspca_disconnect,
#ifdef CONFIG_PM
.suspend = gspca_suspend,
.resume = gspca_resume,
#endif
};
/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
int ret;
ret = usb_register(&sd_driver);
if (ret < 0)
return ret;
PDEBUG(D_PROBE, "registered");
return 0;
}
static void __exit sd_mod_exit(void)
{
usb_deregister(&sd_driver);
PDEBUG(D_PROBE, "deregistered");
}
module_init(sd_mod_init);
module_exit(sd_mod_exit);
module_param(frame_rate, int, 0644);
MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");