2788 lines
75 KiB
C
2788 lines
75 KiB
C
|
/*
|
||
|
Copyright (C) 1996 Digi International.
|
||
|
|
||
|
For technical support please email digiLinux@dgii.com or
|
||
|
call Digi tech support at (612) 912-3456
|
||
|
|
||
|
** This driver is no longer supported by Digi **
|
||
|
|
||
|
Much of this design and code came from epca.c which was
|
||
|
copyright (C) 1994, 1995 Troy De Jongh, and subsquently
|
||
|
modified by David Nugent, Christoph Lameter, Mike McLagan.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
/* See README.epca for change history --DAT*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/serial.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/tty.h>
|
||
|
#include <linux/tty_flip.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/smp_lock.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include "digiPCI.h"
|
||
|
|
||
|
|
||
|
#include "digi1.h"
|
||
|
#include "digiFep1.h"
|
||
|
#include "epca.h"
|
||
|
#include "epcaconfig.h"
|
||
|
|
||
|
#define VERSION "1.3.0.1-LK2.6"
|
||
|
|
||
|
/* This major needs to be submitted to Linux to join the majors list */
|
||
|
#define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
|
||
|
|
||
|
|
||
|
#define MAXCARDS 7
|
||
|
#define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
|
||
|
|
||
|
#define PFX "epca: "
|
||
|
|
||
|
static int nbdevs, num_cards, liloconfig;
|
||
|
static int digi_poller_inhibited = 1 ;
|
||
|
|
||
|
static int setup_error_code;
|
||
|
static int invalid_lilo_config;
|
||
|
|
||
|
/*
|
||
|
* The ISA boards do window flipping into the same spaces so its only sane with
|
||
|
* a single lock. It's still pretty efficient. This lock guards the hardware
|
||
|
* and the tty_port lock guards the kernel side stuff like use counts. Take
|
||
|
* this lock inside the port lock if you must take both.
|
||
|
*/
|
||
|
static DEFINE_SPINLOCK(epca_lock);
|
||
|
|
||
|
/* MAXBOARDS is typically 12, but ISA and EISA cards are restricted
|
||
|
to 7 below. */
|
||
|
static struct board_info boards[MAXBOARDS];
|
||
|
|
||
|
static struct tty_driver *pc_driver;
|
||
|
static struct tty_driver *pc_info;
|
||
|
|
||
|
/* ------------------ Begin Digi specific structures -------------------- */
|
||
|
|
||
|
/*
|
||
|
* digi_channels represents an array of structures that keep track of each
|
||
|
* channel of the Digi product. Information such as transmit and receive
|
||
|
* pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
|
||
|
* here. This structure is NOT used to overlay the cards physical channel
|
||
|
* structure.
|
||
|
*/
|
||
|
static struct channel digi_channels[MAX_ALLOC];
|
||
|
|
||
|
/*
|
||
|
* card_ptr is an array used to hold the address of the first channel structure
|
||
|
* of each card. This array will hold the addresses of various channels located
|
||
|
* in digi_channels.
|
||
|
*/
|
||
|
static struct channel *card_ptr[MAXCARDS];
|
||
|
|
||
|
static struct timer_list epca_timer;
|
||
|
|
||
|
/*
|
||
|
* Begin generic memory functions. These functions will be alias (point at)
|
||
|
* more specific functions dependent on the board being configured.
|
||
|
*/
|
||
|
static void memwinon(struct board_info *b, unsigned int win);
|
||
|
static void memwinoff(struct board_info *b, unsigned int win);
|
||
|
static void globalwinon(struct channel *ch);
|
||
|
static void rxwinon(struct channel *ch);
|
||
|
static void txwinon(struct channel *ch);
|
||
|
static void memoff(struct channel *ch);
|
||
|
static void assertgwinon(struct channel *ch);
|
||
|
static void assertmemoff(struct channel *ch);
|
||
|
|
||
|
/* ---- Begin more 'specific' memory functions for cx_like products --- */
|
||
|
|
||
|
static void pcxem_memwinon(struct board_info *b, unsigned int win);
|
||
|
static void pcxem_memwinoff(struct board_info *b, unsigned int win);
|
||
|
static void pcxem_globalwinon(struct channel *ch);
|
||
|
static void pcxem_rxwinon(struct channel *ch);
|
||
|
static void pcxem_txwinon(struct channel *ch);
|
||
|
static void pcxem_memoff(struct channel *ch);
|
||
|
|
||
|
/* ------ Begin more 'specific' memory functions for the pcxe ------- */
|
||
|
|
||
|
static void pcxe_memwinon(struct board_info *b, unsigned int win);
|
||
|
static void pcxe_memwinoff(struct board_info *b, unsigned int win);
|
||
|
static void pcxe_globalwinon(struct channel *ch);
|
||
|
static void pcxe_rxwinon(struct channel *ch);
|
||
|
static void pcxe_txwinon(struct channel *ch);
|
||
|
static void pcxe_memoff(struct channel *ch);
|
||
|
|
||
|
/* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
|
||
|
/* Note : pc64xe and pcxi share the same windowing routines */
|
||
|
|
||
|
static void pcxi_memwinon(struct board_info *b, unsigned int win);
|
||
|
static void pcxi_memwinoff(struct board_info *b, unsigned int win);
|
||
|
static void pcxi_globalwinon(struct channel *ch);
|
||
|
static void pcxi_rxwinon(struct channel *ch);
|
||
|
static void pcxi_txwinon(struct channel *ch);
|
||
|
static void pcxi_memoff(struct channel *ch);
|
||
|
|
||
|
/* - Begin 'specific' do nothing memory functions needed for some cards - */
|
||
|
|
||
|
static void dummy_memwinon(struct board_info *b, unsigned int win);
|
||
|
static void dummy_memwinoff(struct board_info *b, unsigned int win);
|
||
|
static void dummy_globalwinon(struct channel *ch);
|
||
|
static void dummy_rxwinon(struct channel *ch);
|
||
|
static void dummy_txwinon(struct channel *ch);
|
||
|
static void dummy_memoff(struct channel *ch);
|
||
|
static void dummy_assertgwinon(struct channel *ch);
|
||
|
static void dummy_assertmemoff(struct channel *ch);
|
||
|
|
||
|
static struct channel *verifyChannel(struct tty_struct *);
|
||
|
static void pc_sched_event(struct channel *, int);
|
||
|
static void epca_error(int, char *);
|
||
|
static void pc_close(struct tty_struct *, struct file *);
|
||
|
static void shutdown(struct channel *, struct tty_struct *tty);
|
||
|
static void pc_hangup(struct tty_struct *);
|
||
|
static int pc_write_room(struct tty_struct *);
|
||
|
static int pc_chars_in_buffer(struct tty_struct *);
|
||
|
static void pc_flush_buffer(struct tty_struct *);
|
||
|
static void pc_flush_chars(struct tty_struct *);
|
||
|
static int pc_open(struct tty_struct *, struct file *);
|
||
|
static void post_fep_init(unsigned int crd);
|
||
|
static void epcapoll(unsigned long);
|
||
|
static void doevent(int);
|
||
|
static void fepcmd(struct channel *, int, int, int, int, int);
|
||
|
static unsigned termios2digi_h(struct channel *ch, unsigned);
|
||
|
static unsigned termios2digi_i(struct channel *ch, unsigned);
|
||
|
static unsigned termios2digi_c(struct channel *ch, unsigned);
|
||
|
static void epcaparam(struct tty_struct *, struct channel *);
|
||
|
static void receive_data(struct channel *, struct tty_struct *tty);
|
||
|
static int pc_ioctl(struct tty_struct *, struct file *,
|
||
|
unsigned int, unsigned long);
|
||
|
static int info_ioctl(struct tty_struct *, struct file *,
|
||
|
unsigned int, unsigned long);
|
||
|
static void pc_set_termios(struct tty_struct *, struct ktermios *);
|
||
|
static void do_softint(struct work_struct *work);
|
||
|
static void pc_stop(struct tty_struct *);
|
||
|
static void pc_start(struct tty_struct *);
|
||
|
static void pc_throttle(struct tty_struct *tty);
|
||
|
static void pc_unthrottle(struct tty_struct *tty);
|
||
|
static int pc_send_break(struct tty_struct *tty, int msec);
|
||
|
static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
|
||
|
|
||
|
static int pc_write(struct tty_struct *, const unsigned char *, int);
|
||
|
static int pc_init(void);
|
||
|
static int init_PCI(void);
|
||
|
|
||
|
/*
|
||
|
* Table of functions for each board to handle memory. Mantaining parallelism
|
||
|
* is a *very* good idea here. The idea is for the runtime code to blindly call
|
||
|
* these functions, not knowing/caring about the underlying hardware. This
|
||
|
* stuff should contain no conditionals; if more functionality is needed a
|
||
|
* different entry should be established. These calls are the interface calls
|
||
|
* and are the only functions that should be accessed. Anyone caught making
|
||
|
* direct calls deserves what they get.
|
||
|
*/
|
||
|
static void memwinon(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
b->memwinon(b, win);
|
||
|
}
|
||
|
|
||
|
static void memwinoff(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
b->memwinoff(b, win);
|
||
|
}
|
||
|
|
||
|
static void globalwinon(struct channel *ch)
|
||
|
{
|
||
|
ch->board->globalwinon(ch);
|
||
|
}
|
||
|
|
||
|
static void rxwinon(struct channel *ch)
|
||
|
{
|
||
|
ch->board->rxwinon(ch);
|
||
|
}
|
||
|
|
||
|
static void txwinon(struct channel *ch)
|
||
|
{
|
||
|
ch->board->txwinon(ch);
|
||
|
}
|
||
|
|
||
|
static void memoff(struct channel *ch)
|
||
|
{
|
||
|
ch->board->memoff(ch);
|
||
|
}
|
||
|
static void assertgwinon(struct channel *ch)
|
||
|
{
|
||
|
ch->board->assertgwinon(ch);
|
||
|
}
|
||
|
|
||
|
static void assertmemoff(struct channel *ch)
|
||
|
{
|
||
|
ch->board->assertmemoff(ch);
|
||
|
}
|
||
|
|
||
|
/* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
|
||
|
static void pcxem_memwinon(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(FEPWIN | win, b->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxem_memwinoff(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(0, b->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxem_globalwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(FEPWIN, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxem_rxwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(ch->rxwin, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxem_txwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(ch->txwin, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxem_memoff(struct channel *ch)
|
||
|
{
|
||
|
outb_p(0, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
/* ----------------- Begin pcxe memory window stuff ------------------ */
|
||
|
static void pcxe_memwinon(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(FEPWIN | win, b->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxe_memwinoff(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
|
||
|
outb_p(0, b->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxe_globalwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(FEPWIN, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxe_rxwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(ch->rxwin, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxe_txwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(ch->txwin, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
static void pcxe_memoff(struct channel *ch)
|
||
|
{
|
||
|
outb_p(0, (int)ch->board->port);
|
||
|
outb_p(0, (int)ch->board->port + 1);
|
||
|
}
|
||
|
|
||
|
/* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
|
||
|
static void pcxi_memwinon(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(inb(b->port) | FEPMEM, b->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_memwinoff(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
outb_p(inb(b->port) & ~FEPMEM, b->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_globalwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(FEPMEM, ch->board->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_rxwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(FEPMEM, ch->board->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_txwinon(struct channel *ch)
|
||
|
{
|
||
|
outb_p(FEPMEM, ch->board->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_memoff(struct channel *ch)
|
||
|
{
|
||
|
outb_p(0, ch->board->port);
|
||
|
}
|
||
|
|
||
|
static void pcxi_assertgwinon(struct channel *ch)
|
||
|
{
|
||
|
epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
|
||
|
}
|
||
|
|
||
|
static void pcxi_assertmemoff(struct channel *ch)
|
||
|
{
|
||
|
epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Not all of the cards need specific memory windowing routines. Some cards
|
||
|
* (Such as PCI) needs no windowing routines at all. We provide these do
|
||
|
* nothing routines so that the same code base can be used. The driver will
|
||
|
* ALWAYS call a windowing routine if it thinks it needs to; regardless of the
|
||
|
* card. However, dependent on the card the routine may or may not do anything.
|
||
|
*/
|
||
|
static void dummy_memwinon(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_memwinoff(struct board_info *b, unsigned int win)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_globalwinon(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_rxwinon(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_txwinon(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_memoff(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_assertgwinon(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void dummy_assertmemoff(struct channel *ch)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static struct channel *verifyChannel(struct tty_struct *tty)
|
||
|
{
|
||
|
/*
|
||
|
* This routine basically provides a sanity check. It insures that the
|
||
|
* channel returned is within the proper range of addresses as well as
|
||
|
* properly initialized. If some bogus info gets passed in
|
||
|
* through tty->driver_data this should catch it.
|
||
|
*/
|
||
|
if (tty) {
|
||
|
struct channel *ch = tty->driver_data;
|
||
|
if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) {
|
||
|
if (ch->magic == EPCA_MAGIC)
|
||
|
return ch;
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void pc_sched_event(struct channel *ch, int event)
|
||
|
{
|
||
|
/*
|
||
|
* We call this to schedule interrupt processing on some event. The
|
||
|
* kernel sees our request and calls the related routine in OUR driver.
|
||
|
*/
|
||
|
ch->event |= 1 << event;
|
||
|
schedule_work(&ch->tqueue);
|
||
|
}
|
||
|
|
||
|
static void epca_error(int line, char *msg)
|
||
|
{
|
||
|
printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg);
|
||
|
}
|
||
|
|
||
|
static void pc_close(struct tty_struct *tty, struct file *filp)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
struct tty_port *port;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch == NULL)
|
||
|
return;
|
||
|
port = &ch->port;
|
||
|
|
||
|
if (tty_port_close_start(port, tty, filp) == 0)
|
||
|
return;
|
||
|
|
||
|
pc_flush_buffer(tty);
|
||
|
shutdown(ch, tty);
|
||
|
|
||
|
tty_port_close_end(port, tty);
|
||
|
ch->event = 0; /* FIXME: review ch->event locking */
|
||
|
tty_port_tty_set(port, NULL);
|
||
|
}
|
||
|
|
||
|
static void shutdown(struct channel *ch, struct tty_struct *tty)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct board_chan __iomem *bc;
|
||
|
struct tty_port *port = &ch->port;
|
||
|
|
||
|
if (!(port->flags & ASYNC_INITIALIZED))
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
|
||
|
globalwinon(ch);
|
||
|
bc = ch->brdchan;
|
||
|
|
||
|
/*
|
||
|
* In order for an event to be generated on the receipt of data the
|
||
|
* idata flag must be set. Since we are shutting down, this is not
|
||
|
* necessary clear this flag.
|
||
|
*/
|
||
|
if (bc)
|
||
|
writeb(0, &bc->idata);
|
||
|
|
||
|
/* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
|
||
|
if (tty->termios->c_cflag & HUPCL) {
|
||
|
ch->omodem &= ~(ch->m_rts | ch->m_dtr);
|
||
|
fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
|
||
|
}
|
||
|
memoff(ch);
|
||
|
|
||
|
/*
|
||
|
* The channel has officialy been closed. The next time it is opened it
|
||
|
* will have to reinitialized. Set a flag to indicate this.
|
||
|
*/
|
||
|
/* Prevent future Digi programmed interrupts from coming active */
|
||
|
port->flags &= ~ASYNC_INITIALIZED;
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
|
||
|
static void pc_hangup(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
pc_flush_buffer(tty);
|
||
|
tty_ldisc_flush(tty);
|
||
|
shutdown(ch, tty);
|
||
|
|
||
|
ch->event = 0; /* FIXME: review locking of ch->event */
|
||
|
tty_port_hangup(&ch->port);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int pc_write(struct tty_struct *tty,
|
||
|
const unsigned char *buf, int bytesAvailable)
|
||
|
{
|
||
|
unsigned int head, tail;
|
||
|
int dataLen;
|
||
|
int size;
|
||
|
int amountCopied;
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
int remain;
|
||
|
struct board_chan __iomem *bc;
|
||
|
|
||
|
/*
|
||
|
* pc_write is primarily called directly by the kernel routine
|
||
|
* tty_write (Though it can also be called by put_char) found in
|
||
|
* tty_io.c. pc_write is passed a line discipline buffer where the data
|
||
|
* to be written out is stored. The line discipline implementation
|
||
|
* itself is done at the kernel level and is not brought into the
|
||
|
* driver.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch == NULL)
|
||
|
return 0;
|
||
|
|
||
|
/* Make a pointer to the channel data structure found on the board. */
|
||
|
bc = ch->brdchan;
|
||
|
size = ch->txbufsize;
|
||
|
amountCopied = 0;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
|
||
|
head = readw(&bc->tin) & (size - 1);
|
||
|
tail = readw(&bc->tout);
|
||
|
|
||
|
if (tail != readw(&bc->tout))
|
||
|
tail = readw(&bc->tout);
|
||
|
tail &= (size - 1);
|
||
|
|
||
|
if (head >= tail) {
|
||
|
/* head has not wrapped */
|
||
|
/*
|
||
|
* remain (much like dataLen above) represents the total amount
|
||
|
* of space available on the card for data. Here dataLen
|
||
|
* represents the space existing between the head pointer and
|
||
|
* the end of buffer. This is important because a memcpy cannot
|
||
|
* be told to automatically wrap around when it hits the buffer
|
||
|
* end.
|
||
|
*/
|
||
|
dataLen = size - head;
|
||
|
remain = size - (head - tail) - 1;
|
||
|
} else {
|
||
|
/* head has wrapped around */
|
||
|
remain = tail - head - 1;
|
||
|
dataLen = remain;
|
||
|
}
|
||
|
/*
|
||
|
* Check the space on the card. If we have more data than space; reduce
|
||
|
* the amount of data to fit the space.
|
||
|
*/
|
||
|
bytesAvailable = min(remain, bytesAvailable);
|
||
|
txwinon(ch);
|
||
|
while (bytesAvailable > 0) {
|
||
|
/* there is data to copy onto card */
|
||
|
|
||
|
/*
|
||
|
* If head is not wrapped, the below will make sure the first
|
||
|
* data copy fills to the end of card buffer.
|
||
|
*/
|
||
|
dataLen = min(bytesAvailable, dataLen);
|
||
|
memcpy_toio(ch->txptr + head, buf, dataLen);
|
||
|
buf += dataLen;
|
||
|
head += dataLen;
|
||
|
amountCopied += dataLen;
|
||
|
bytesAvailable -= dataLen;
|
||
|
|
||
|
if (head >= size) {
|
||
|
head = 0;
|
||
|
dataLen = tail;
|
||
|
}
|
||
|
}
|
||
|
ch->statusflags |= TXBUSY;
|
||
|
globalwinon(ch);
|
||
|
writew(head, &bc->tin);
|
||
|
|
||
|
if ((ch->statusflags & LOWWAIT) == 0) {
|
||
|
ch->statusflags |= LOWWAIT;
|
||
|
writeb(1, &bc->ilow);
|
||
|
}
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
return amountCopied;
|
||
|
}
|
||
|
|
||
|
static int pc_write_room(struct tty_struct *tty)
|
||
|
{
|
||
|
int remain = 0;
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
unsigned int head, tail;
|
||
|
struct board_chan __iomem *bc;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
|
||
|
bc = ch->brdchan;
|
||
|
head = readw(&bc->tin) & (ch->txbufsize - 1);
|
||
|
tail = readw(&bc->tout);
|
||
|
|
||
|
if (tail != readw(&bc->tout))
|
||
|
tail = readw(&bc->tout);
|
||
|
/* Wrap tail if necessary */
|
||
|
tail &= (ch->txbufsize - 1);
|
||
|
remain = tail - head - 1;
|
||
|
if (remain < 0)
|
||
|
remain += ch->txbufsize;
|
||
|
|
||
|
if (remain && (ch->statusflags & LOWWAIT) == 0) {
|
||
|
ch->statusflags |= LOWWAIT;
|
||
|
writeb(1, &bc->ilow);
|
||
|
}
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
/* Return how much room is left on card */
|
||
|
return remain;
|
||
|
}
|
||
|
|
||
|
static int pc_chars_in_buffer(struct tty_struct *tty)
|
||
|
{
|
||
|
int chars;
|
||
|
unsigned int ctail, head, tail;
|
||
|
int remain;
|
||
|
unsigned long flags;
|
||
|
struct channel *ch;
|
||
|
struct board_chan __iomem *bc;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch == NULL)
|
||
|
return 0;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
|
||
|
bc = ch->brdchan;
|
||
|
tail = readw(&bc->tout);
|
||
|
head = readw(&bc->tin);
|
||
|
ctail = readw(&ch->mailbox->cout);
|
||
|
|
||
|
if (tail == head && readw(&ch->mailbox->cin) == ctail &&
|
||
|
readb(&bc->tbusy) == 0)
|
||
|
chars = 0;
|
||
|
else { /* Begin if some space on the card has been used */
|
||
|
head = readw(&bc->tin) & (ch->txbufsize - 1);
|
||
|
tail &= (ch->txbufsize - 1);
|
||
|
/*
|
||
|
* The logic here is basically opposite of the above
|
||
|
* pc_write_room here we are finding the amount of bytes in the
|
||
|
* buffer filled. Not the amount of bytes empty.
|
||
|
*/
|
||
|
remain = tail - head - 1;
|
||
|
if (remain < 0)
|
||
|
remain += ch->txbufsize;
|
||
|
chars = (int)(ch->txbufsize - remain);
|
||
|
/*
|
||
|
* Make it possible to wakeup anything waiting for output in
|
||
|
* tty_ioctl.c, etc.
|
||
|
*
|
||
|
* If not already set. Setup an event to indicate when the
|
||
|
* transmit buffer empties.
|
||
|
*/
|
||
|
if (!(ch->statusflags & EMPTYWAIT))
|
||
|
setup_empty_event(tty, ch);
|
||
|
} /* End if some space on the card has been used */
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
/* Return number of characters residing on card. */
|
||
|
return chars;
|
||
|
}
|
||
|
|
||
|
static void pc_flush_buffer(struct tty_struct *tty)
|
||
|
{
|
||
|
unsigned int tail;
|
||
|
unsigned long flags;
|
||
|
struct channel *ch;
|
||
|
struct board_chan __iomem *bc;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch == NULL)
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
bc = ch->brdchan;
|
||
|
tail = readw(&bc->tout);
|
||
|
/* Have FEP move tout pointer; effectively flushing transmit buffer */
|
||
|
fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
tty_wakeup(tty);
|
||
|
}
|
||
|
|
||
|
static void pc_flush_chars(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
unsigned long flags;
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
/*
|
||
|
* If not already set and the transmitter is busy setup an
|
||
|
* event to indicate when the transmit empties.
|
||
|
*/
|
||
|
if ((ch->statusflags & TXBUSY) &&
|
||
|
!(ch->statusflags & EMPTYWAIT))
|
||
|
setup_empty_event(tty, ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int epca_carrier_raised(struct tty_port *port)
|
||
|
{
|
||
|
struct channel *ch = container_of(port, struct channel, port);
|
||
|
if (ch->imodem & ch->dcd)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void epca_dtr_rts(struct tty_port *port, int onoff)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static int pc_open(struct tty_struct *tty, struct file *filp)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
struct tty_port *port;
|
||
|
unsigned long flags;
|
||
|
int line, retval, boardnum;
|
||
|
struct board_chan __iomem *bc;
|
||
|
unsigned int head;
|
||
|
|
||
|
line = tty->index;
|
||
|
if (line < 0 || line >= nbdevs)
|
||
|
return -ENODEV;
|
||
|
|
||
|
ch = &digi_channels[line];
|
||
|
port = &ch->port;
|
||
|
boardnum = ch->boardnum;
|
||
|
|
||
|
/* Check status of board configured in system. */
|
||
|
|
||
|
/*
|
||
|
* I check to see if the epca_setup routine detected a user error. It
|
||
|
* might be better to put this in pc_init, but for the moment it goes
|
||
|
* here.
|
||
|
*/
|
||
|
if (invalid_lilo_config) {
|
||
|
if (setup_error_code & INVALID_BOARD_TYPE)
|
||
|
printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
|
||
|
if (setup_error_code & INVALID_NUM_PORTS)
|
||
|
printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
|
||
|
if (setup_error_code & INVALID_MEM_BASE)
|
||
|
printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
|
||
|
if (setup_error_code & INVALID_PORT_BASE)
|
||
|
printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
|
||
|
if (setup_error_code & INVALID_BOARD_STATUS)
|
||
|
printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
|
||
|
if (setup_error_code & INVALID_ALTPIN)
|
||
|
printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
|
||
|
tty->driver_data = NULL; /* Mark this device as 'down' */
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
|
||
|
tty->driver_data = NULL; /* Mark this device as 'down' */
|
||
|
return(-ENODEV);
|
||
|
}
|
||
|
|
||
|
bc = ch->brdchan;
|
||
|
if (bc == NULL) {
|
||
|
tty->driver_data = NULL;
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&port->lock, flags);
|
||
|
/*
|
||
|
* Every time a channel is opened, increment a counter. This is
|
||
|
* necessary because we do not wish to flush and shutdown the channel
|
||
|
* until the last app holding the channel open, closes it.
|
||
|
*/
|
||
|
port->count++;
|
||
|
/*
|
||
|
* Set a kernel structures pointer to our local channel structure. This
|
||
|
* way we can get to it when passed only a tty struct.
|
||
|
*/
|
||
|
tty->driver_data = ch;
|
||
|
port->tty = tty;
|
||
|
/*
|
||
|
* If this is the first time the channel has been opened, initialize
|
||
|
* the tty->termios struct otherwise let pc_close handle it.
|
||
|
*/
|
||
|
spin_lock(&epca_lock);
|
||
|
globalwinon(ch);
|
||
|
ch->statusflags = 0;
|
||
|
|
||
|
/* Save boards current modem status */
|
||
|
ch->imodem = readb(&bc->mstat);
|
||
|
|
||
|
/*
|
||
|
* Set receive head and tail ptrs to each other. This indicates no data
|
||
|
* available to read.
|
||
|
*/
|
||
|
head = readw(&bc->rin);
|
||
|
writew(head, &bc->rout);
|
||
|
|
||
|
/* Set the channels associated tty structure */
|
||
|
|
||
|
/*
|
||
|
* The below routine generally sets up parity, baud, flow control
|
||
|
* issues, etc.... It effect both control flags and input flags.
|
||
|
*/
|
||
|
epcaparam(tty, ch);
|
||
|
memoff(ch);
|
||
|
spin_unlock(&epca_lock);
|
||
|
port->flags |= ASYNC_INITIALIZED;
|
||
|
spin_unlock_irqrestore(&port->lock, flags);
|
||
|
|
||
|
retval = tty_port_block_til_ready(port, tty, filp);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
/*
|
||
|
* Set this again in case a hangup set it to zero while this open() was
|
||
|
* waiting for the line...
|
||
|
*/
|
||
|
spin_lock_irqsave(&port->lock, flags);
|
||
|
port->tty = tty;
|
||
|
spin_lock(&epca_lock);
|
||
|
globalwinon(ch);
|
||
|
/* Enable Digi Data events */
|
||
|
writeb(1, &bc->idata);
|
||
|
memoff(ch);
|
||
|
spin_unlock(&epca_lock);
|
||
|
spin_unlock_irqrestore(&port->lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __init epca_module_init(void)
|
||
|
{
|
||
|
return pc_init();
|
||
|
}
|
||
|
module_init(epca_module_init);
|
||
|
|
||
|
static struct pci_driver epca_driver;
|
||
|
|
||
|
static void __exit epca_module_exit(void)
|
||
|
{
|
||
|
int count, crd;
|
||
|
struct board_info *bd;
|
||
|
struct channel *ch;
|
||
|
|
||
|
del_timer_sync(&epca_timer);
|
||
|
|
||
|
if (tty_unregister_driver(pc_driver) ||
|
||
|
tty_unregister_driver(pc_info)) {
|
||
|
printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
|
||
|
return;
|
||
|
}
|
||
|
put_tty_driver(pc_driver);
|
||
|
put_tty_driver(pc_info);
|
||
|
|
||
|
for (crd = 0; crd < num_cards; crd++) {
|
||
|
bd = &boards[crd];
|
||
|
if (!bd) { /* sanity check */
|
||
|
printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
|
||
|
return;
|
||
|
}
|
||
|
ch = card_ptr[crd];
|
||
|
for (count = 0; count < bd->numports; count++, ch++) {
|
||
|
struct tty_struct *tty = tty_port_tty_get(&ch->port);
|
||
|
if (tty) {
|
||
|
tty_hangup(tty);
|
||
|
tty_kref_put(tty);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
pci_unregister_driver(&epca_driver);
|
||
|
}
|
||
|
module_exit(epca_module_exit);
|
||
|
|
||
|
static const struct tty_operations pc_ops = {
|
||
|
.open = pc_open,
|
||
|
.close = pc_close,
|
||
|
.write = pc_write,
|
||
|
.write_room = pc_write_room,
|
||
|
.flush_buffer = pc_flush_buffer,
|
||
|
.chars_in_buffer = pc_chars_in_buffer,
|
||
|
.flush_chars = pc_flush_chars,
|
||
|
.ioctl = pc_ioctl,
|
||
|
.set_termios = pc_set_termios,
|
||
|
.stop = pc_stop,
|
||
|
.start = pc_start,
|
||
|
.throttle = pc_throttle,
|
||
|
.unthrottle = pc_unthrottle,
|
||
|
.hangup = pc_hangup,
|
||
|
.break_ctl = pc_send_break
|
||
|
};
|
||
|
|
||
|
static const struct tty_port_operations epca_port_ops = {
|
||
|
.carrier_raised = epca_carrier_raised,
|
||
|
.dtr_rts = epca_dtr_rts,
|
||
|
};
|
||
|
|
||
|
static int info_open(struct tty_struct *tty, struct file *filp)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct tty_operations info_ops = {
|
||
|
.open = info_open,
|
||
|
.ioctl = info_ioctl,
|
||
|
};
|
||
|
|
||
|
static int __init pc_init(void)
|
||
|
{
|
||
|
int crd;
|
||
|
struct board_info *bd;
|
||
|
unsigned char board_id = 0;
|
||
|
int err = -ENOMEM;
|
||
|
|
||
|
int pci_boards_found, pci_count;
|
||
|
|
||
|
pci_count = 0;
|
||
|
|
||
|
pc_driver = alloc_tty_driver(MAX_ALLOC);
|
||
|
if (!pc_driver)
|
||
|
goto out1;
|
||
|
|
||
|
pc_info = alloc_tty_driver(MAX_ALLOC);
|
||
|
if (!pc_info)
|
||
|
goto out2;
|
||
|
|
||
|
/*
|
||
|
* If epca_setup has not been ran by LILO set num_cards to defaults;
|
||
|
* copy board structure defined by digiConfig into drivers board
|
||
|
* structure. Note : If LILO has ran epca_setup then epca_setup will
|
||
|
* handle defining num_cards as well as copying the data into the board
|
||
|
* structure.
|
||
|
*/
|
||
|
if (!liloconfig) {
|
||
|
/* driver has been configured via. epcaconfig */
|
||
|
nbdevs = NBDEVS;
|
||
|
num_cards = NUMCARDS;
|
||
|
memcpy(&boards, &static_boards,
|
||
|
sizeof(struct board_info) * NUMCARDS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note : If lilo was used to configure the driver and the ignore
|
||
|
* epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
|
||
|
* will equal 0 at this point. This is okay; PCI cards will still be
|
||
|
* picked up if detected.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Set up interrupt, we will worry about memory allocation in
|
||
|
* post_fep_init.
|
||
|
*/
|
||
|
printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION);
|
||
|
|
||
|
/*
|
||
|
* NOTE : This code assumes that the number of ports found in the
|
||
|
* boards array is correct. This could be wrong if the card in question
|
||
|
* is PCI (And therefore has no ports entry in the boards structure.)
|
||
|
* The rest of the information will be valid for PCI because the
|
||
|
* beginning of pc_init scans for PCI and determines i/o and base
|
||
|
* memory addresses. I am not sure if it is possible to read the number
|
||
|
* of ports supported by the card prior to it being booted (Since that
|
||
|
* is the state it is in when pc_init is run). Because it is not
|
||
|
* possible to query the number of supported ports until after the card
|
||
|
* has booted; we are required to calculate the card_ptrs as the card
|
||
|
* is initialized (Inside post_fep_init). The negative thing about this
|
||
|
* approach is that digiDload's call to GET_INFO will have a bad port
|
||
|
* value. (Since this is called prior to post_fep_init.)
|
||
|
*/
|
||
|
pci_boards_found = 0;
|
||
|
if (num_cards < MAXBOARDS)
|
||
|
pci_boards_found += init_PCI();
|
||
|
num_cards += pci_boards_found;
|
||
|
|
||
|
pc_driver->owner = THIS_MODULE;
|
||
|
pc_driver->name = "ttyD";
|
||
|
pc_driver->major = DIGI_MAJOR;
|
||
|
pc_driver->minor_start = 0;
|
||
|
pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
|
||
|
pc_driver->subtype = SERIAL_TYPE_NORMAL;
|
||
|
pc_driver->init_termios = tty_std_termios;
|
||
|
pc_driver->init_termios.c_iflag = 0;
|
||
|
pc_driver->init_termios.c_oflag = 0;
|
||
|
pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
|
||
|
pc_driver->init_termios.c_lflag = 0;
|
||
|
pc_driver->init_termios.c_ispeed = 9600;
|
||
|
pc_driver->init_termios.c_ospeed = 9600;
|
||
|
pc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_HARDWARE_BREAK;
|
||
|
tty_set_operations(pc_driver, &pc_ops);
|
||
|
|
||
|
pc_info->owner = THIS_MODULE;
|
||
|
pc_info->name = "digi_ctl";
|
||
|
pc_info->major = DIGIINFOMAJOR;
|
||
|
pc_info->minor_start = 0;
|
||
|
pc_info->type = TTY_DRIVER_TYPE_SERIAL;
|
||
|
pc_info->subtype = SERIAL_TYPE_INFO;
|
||
|
pc_info->init_termios = tty_std_termios;
|
||
|
pc_info->init_termios.c_iflag = 0;
|
||
|
pc_info->init_termios.c_oflag = 0;
|
||
|
pc_info->init_termios.c_lflag = 0;
|
||
|
pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
|
||
|
pc_info->init_termios.c_ispeed = 9600;
|
||
|
pc_info->init_termios.c_ospeed = 9600;
|
||
|
pc_info->flags = TTY_DRIVER_REAL_RAW;
|
||
|
tty_set_operations(pc_info, &info_ops);
|
||
|
|
||
|
|
||
|
for (crd = 0; crd < num_cards; crd++) {
|
||
|
/*
|
||
|
* This is where the appropriate memory handlers for the
|
||
|
* hardware is set. Everything at runtime blindly jumps through
|
||
|
* these vectors.
|
||
|
*/
|
||
|
|
||
|
/* defined in epcaconfig.h */
|
||
|
bd = &boards[crd];
|
||
|
|
||
|
switch (bd->type) {
|
||
|
case PCXEM:
|
||
|
case EISAXEM:
|
||
|
bd->memwinon = pcxem_memwinon;
|
||
|
bd->memwinoff = pcxem_memwinoff;
|
||
|
bd->globalwinon = pcxem_globalwinon;
|
||
|
bd->txwinon = pcxem_txwinon;
|
||
|
bd->rxwinon = pcxem_rxwinon;
|
||
|
bd->memoff = pcxem_memoff;
|
||
|
bd->assertgwinon = dummy_assertgwinon;
|
||
|
bd->assertmemoff = dummy_assertmemoff;
|
||
|
break;
|
||
|
|
||
|
case PCIXEM:
|
||
|
case PCIXRJ:
|
||
|
case PCIXR:
|
||
|
bd->memwinon = dummy_memwinon;
|
||
|
bd->memwinoff = dummy_memwinoff;
|
||
|
bd->globalwinon = dummy_globalwinon;
|
||
|
bd->txwinon = dummy_txwinon;
|
||
|
bd->rxwinon = dummy_rxwinon;
|
||
|
bd->memoff = dummy_memoff;
|
||
|
bd->assertgwinon = dummy_assertgwinon;
|
||
|
bd->assertmemoff = dummy_assertmemoff;
|
||
|
break;
|
||
|
|
||
|
case PCXE:
|
||
|
case PCXEVE:
|
||
|
bd->memwinon = pcxe_memwinon;
|
||
|
bd->memwinoff = pcxe_memwinoff;
|
||
|
bd->globalwinon = pcxe_globalwinon;
|
||
|
bd->txwinon = pcxe_txwinon;
|
||
|
bd->rxwinon = pcxe_rxwinon;
|
||
|
bd->memoff = pcxe_memoff;
|
||
|
bd->assertgwinon = dummy_assertgwinon;
|
||
|
bd->assertmemoff = dummy_assertmemoff;
|
||
|
break;
|
||
|
|
||
|
case PCXI:
|
||
|
case PC64XE:
|
||
|
bd->memwinon = pcxi_memwinon;
|
||
|
bd->memwinoff = pcxi_memwinoff;
|
||
|
bd->globalwinon = pcxi_globalwinon;
|
||
|
bd->txwinon = pcxi_txwinon;
|
||
|
bd->rxwinon = pcxi_rxwinon;
|
||
|
bd->memoff = pcxi_memoff;
|
||
|
bd->assertgwinon = pcxi_assertgwinon;
|
||
|
bd->assertmemoff = pcxi_assertmemoff;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some cards need a memory segment to be defined for use in
|
||
|
* transmit and receive windowing operations. These boards are
|
||
|
* listed in the below switch. In the case of the XI the amount
|
||
|
* of memory on the board is variable so the memory_seg is also
|
||
|
* variable. This code determines what they segment should be.
|
||
|
*/
|
||
|
switch (bd->type) {
|
||
|
case PCXE:
|
||
|
case PCXEVE:
|
||
|
case PC64XE:
|
||
|
bd->memory_seg = 0xf000;
|
||
|
break;
|
||
|
|
||
|
case PCXI:
|
||
|
board_id = inb((int)bd->port);
|
||
|
if ((board_id & 0x1) == 0x1) {
|
||
|
/* it's an XI card */
|
||
|
/* Is it a 64K board */
|
||
|
if ((board_id & 0x30) == 0)
|
||
|
bd->memory_seg = 0xf000;
|
||
|
|
||
|
/* Is it a 128K board */
|
||
|
if ((board_id & 0x30) == 0x10)
|
||
|
bd->memory_seg = 0xe000;
|
||
|
|
||
|
/* Is is a 256K board */
|
||
|
if ((board_id & 0x30) == 0x20)
|
||
|
bd->memory_seg = 0xc000;
|
||
|
|
||
|
/* Is it a 512K board */
|
||
|
if ((board_id & 0x30) == 0x30)
|
||
|
bd->memory_seg = 0x8000;
|
||
|
} else
|
||
|
printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
err = tty_register_driver(pc_driver);
|
||
|
if (err) {
|
||
|
printk(KERN_ERR "Couldn't register Digi PC/ driver");
|
||
|
goto out3;
|
||
|
}
|
||
|
|
||
|
err = tty_register_driver(pc_info);
|
||
|
if (err) {
|
||
|
printk(KERN_ERR "Couldn't register Digi PC/ info ");
|
||
|
goto out4;
|
||
|
}
|
||
|
|
||
|
/* Start up the poller to check for events on all enabled boards */
|
||
|
init_timer(&epca_timer);
|
||
|
epca_timer.function = epcapoll;
|
||
|
mod_timer(&epca_timer, jiffies + HZ/25);
|
||
|
return 0;
|
||
|
|
||
|
out4:
|
||
|
tty_unregister_driver(pc_driver);
|
||
|
out3:
|
||
|
put_tty_driver(pc_info);
|
||
|
out2:
|
||
|
put_tty_driver(pc_driver);
|
||
|
out1:
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void post_fep_init(unsigned int crd)
|
||
|
{
|
||
|
int i;
|
||
|
void __iomem *memaddr;
|
||
|
struct global_data __iomem *gd;
|
||
|
struct board_info *bd;
|
||
|
struct board_chan __iomem *bc;
|
||
|
struct channel *ch;
|
||
|
int shrinkmem = 0, lowwater;
|
||
|
|
||
|
/*
|
||
|
* This call is made by the user via. the ioctl call DIGI_INIT. It is
|
||
|
* responsible for setting up all the card specific stuff.
|
||
|
*/
|
||
|
bd = &boards[crd];
|
||
|
|
||
|
/*
|
||
|
* If this is a PCI board, get the port info. Remember PCI cards do not
|
||
|
* have entries into the epcaconfig.h file, so we can't get the number
|
||
|
* of ports from it. Unfortunetly, this means that anyone doing a
|
||
|
* DIGI_GETINFO before the board has booted will get an invalid number
|
||
|
* of ports returned (It should return 0). Calls to DIGI_GETINFO after
|
||
|
* DIGI_INIT has been called will return the proper values.
|
||
|
*/
|
||
|
if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
|
||
|
/*
|
||
|
* Below we use XEMPORTS as a memory offset regardless of which
|
||
|
* PCI card it is. This is because all of the supported PCI
|
||
|
* cards have the same memory offset for the channel data. This
|
||
|
* will have to be changed if we ever develop a PCI/XE card.
|
||
|
* NOTE : The FEP manual states that the port offset is 0xC22
|
||
|
* as opposed to 0xC02. This is only true for PC/XE, and PC/XI
|
||
|
* cards; not for the XEM, or CX series. On the PCI cards the
|
||
|
* number of ports is determined by reading a ID PROM located
|
||
|
* in the box attached to the card. The card can then determine
|
||
|
* the index the id to determine the number of ports available.
|
||
|
* (FYI - The id should be located at 0x1ac (And may use up to
|
||
|
* 4 bytes if the box in question is a XEM or CX)).
|
||
|
*/
|
||
|
/* PCI cards are already remapped at this point ISA are not */
|
||
|
bd->numports = readw(bd->re_map_membase + XEMPORTS);
|
||
|
epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports");
|
||
|
nbdevs += (bd->numports);
|
||
|
} else {
|
||
|
/* Fix up the mappings for ISA/EISA etc */
|
||
|
/* FIXME: 64K - can we be smarter ? */
|
||
|
bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000);
|
||
|
}
|
||
|
|
||
|
if (crd != 0)
|
||
|
card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
|
||
|
else
|
||
|
card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
|
||
|
|
||
|
ch = card_ptr[crd];
|
||
|
epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
|
||
|
|
||
|
memaddr = bd->re_map_membase;
|
||
|
|
||
|
/*
|
||
|
* The below assignment will set bc to point at the BEGINING of the
|
||
|
* cards channel structures. For 1 card there will be between 8 and 64
|
||
|
* of these structures.
|
||
|
*/
|
||
|
bc = memaddr + CHANSTRUCT;
|
||
|
|
||
|
/*
|
||
|
* The below assignment will set gd to point at the BEGINING of global
|
||
|
* memory address 0xc00. The first data in that global memory actually
|
||
|
* starts at address 0xc1a. The command in pointer begins at 0xd10.
|
||
|
*/
|
||
|
gd = memaddr + GLOBAL;
|
||
|
|
||
|
/*
|
||
|
* XEPORTS (address 0xc22) points at the number of channels the card
|
||
|
* supports. (For 64XE, XI, XEM, and XR use 0xc02)
|
||
|
*/
|
||
|
if ((bd->type == PCXEVE || bd->type == PCXE) &&
|
||
|
(readw(memaddr + XEPORTS) < 3))
|
||
|
shrinkmem = 1;
|
||
|
if (bd->type < PCIXEM)
|
||
|
if (!request_region((int)bd->port, 4, board_desc[bd->type]))
|
||
|
return;
|
||
|
memwinon(bd, 0);
|
||
|
|
||
|
/*
|
||
|
* Remember ch is the main drivers channels structure, while bc is the
|
||
|
* cards channel structure.
|
||
|
*/
|
||
|
for (i = 0; i < bd->numports; i++, ch++, bc++) {
|
||
|
unsigned long flags;
|
||
|
u16 tseg, rseg;
|
||
|
|
||
|
tty_port_init(&ch->port);
|
||
|
ch->port.ops = &epca_port_ops;
|
||
|
ch->brdchan = bc;
|
||
|
ch->mailbox = gd;
|
||
|
INIT_WORK(&ch->tqueue, do_softint);
|
||
|
ch->board = &boards[crd];
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
switch (bd->type) {
|
||
|
/*
|
||
|
* Since some of the boards use different bitmaps for
|
||
|
* their control signals we cannot hard code these
|
||
|
* values and retain portability. We virtualize this
|
||
|
* data here.
|
||
|
*/
|
||
|
case EISAXEM:
|
||
|
case PCXEM:
|
||
|
case PCIXEM:
|
||
|
case PCIXRJ:
|
||
|
case PCIXR:
|
||
|
ch->m_rts = 0x02;
|
||
|
ch->m_dcd = 0x80;
|
||
|
ch->m_dsr = 0x20;
|
||
|
ch->m_cts = 0x10;
|
||
|
ch->m_ri = 0x40;
|
||
|
ch->m_dtr = 0x01;
|
||
|
break;
|
||
|
|
||
|
case PCXE:
|
||
|
case PCXEVE:
|
||
|
case PCXI:
|
||
|
case PC64XE:
|
||
|
ch->m_rts = 0x02;
|
||
|
ch->m_dcd = 0x08;
|
||
|
ch->m_dsr = 0x10;
|
||
|
ch->m_cts = 0x20;
|
||
|
ch->m_ri = 0x40;
|
||
|
ch->m_dtr = 0x80;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (boards[crd].altpin) {
|
||
|
ch->dsr = ch->m_dcd;
|
||
|
ch->dcd = ch->m_dsr;
|
||
|
ch->digiext.digi_flags |= DIGI_ALTPIN;
|
||
|
} else {
|
||
|
ch->dcd = ch->m_dcd;
|
||
|
ch->dsr = ch->m_dsr;
|
||
|
}
|
||
|
|
||
|
ch->boardnum = crd;
|
||
|
ch->channelnum = i;
|
||
|
ch->magic = EPCA_MAGIC;
|
||
|
tty_port_tty_set(&ch->port, NULL);
|
||
|
|
||
|
if (shrinkmem) {
|
||
|
fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
|
||
|
shrinkmem = 0;
|
||
|
}
|
||
|
|
||
|
tseg = readw(&bc->tseg);
|
||
|
rseg = readw(&bc->rseg);
|
||
|
|
||
|
switch (bd->type) {
|
||
|
case PCIXEM:
|
||
|
case PCIXRJ:
|
||
|
case PCIXR:
|
||
|
/* Cover all the 2MEG cards */
|
||
|
ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
|
||
|
ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
|
||
|
ch->txwin = FEPWIN | (tseg >> 11);
|
||
|
ch->rxwin = FEPWIN | (rseg >> 11);
|
||
|
break;
|
||
|
|
||
|
case PCXEM:
|
||
|
case EISAXEM:
|
||
|
/* Cover all the 32K windowed cards */
|
||
|
/* Mask equal to window size - 1 */
|
||
|
ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
|
||
|
ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
|
||
|
ch->txwin = FEPWIN | (tseg >> 11);
|
||
|
ch->rxwin = FEPWIN | (rseg >> 11);
|
||
|
break;
|
||
|
|
||
|
case PCXEVE:
|
||
|
case PCXE:
|
||
|
ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4)
|
||
|
& 0x1fff);
|
||
|
ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
|
||
|
ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4)
|
||
|
& 0x1fff);
|
||
|
ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9);
|
||
|
break;
|
||
|
|
||
|
case PCXI:
|
||
|
case PC64XE:
|
||
|
ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
|
||
|
ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
|
||
|
ch->txwin = ch->rxwin = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ch->txbufhead = 0;
|
||
|
ch->txbufsize = readw(&bc->tmax) + 1;
|
||
|
|
||
|
ch->rxbufhead = 0;
|
||
|
ch->rxbufsize = readw(&bc->rmax) + 1;
|
||
|
|
||
|
lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
|
||
|
|
||
|
/* Set transmitter low water mark */
|
||
|
fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
|
||
|
|
||
|
/* Set receiver low water mark */
|
||
|
fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
|
||
|
|
||
|
/* Set receiver high water mark */
|
||
|
fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
|
||
|
|
||
|
writew(100, &bc->edelay);
|
||
|
writeb(1, &bc->idata);
|
||
|
|
||
|
ch->startc = readb(&bc->startc);
|
||
|
ch->stopc = readb(&bc->stopc);
|
||
|
ch->startca = readb(&bc->startca);
|
||
|
ch->stopca = readb(&bc->stopca);
|
||
|
|
||
|
ch->fepcflag = 0;
|
||
|
ch->fepiflag = 0;
|
||
|
ch->fepoflag = 0;
|
||
|
ch->fepstartc = 0;
|
||
|
ch->fepstopc = 0;
|
||
|
ch->fepstartca = 0;
|
||
|
ch->fepstopca = 0;
|
||
|
|
||
|
ch->port.close_delay = 50;
|
||
|
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
|
||
|
printk(KERN_INFO
|
||
|
"Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
|
||
|
VERSION, board_desc[bd->type], (long)bd->port,
|
||
|
(long)bd->membase, bd->numports);
|
||
|
memwinoff(bd, 0);
|
||
|
}
|
||
|
|
||
|
static void epcapoll(unsigned long ignored)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int crd;
|
||
|
unsigned int head, tail;
|
||
|
struct channel *ch;
|
||
|
struct board_info *bd;
|
||
|
|
||
|
/*
|
||
|
* This routine is called upon every timer interrupt. Even though the
|
||
|
* Digi series cards are capable of generating interrupts this method
|
||
|
* of non-looping polling is more efficient. This routine checks for
|
||
|
* card generated events (Such as receive data, are transmit buffer
|
||
|
* empty) and acts on those events.
|
||
|
*/
|
||
|
for (crd = 0; crd < num_cards; crd++) {
|
||
|
bd = &boards[crd];
|
||
|
ch = card_ptr[crd];
|
||
|
|
||
|
if ((bd->status == DISABLED) || digi_poller_inhibited)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* assertmemoff is not needed here; indeed it is an empty
|
||
|
* subroutine. It is being kept because future boards may need
|
||
|
* this as well as some legacy boards.
|
||
|
*/
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
|
||
|
assertmemoff(ch);
|
||
|
|
||
|
globalwinon(ch);
|
||
|
|
||
|
/*
|
||
|
* In this case head and tail actually refer to the event queue
|
||
|
* not the transmit or receive queue.
|
||
|
*/
|
||
|
head = readw(&ch->mailbox->ein);
|
||
|
tail = readw(&ch->mailbox->eout);
|
||
|
|
||
|
/* If head isn't equal to tail we have an event */
|
||
|
if (head != tail)
|
||
|
doevent(crd);
|
||
|
memoff(ch);
|
||
|
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
} /* End for each card */
|
||
|
mod_timer(&epca_timer, jiffies + (HZ / 25));
|
||
|
}
|
||
|
|
||
|
static void doevent(int crd)
|
||
|
{
|
||
|
void __iomem *eventbuf;
|
||
|
struct channel *ch, *chan0;
|
||
|
static struct tty_struct *tty;
|
||
|
struct board_info *bd;
|
||
|
struct board_chan __iomem *bc;
|
||
|
unsigned int tail, head;
|
||
|
int event, channel;
|
||
|
int mstat, lstat;
|
||
|
|
||
|
/*
|
||
|
* This subroutine is called by epcapoll when an event is detected
|
||
|
* in the event queue. This routine responds to those events.
|
||
|
*/
|
||
|
bd = &boards[crd];
|
||
|
|
||
|
chan0 = card_ptr[crd];
|
||
|
epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
|
||
|
assertgwinon(chan0);
|
||
|
while ((tail = readw(&chan0->mailbox->eout)) !=
|
||
|
(head = readw(&chan0->mailbox->ein))) {
|
||
|
/* Begin while something in event queue */
|
||
|
assertgwinon(chan0);
|
||
|
eventbuf = bd->re_map_membase + tail + ISTART;
|
||
|
/* Get the channel the event occurred on */
|
||
|
channel = readb(eventbuf);
|
||
|
/* Get the actual event code that occurred */
|
||
|
event = readb(eventbuf + 1);
|
||
|
/*
|
||
|
* The two assignments below get the current modem status
|
||
|
* (mstat) and the previous modem status (lstat). These are
|
||
|
* useful becuase an event could signal a change in modem
|
||
|
* signals itself.
|
||
|
*/
|
||
|
mstat = readb(eventbuf + 2);
|
||
|
lstat = readb(eventbuf + 3);
|
||
|
|
||
|
ch = chan0 + channel;
|
||
|
if ((unsigned)channel >= bd->numports || !ch) {
|
||
|
if (channel >= bd->numports)
|
||
|
ch = chan0;
|
||
|
bc = ch->brdchan;
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
bc = ch->brdchan;
|
||
|
if (bc == NULL)
|
||
|
goto next;
|
||
|
|
||
|
tty = tty_port_tty_get(&ch->port);
|
||
|
if (event & DATA_IND) { /* Begin DATA_IND */
|
||
|
receive_data(ch, tty);
|
||
|
assertgwinon(ch);
|
||
|
} /* End DATA_IND */
|
||
|
/* else *//* Fix for DCD transition missed bug */
|
||
|
if (event & MODEMCHG_IND) {
|
||
|
/* A modem signal change has been indicated */
|
||
|
ch->imodem = mstat;
|
||
|
if (test_bit(ASYNCB_CHECK_CD, &ch->port.flags)) {
|
||
|
/* We are now receiving dcd */
|
||
|
if (mstat & ch->dcd)
|
||
|
wake_up_interruptible(&ch->port.open_wait);
|
||
|
else /* No dcd; hangup */
|
||
|
pc_sched_event(ch, EPCA_EVENT_HANGUP);
|
||
|
}
|
||
|
}
|
||
|
if (tty) {
|
||
|
if (event & BREAK_IND) {
|
||
|
/* A break has been indicated */
|
||
|
tty_insert_flip_char(tty, 0, TTY_BREAK);
|
||
|
tty_schedule_flip(tty);
|
||
|
} else if (event & LOWTX_IND) {
|
||
|
if (ch->statusflags & LOWWAIT) {
|
||
|
ch->statusflags &= ~LOWWAIT;
|
||
|
tty_wakeup(tty);
|
||
|
}
|
||
|
} else if (event & EMPTYTX_IND) {
|
||
|
/* This event is generated by
|
||
|
setup_empty_event */
|
||
|
ch->statusflags &= ~TXBUSY;
|
||
|
if (ch->statusflags & EMPTYWAIT) {
|
||
|
ch->statusflags &= ~EMPTYWAIT;
|
||
|
tty_wakeup(tty);
|
||
|
}
|
||
|
}
|
||
|
tty_kref_put(tty);
|
||
|
}
|
||
|
next:
|
||
|
globalwinon(ch);
|
||
|
BUG_ON(!bc);
|
||
|
writew(1, &bc->idata);
|
||
|
writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
|
||
|
globalwinon(chan0);
|
||
|
} /* End while something in event queue */
|
||
|
}
|
||
|
|
||
|
static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
|
||
|
int byte2, int ncmds, int bytecmd)
|
||
|
{
|
||
|
unchar __iomem *memaddr;
|
||
|
unsigned int head, cmdTail, cmdStart, cmdMax;
|
||
|
long count;
|
||
|
int n;
|
||
|
|
||
|
/* This is the routine in which commands may be passed to the card. */
|
||
|
|
||
|
if (ch->board->status == DISABLED)
|
||
|
return;
|
||
|
assertgwinon(ch);
|
||
|
/* Remember head (As well as max) is just an offset not a base addr */
|
||
|
head = readw(&ch->mailbox->cin);
|
||
|
/* cmdStart is a base address */
|
||
|
cmdStart = readw(&ch->mailbox->cstart);
|
||
|
/*
|
||
|
* We do the addition below because we do not want a max pointer
|
||
|
* relative to cmdStart. We want a max pointer that points at the
|
||
|
* physical end of the command queue.
|
||
|
*/
|
||
|
cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
|
||
|
memaddr = ch->board->re_map_membase;
|
||
|
|
||
|
if (head >= (cmdMax - cmdStart) || (head & 03)) {
|
||
|
printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n",
|
||
|
__LINE__, cmd, head);
|
||
|
printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n",
|
||
|
__LINE__, cmdMax, cmdStart);
|
||
|
return;
|
||
|
}
|
||
|
if (bytecmd) {
|
||
|
writeb(cmd, memaddr + head + cmdStart + 0);
|
||
|
writeb(ch->channelnum, memaddr + head + cmdStart + 1);
|
||
|
/* Below word_or_byte is bits to set */
|
||
|
writeb(word_or_byte, memaddr + head + cmdStart + 2);
|
||
|
/* Below byte2 is bits to reset */
|
||
|
writeb(byte2, memaddr + head + cmdStart + 3);
|
||
|
} else {
|
||
|
writeb(cmd, memaddr + head + cmdStart + 0);
|
||
|
writeb(ch->channelnum, memaddr + head + cmdStart + 1);
|
||
|
writeb(word_or_byte, memaddr + head + cmdStart + 2);
|
||
|
}
|
||
|
head = (head + 4) & (cmdMax - cmdStart - 4);
|
||
|
writew(head, &ch->mailbox->cin);
|
||
|
count = FEPTIMEOUT;
|
||
|
|
||
|
for (;;) {
|
||
|
count--;
|
||
|
if (count == 0) {
|
||
|
printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
|
||
|
return;
|
||
|
}
|
||
|
head = readw(&ch->mailbox->cin);
|
||
|
cmdTail = readw(&ch->mailbox->cout);
|
||
|
n = (head - cmdTail) & (cmdMax - cmdStart - 4);
|
||
|
/*
|
||
|
* Basically this will break when the FEP acknowledges the
|
||
|
* command by incrementing cmdTail (Making it equal to head).
|
||
|
*/
|
||
|
if (n <= ncmds * (sizeof(short) * 4))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Digi products use fields in their channels structures that are very similar
|
||
|
* to the c_cflag and c_iflag fields typically found in UNIX termios
|
||
|
* structures. The below three routines allow mappings between these hardware
|
||
|
* "flags" and their respective Linux flags.
|
||
|
*/
|
||
|
static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
|
||
|
{
|
||
|
unsigned res = 0;
|
||
|
|
||
|
if (cflag & CRTSCTS) {
|
||
|
ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
|
||
|
res |= ((ch->m_cts) | (ch->m_rts));
|
||
|
}
|
||
|
|
||
|
if (ch->digiext.digi_flags & RTSPACE)
|
||
|
res |= ch->m_rts;
|
||
|
|
||
|
if (ch->digiext.digi_flags & DTRPACE)
|
||
|
res |= ch->m_dtr;
|
||
|
|
||
|
if (ch->digiext.digi_flags & CTSPACE)
|
||
|
res |= ch->m_cts;
|
||
|
|
||
|
if (ch->digiext.digi_flags & DSRPACE)
|
||
|
res |= ch->dsr;
|
||
|
|
||
|
if (ch->digiext.digi_flags & DCDPACE)
|
||
|
res |= ch->dcd;
|
||
|
|
||
|
if (res & (ch->m_rts))
|
||
|
ch->digiext.digi_flags |= RTSPACE;
|
||
|
|
||
|
if (res & (ch->m_cts))
|
||
|
ch->digiext.digi_flags |= CTSPACE;
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
|
||
|
{
|
||
|
unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
|
||
|
INPCK | ISTRIP | IXON | IXANY | IXOFF);
|
||
|
if (ch->digiext.digi_flags & DIGI_AIXON)
|
||
|
res |= IAIXON;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
|
||
|
{
|
||
|
unsigned res = 0;
|
||
|
if (cflag & CBAUDEX) {
|
||
|
ch->digiext.digi_flags |= DIGI_FAST;
|
||
|
/*
|
||
|
* HUPCL bit is used by FEP to indicate fast baud table is to
|
||
|
* be used.
|
||
|
*/
|
||
|
res |= FEP_HUPCL;
|
||
|
} else
|
||
|
ch->digiext.digi_flags &= ~DIGI_FAST;
|
||
|
/*
|
||
|
* CBAUD has bit position 0x1000 set these days to indicate Linux
|
||
|
* baud rate remap. Digi hardware can't handle the bit assignment.
|
||
|
* (We use a different bit assignment for high speed.). Clear this
|
||
|
* bit out.
|
||
|
*/
|
||
|
res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
|
||
|
/*
|
||
|
* This gets a little confusing. The Digi cards have their own
|
||
|
* representation of c_cflags controlling baud rate. For the most part
|
||
|
* this is identical to the Linux implementation. However; Digi
|
||
|
* supports one rate (76800) that Linux doesn't. This means that the
|
||
|
* c_cflag entry that would normally mean 76800 for Digi actually means
|
||
|
* 115200 under Linux. Without the below mapping, a stty 115200 would
|
||
|
* only drive the board at 76800. Since the rate 230400 is also found
|
||
|
* after 76800, the same problem afflicts us when we choose a rate of
|
||
|
* 230400. Without the below modificiation stty 230400 would actually
|
||
|
* give us 115200.
|
||
|
*
|
||
|
* There are two additional differences. The Linux value for CLOCAL
|
||
|
* (0x800; 0004000) has no meaning to the Digi hardware. Also in later
|
||
|
* releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
|
||
|
* ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
|
||
|
* checked for a screened out prior to termios2digi_c returning. Since
|
||
|
* CLOCAL isn't used by the board this can be ignored as long as the
|
||
|
* returned value is used only by Digi hardware.
|
||
|
*/
|
||
|
if (cflag & CBAUDEX) {
|
||
|
/*
|
||
|
* The below code is trying to guarantee that only baud rates
|
||
|
* 115200 and 230400 are remapped. We use exclusive or because
|
||
|
* the various baud rates share common bit positions and
|
||
|
* therefore can't be tested for easily.
|
||
|
*/
|
||
|
if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
|
||
|
(!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
|
||
|
res += 1;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/* Caller must hold the locks */
|
||
|
static void epcaparam(struct tty_struct *tty, struct channel *ch)
|
||
|
{
|
||
|
unsigned int cmdHead;
|
||
|
struct ktermios *ts;
|
||
|
struct board_chan __iomem *bc;
|
||
|
unsigned mval, hflow, cflag, iflag;
|
||
|
|
||
|
bc = ch->brdchan;
|
||
|
epcaassert(bc != NULL, "bc out of range");
|
||
|
|
||
|
assertgwinon(ch);
|
||
|
ts = tty->termios;
|
||
|
if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
|
||
|
cmdHead = readw(&bc->rin);
|
||
|
writew(cmdHead, &bc->rout);
|
||
|
cmdHead = readw(&bc->tin);
|
||
|
/* Changing baud in mid-stream transmission can be wonderful */
|
||
|
/*
|
||
|
* Flush current transmit buffer by setting cmdTail pointer
|
||
|
* (tout) to cmdHead pointer (tin). Hopefully the transmit
|
||
|
* buffer is empty.
|
||
|
*/
|
||
|
fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
|
||
|
mval = 0;
|
||
|
} else { /* Begin CBAUD not detected */
|
||
|
/*
|
||
|
* c_cflags have changed but that change had nothing to do with
|
||
|
* BAUD. Propagate the change to the card.
|
||
|
*/
|
||
|
cflag = termios2digi_c(ch, ts->c_cflag);
|
||
|
if (cflag != ch->fepcflag) {
|
||
|
ch->fepcflag = cflag;
|
||
|
/* Set baud rate, char size, stop bits, parity */
|
||
|
fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
|
||
|
}
|
||
|
/*
|
||
|
* If the user has not forced CLOCAL and if the device is not a
|
||
|
* CALLOUT device (Which is always CLOCAL) we set flags such
|
||
|
* that the driver will wait on carrier detect.
|
||
|
*/
|
||
|
if (ts->c_cflag & CLOCAL)
|
||
|
clear_bit(ASYNCB_CHECK_CD, &ch->port.flags);
|
||
|
else
|
||
|
set_bit(ASYNCB_CHECK_CD, &ch->port.flags);
|
||
|
mval = ch->m_dtr | ch->m_rts;
|
||
|
} /* End CBAUD not detected */
|
||
|
iflag = termios2digi_i(ch, ts->c_iflag);
|
||
|
/* Check input mode flags */
|
||
|
if (iflag != ch->fepiflag) {
|
||
|
ch->fepiflag = iflag;
|
||
|
/*
|
||
|
* Command sets channels iflag structure on the board. Such
|
||
|
* things as input soft flow control, handling of parity
|
||
|
* errors, and break handling are all set here.
|
||
|
*
|
||
|
* break handling, parity handling, input stripping,
|
||
|
* flow control chars
|
||
|
*/
|
||
|
fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
|
||
|
}
|
||
|
/*
|
||
|
* Set the board mint value for this channel. This will cause hardware
|
||
|
* events to be generated each time the DCD signal (Described in mint)
|
||
|
* changes.
|
||
|
*/
|
||
|
writeb(ch->dcd, &bc->mint);
|
||
|
if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
|
||
|
if (ch->digiext.digi_flags & DIGI_FORCEDCD)
|
||
|
writeb(0, &bc->mint);
|
||
|
ch->imodem = readb(&bc->mstat);
|
||
|
hflow = termios2digi_h(ch, ts->c_cflag);
|
||
|
if (hflow != ch->hflow) {
|
||
|
ch->hflow = hflow;
|
||
|
/*
|
||
|
* Hard flow control has been selected but the board is not
|
||
|
* using it. Activate hard flow control now.
|
||
|
*/
|
||
|
fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
|
||
|
}
|
||
|
mval ^= ch->modemfake & (mval ^ ch->modem);
|
||
|
|
||
|
if (ch->omodem ^ mval) {
|
||
|
ch->omodem = mval;
|
||
|
/*
|
||
|
* The below command sets the DTR and RTS mstat structure. If
|
||
|
* hard flow control is NOT active these changes will drive the
|
||
|
* output of the actual DTR and RTS lines. If hard flow control
|
||
|
* is active, the changes will be saved in the mstat structure
|
||
|
* and only asserted when hard flow control is turned off.
|
||
|
*/
|
||
|
|
||
|
/* First reset DTR & RTS; then set them */
|
||
|
fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
|
||
|
fepcmd(ch, SETMODEM, mval, 0, 0, 1);
|
||
|
}
|
||
|
if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
|
||
|
ch->fepstartc = ch->startc;
|
||
|
ch->fepstopc = ch->stopc;
|
||
|
/*
|
||
|
* The XON / XOFF characters have changed; propagate these
|
||
|
* changes to the card.
|
||
|
*/
|
||
|
fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
|
||
|
}
|
||
|
if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
|
||
|
ch->fepstartca = ch->startca;
|
||
|
ch->fepstopca = ch->stopca;
|
||
|
/*
|
||
|
* Similar to the above, this time the auxilarly XON / XOFF
|
||
|
* characters have changed; propagate these changes to the card.
|
||
|
*/
|
||
|
fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Caller holds lock */
|
||
|
static void receive_data(struct channel *ch, struct tty_struct *tty)
|
||
|
{
|
||
|
unchar *rptr;
|
||
|
struct ktermios *ts = NULL;
|
||
|
struct board_chan __iomem *bc;
|
||
|
int dataToRead, wrapgap, bytesAvailable;
|
||
|
unsigned int tail, head;
|
||
|
unsigned int wrapmask;
|
||
|
|
||
|
/*
|
||
|
* This routine is called by doint when a receive data event has taken
|
||
|
* place.
|
||
|
*/
|
||
|
globalwinon(ch);
|
||
|
if (ch->statusflags & RXSTOPPED)
|
||
|
return;
|
||
|
if (tty)
|
||
|
ts = tty->termios;
|
||
|
bc = ch->brdchan;
|
||
|
BUG_ON(!bc);
|
||
|
wrapmask = ch->rxbufsize - 1;
|
||
|
|
||
|
/*
|
||
|
* Get the head and tail pointers to the receiver queue. Wrap the head
|
||
|
* pointer if it has reached the end of the buffer.
|
||
|
*/
|
||
|
head = readw(&bc->rin);
|
||
|
head &= wrapmask;
|
||
|
tail = readw(&bc->rout) & wrapmask;
|
||
|
|
||
|
bytesAvailable = (head - tail) & wrapmask;
|
||
|
if (bytesAvailable == 0)
|
||
|
return;
|
||
|
|
||
|
/* If CREAD bit is off or device not open, set TX tail to head */
|
||
|
if (!tty || !ts || !(ts->c_cflag & CREAD)) {
|
||
|
writew(head, &bc->rout);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
|
||
|
return;
|
||
|
|
||
|
if (readb(&bc->orun)) {
|
||
|
writeb(0, &bc->orun);
|
||
|
printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",
|
||
|
tty->name);
|
||
|
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
|
||
|
}
|
||
|
rxwinon(ch);
|
||
|
while (bytesAvailable > 0) {
|
||
|
/* Begin while there is data on the card */
|
||
|
wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
|
||
|
/*
|
||
|
* Even if head has wrapped around only report the amount of
|
||
|
* data to be equal to the size - tail. Remember memcpy can't
|
||
|
* automaticly wrap around the receive buffer.
|
||
|
*/
|
||
|
dataToRead = (wrapgap < bytesAvailable) ? wrapgap
|
||
|
: bytesAvailable;
|
||
|
/* Make sure we don't overflow the buffer */
|
||
|
dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
|
||
|
if (dataToRead == 0)
|
||
|
break;
|
||
|
/*
|
||
|
* Move data read from our card into the line disciplines
|
||
|
* buffer for translation if necessary.
|
||
|
*/
|
||
|
memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
|
||
|
tail = (tail + dataToRead) & wrapmask;
|
||
|
bytesAvailable -= dataToRead;
|
||
|
} /* End while there is data on the card */
|
||
|
globalwinon(ch);
|
||
|
writew(tail, &bc->rout);
|
||
|
/* Must be called with global data */
|
||
|
tty_schedule_flip(tty);
|
||
|
}
|
||
|
|
||
|
static int info_ioctl(struct tty_struct *tty, struct file *file,
|
||
|
unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
case DIGI_GETINFO:
|
||
|
{
|
||
|
struct digi_info di;
|
||
|
int brd;
|
||
|
|
||
|
if (get_user(brd, (unsigned int __user *)arg))
|
||
|
return -EFAULT;
|
||
|
if (brd < 0 || brd >= num_cards || num_cards == 0)
|
||
|
return -ENODEV;
|
||
|
|
||
|
memset(&di, 0, sizeof(di));
|
||
|
|
||
|
di.board = brd;
|
||
|
di.status = boards[brd].status;
|
||
|
di.type = boards[brd].type ;
|
||
|
di.numports = boards[brd].numports ;
|
||
|
/* Legacy fixups - just move along nothing to see */
|
||
|
di.port = (unsigned char *)boards[brd].port ;
|
||
|
di.membase = (unsigned char *)boards[brd].membase ;
|
||
|
|
||
|
if (copy_to_user((void __user *)arg, &di, sizeof(di)))
|
||
|
return -EFAULT;
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
|
||
|
case DIGI_POLLER:
|
||
|
{
|
||
|
int brd = arg & 0xff000000 >> 16;
|
||
|
unsigned char state = arg & 0xff;
|
||
|
|
||
|
if (brd < 0 || brd >= num_cards) {
|
||
|
printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
digi_poller_inhibited = state;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case DIGI_INIT:
|
||
|
{
|
||
|
/*
|
||
|
* This call is made by the apps to complete the
|
||
|
* initialization of the board(s). This routine is
|
||
|
* responsible for setting the card to its initial
|
||
|
* state and setting the drivers control fields to the
|
||
|
* sutianle settings for the card in question.
|
||
|
*/
|
||
|
int crd;
|
||
|
for (crd = 0; crd < num_cards; crd++)
|
||
|
post_fep_init(crd);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
return -ENOTTY;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pc_tiocmget(struct tty_struct *tty, struct file *file)
|
||
|
{
|
||
|
struct channel *ch = tty->driver_data;
|
||
|
struct board_chan __iomem *bc;
|
||
|
unsigned int mstat, mflag = 0;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (ch)
|
||
|
bc = ch->brdchan;
|
||
|
else
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
mstat = readb(&bc->mstat);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
|
||
|
if (mstat & ch->m_dtr)
|
||
|
mflag |= TIOCM_DTR;
|
||
|
if (mstat & ch->m_rts)
|
||
|
mflag |= TIOCM_RTS;
|
||
|
if (mstat & ch->m_cts)
|
||
|
mflag |= TIOCM_CTS;
|
||
|
if (mstat & ch->dsr)
|
||
|
mflag |= TIOCM_DSR;
|
||
|
if (mstat & ch->m_ri)
|
||
|
mflag |= TIOCM_RI;
|
||
|
if (mstat & ch->dcd)
|
||
|
mflag |= TIOCM_CD;
|
||
|
return mflag;
|
||
|
}
|
||
|
|
||
|
static int pc_tiocmset(struct tty_struct *tty, struct file *file,
|
||
|
unsigned int set, unsigned int clear)
|
||
|
{
|
||
|
struct channel *ch = tty->driver_data;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!ch)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
/*
|
||
|
* I think this modemfake stuff is broken. It doesn't correctly reflect
|
||
|
* the behaviour desired by the TIOCM* ioctls. Therefore this is
|
||
|
* probably broken.
|
||
|
*/
|
||
|
if (set & TIOCM_RTS) {
|
||
|
ch->modemfake |= ch->m_rts;
|
||
|
ch->modem |= ch->m_rts;
|
||
|
}
|
||
|
if (set & TIOCM_DTR) {
|
||
|
ch->modemfake |= ch->m_dtr;
|
||
|
ch->modem |= ch->m_dtr;
|
||
|
}
|
||
|
if (clear & TIOCM_RTS) {
|
||
|
ch->modemfake |= ch->m_rts;
|
||
|
ch->modem &= ~ch->m_rts;
|
||
|
}
|
||
|
if (clear & TIOCM_DTR) {
|
||
|
ch->modemfake |= ch->m_dtr;
|
||
|
ch->modem &= ~ch->m_dtr;
|
||
|
}
|
||
|
globalwinon(ch);
|
||
|
/*
|
||
|
* The below routine generally sets up parity, baud, flow control
|
||
|
* issues, etc.... It effect both control flags and input flags.
|
||
|
*/
|
||
|
epcaparam(tty, ch);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pc_ioctl(struct tty_struct *tty, struct file *file,
|
||
|
unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
digiflow_t dflow;
|
||
|
unsigned long flags;
|
||
|
unsigned int mflag, mstat;
|
||
|
unsigned char startc, stopc;
|
||
|
struct board_chan __iomem *bc;
|
||
|
struct channel *ch = tty->driver_data;
|
||
|
void __user *argp = (void __user *)arg;
|
||
|
|
||
|
if (ch)
|
||
|
bc = ch->brdchan;
|
||
|
else
|
||
|
return -EINVAL;
|
||
|
switch (cmd) {
|
||
|
case TIOCMODG:
|
||
|
mflag = pc_tiocmget(tty, file);
|
||
|
if (put_user(mflag, (unsigned long __user *)argp))
|
||
|
return -EFAULT;
|
||
|
break;
|
||
|
case TIOCMODS:
|
||
|
if (get_user(mstat, (unsigned __user *)argp))
|
||
|
return -EFAULT;
|
||
|
return pc_tiocmset(tty, file, mstat, ~mstat);
|
||
|
case TIOCSDTR:
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
ch->omodem |= ch->m_dtr;
|
||
|
globalwinon(ch);
|
||
|
fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
break;
|
||
|
|
||
|
case TIOCCDTR:
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
ch->omodem &= ~ch->m_dtr;
|
||
|
globalwinon(ch);
|
||
|
fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
break;
|
||
|
case DIGI_GETA:
|
||
|
if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
|
||
|
return -EFAULT;
|
||
|
break;
|
||
|
case DIGI_SETAW:
|
||
|
case DIGI_SETAF:
|
||
|
lock_kernel();
|
||
|
if (cmd == DIGI_SETAW) {
|
||
|
/* Setup an event to indicate when the transmit
|
||
|
buffer empties */
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
setup_empty_event(tty, ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
tty_wait_until_sent(tty, 0);
|
||
|
} else {
|
||
|
/* ldisc lock already held in ioctl */
|
||
|
if (tty->ldisc->ops->flush_buffer)
|
||
|
tty->ldisc->ops->flush_buffer(tty);
|
||
|
}
|
||
|
unlock_kernel();
|
||
|
/* Fall Thru */
|
||
|
case DIGI_SETA:
|
||
|
if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if (ch->digiext.digi_flags & DIGI_ALTPIN) {
|
||
|
ch->dcd = ch->m_dsr;
|
||
|
ch->dsr = ch->m_dcd;
|
||
|
} else {
|
||
|
ch->dcd = ch->m_dcd;
|
||
|
ch->dsr = ch->m_dsr;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
|
||
|
/*
|
||
|
* The below routine generally sets up parity, baud, flow
|
||
|
* control issues, etc.... It effect both control flags and
|
||
|
* input flags.
|
||
|
*/
|
||
|
epcaparam(tty, ch);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
break;
|
||
|
|
||
|
case DIGI_GETFLOW:
|
||
|
case DIGI_GETAFLOW:
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
if (cmd == DIGI_GETFLOW) {
|
||
|
dflow.startc = readb(&bc->startc);
|
||
|
dflow.stopc = readb(&bc->stopc);
|
||
|
} else {
|
||
|
dflow.startc = readb(&bc->startca);
|
||
|
dflow.stopc = readb(&bc->stopca);
|
||
|
}
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
|
||
|
if (copy_to_user(argp, &dflow, sizeof(dflow)))
|
||
|
return -EFAULT;
|
||
|
break;
|
||
|
|
||
|
case DIGI_SETAFLOW:
|
||
|
case DIGI_SETFLOW:
|
||
|
if (cmd == DIGI_SETFLOW) {
|
||
|
startc = ch->startc;
|
||
|
stopc = ch->stopc;
|
||
|
} else {
|
||
|
startc = ch->startca;
|
||
|
stopc = ch->stopca;
|
||
|
}
|
||
|
|
||
|
if (copy_from_user(&dflow, argp, sizeof(dflow)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if (dflow.startc != startc || dflow.stopc != stopc) {
|
||
|
/* Begin if setflow toggled */
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
|
||
|
if (cmd == DIGI_SETFLOW) {
|
||
|
ch->fepstartc = ch->startc = dflow.startc;
|
||
|
ch->fepstopc = ch->stopc = dflow.stopc;
|
||
|
fepcmd(ch, SONOFFC, ch->fepstartc,
|
||
|
ch->fepstopc, 0, 1);
|
||
|
} else {
|
||
|
ch->fepstartca = ch->startca = dflow.startc;
|
||
|
ch->fepstopca = ch->stopca = dflow.stopc;
|
||
|
fepcmd(ch, SAUXONOFFC, ch->fepstartca,
|
||
|
ch->fepstopca, 0, 1);
|
||
|
}
|
||
|
|
||
|
if (ch->statusflags & TXSTOPPED)
|
||
|
pc_start(tty);
|
||
|
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
} /* End if setflow toggled */
|
||
|
break;
|
||
|
default:
|
||
|
return -ENOIOCTLCMD;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
|
||
|
if (ch != NULL) { /* Begin if channel valid */
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
epcaparam(tty, ch);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
|
||
|
if ((old_termios->c_cflag & CRTSCTS) &&
|
||
|
((tty->termios->c_cflag & CRTSCTS) == 0))
|
||
|
tty->hw_stopped = 0;
|
||
|
|
||
|
if (!(old_termios->c_cflag & CLOCAL) &&
|
||
|
(tty->termios->c_cflag & CLOCAL))
|
||
|
wake_up_interruptible(&ch->port.open_wait);
|
||
|
|
||
|
} /* End if channel valid */
|
||
|
}
|
||
|
|
||
|
static void do_softint(struct work_struct *work)
|
||
|
{
|
||
|
struct channel *ch = container_of(work, struct channel, tqueue);
|
||
|
/* Called in response to a modem change event */
|
||
|
if (ch && ch->magic == EPCA_MAGIC) {
|
||
|
struct tty_struct *tty = tty_port_tty_get(&ch->port);
|
||
|
|
||
|
if (tty && tty->driver_data) {
|
||
|
if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
|
||
|
tty_hangup(tty);
|
||
|
wake_up_interruptible(&ch->port.open_wait);
|
||
|
clear_bit(ASYNCB_NORMAL_ACTIVE,
|
||
|
&ch->port.flags);
|
||
|
}
|
||
|
}
|
||
|
tty_kref_put(tty);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* pc_stop and pc_start provide software flow control to the routine and the
|
||
|
* pc_ioctl routine.
|
||
|
*/
|
||
|
static void pc_stop(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
if ((ch->statusflags & TXSTOPPED) == 0) {
|
||
|
/* Begin if transmit stop requested */
|
||
|
globalwinon(ch);
|
||
|
/* STOP transmitting now !! */
|
||
|
fepcmd(ch, PAUSETX, 0, 0, 0, 0);
|
||
|
ch->statusflags |= TXSTOPPED;
|
||
|
memoff(ch);
|
||
|
} /* End if transmit stop requested */
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pc_start(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
unsigned long flags;
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
/* Just in case output was resumed because of a change
|
||
|
in Digi-flow */
|
||
|
if (ch->statusflags & TXSTOPPED) {
|
||
|
/* Begin transmit resume requested */
|
||
|
struct board_chan __iomem *bc;
|
||
|
globalwinon(ch);
|
||
|
bc = ch->brdchan;
|
||
|
if (ch->statusflags & LOWWAIT)
|
||
|
writeb(1, &bc->ilow);
|
||
|
/* Okay, you can start transmitting again... */
|
||
|
fepcmd(ch, RESUMETX, 0, 0, 0, 0);
|
||
|
ch->statusflags &= ~TXSTOPPED;
|
||
|
memoff(ch);
|
||
|
} /* End transmit resume requested */
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The below routines pc_throttle and pc_unthrottle are used to slow (And
|
||
|
* resume) the receipt of data into the kernels receive buffers. The exact
|
||
|
* occurrence of this depends on the size of the kernels receive buffer and
|
||
|
* what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
|
||
|
* more details.
|
||
|
*/
|
||
|
static void pc_throttle(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
if ((ch->statusflags & RXSTOPPED) == 0) {
|
||
|
globalwinon(ch);
|
||
|
fepcmd(ch, PAUSERX, 0, 0, 0, 0);
|
||
|
ch->statusflags |= RXSTOPPED;
|
||
|
memoff(ch);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pc_unthrottle(struct tty_struct *tty)
|
||
|
{
|
||
|
struct channel *ch;
|
||
|
unsigned long flags;
|
||
|
/*
|
||
|
* verifyChannel returns the channel from the tty struct if it is
|
||
|
* valid. This serves as a sanity check.
|
||
|
*/
|
||
|
ch = verifyChannel(tty);
|
||
|
if (ch != NULL) {
|
||
|
/* Just in case output was resumed because of a change
|
||
|
in Digi-flow */
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
if (ch->statusflags & RXSTOPPED) {
|
||
|
globalwinon(ch);
|
||
|
fepcmd(ch, RESUMERX, 0, 0, 0, 0);
|
||
|
ch->statusflags &= ~RXSTOPPED;
|
||
|
memoff(ch);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int pc_send_break(struct tty_struct *tty, int msec)
|
||
|
{
|
||
|
struct channel *ch = tty->driver_data;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (msec == -1)
|
||
|
msec = 0xFFFF;
|
||
|
else if (msec > 0xFFFE)
|
||
|
msec = 0xFFFE;
|
||
|
else if (msec < 1)
|
||
|
msec = 1;
|
||
|
|
||
|
spin_lock_irqsave(&epca_lock, flags);
|
||
|
globalwinon(ch);
|
||
|
/*
|
||
|
* Maybe I should send an infinite break here, schedule() for msec
|
||
|
* amount of time, and then stop the break. This way, the user can't
|
||
|
* screw up the FEP by causing digi_send_break() to be called (i.e. via
|
||
|
* an ioctl()) more than once in msec amount of time.
|
||
|
* Try this for now...
|
||
|
*/
|
||
|
fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
|
||
|
memoff(ch);
|
||
|
spin_unlock_irqrestore(&epca_lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Caller MUST hold the lock */
|
||
|
static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
|
||
|
{
|
||
|
struct board_chan __iomem *bc = ch->brdchan;
|
||
|
|
||
|
globalwinon(ch);
|
||
|
ch->statusflags |= EMPTYWAIT;
|
||
|
/*
|
||
|
* When set the iempty flag request a event to be generated when the
|
||
|
* transmit buffer is empty (If there is no BREAK in progress).
|
||
|
*/
|
||
|
writeb(1, &bc->iempty);
|
||
|
memoff(ch);
|
||
|
}
|
||
|
|
||
|
#ifndef MODULE
|
||
|
static void __init epca_setup(char *str, int *ints)
|
||
|
{
|
||
|
struct board_info board;
|
||
|
int index, loop, last;
|
||
|
char *temp, *t2;
|
||
|
unsigned len;
|
||
|
|
||
|
/*
|
||
|
* If this routine looks a little strange it is because it is only
|
||
|
* called if a LILO append command is given to boot the kernel with
|
||
|
* parameters. In this way, we can provide the user a method of
|
||
|
* changing his board configuration without rebuilding the kernel.
|
||
|
*/
|
||
|
if (!liloconfig)
|
||
|
liloconfig = 1;
|
||
|
|
||
|
memset(&board, 0, sizeof(board));
|
||
|
|
||
|
/* Assume the data is int first, later we can change it */
|
||
|
/* I think that array position 0 of ints holds the number of args */
|
||
|
for (last = 0, index = 1; index <= ints[0]; index++)
|
||
|
switch (index) { /* Begin parse switch */
|
||
|
case 1:
|
||
|
board.status = ints[index];
|
||
|
/*
|
||
|
* We check for 2 (As opposed to 1; because 2 is a flag
|
||
|
* instructing the driver to ignore epcaconfig.) For
|
||
|
* this reason we check for 2.
|
||
|
*/
|
||
|
if (board.status == 2) {
|
||
|
/* Begin ignore epcaconfig as well as lilo cmd line */
|
||
|
nbdevs = 0;
|
||
|
num_cards = 0;
|
||
|
return;
|
||
|
} /* End ignore epcaconfig as well as lilo cmd line */
|
||
|
|
||
|
if (board.status > 2) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n",
|
||
|
board.status);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_BOARD_STATUS;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
case 2:
|
||
|
board.type = ints[index];
|
||
|
if (board.type >= PCIXEM) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_BOARD_TYPE;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
case 3:
|
||
|
board.altpin = ints[index];
|
||
|
if (board.altpin > 1) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_ALTPIN;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 4:
|
||
|
board.numports = ints[index];
|
||
|
if (board.numports < 2 || board.numports > 256) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_NUM_PORTS;
|
||
|
return;
|
||
|
}
|
||
|
nbdevs += board.numports;
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 5:
|
||
|
board.port = ints[index];
|
||
|
if (ints[index] <= 0) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_PORT_BASE;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 6:
|
||
|
board.membase = ints[index];
|
||
|
if (ints[index] <= 0) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",
|
||
|
(unsigned int)board.membase);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_MEM_BASE;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
|
||
|
return;
|
||
|
|
||
|
} /* End parse switch */
|
||
|
|
||
|
while (str && *str) { /* Begin while there is a string arg */
|
||
|
/* find the next comma or terminator */
|
||
|
temp = str;
|
||
|
/* While string is not null, and a comma hasn't been found */
|
||
|
while (*temp && (*temp != ','))
|
||
|
temp++;
|
||
|
if (!*temp)
|
||
|
temp = NULL;
|
||
|
else
|
||
|
*temp++ = 0;
|
||
|
/* Set index to the number of args + 1 */
|
||
|
index = last + 1;
|
||
|
|
||
|
switch (index) {
|
||
|
case 1:
|
||
|
len = strlen(str);
|
||
|
if (strncmp("Disable", str, len) == 0)
|
||
|
board.status = 0;
|
||
|
else if (strncmp("Enable", str, len) == 0)
|
||
|
board.status = 1;
|
||
|
else {
|
||
|
printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_BOARD_STATUS;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
|
||
|
if (strcmp(board_desc[loop], str) == 0)
|
||
|
break;
|
||
|
/*
|
||
|
* If the index incremented above refers to a
|
||
|
* legitamate board type set it here.
|
||
|
*/
|
||
|
if (index < EPCA_NUM_TYPES)
|
||
|
board.type = loop;
|
||
|
else {
|
||
|
printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_BOARD_TYPE;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 3:
|
||
|
len = strlen(str);
|
||
|
if (strncmp("Disable", str, len) == 0)
|
||
|
board.altpin = 0;
|
||
|
else if (strncmp("Enable", str, len) == 0)
|
||
|
board.altpin = 1;
|
||
|
else {
|
||
|
printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_ALTPIN;
|
||
|
return;
|
||
|
}
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 4:
|
||
|
t2 = str;
|
||
|
while (isdigit(*t2))
|
||
|
t2++;
|
||
|
|
||
|
if (*t2) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_NUM_PORTS;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* There is not a man page for simple_strtoul but the
|
||
|
* code can be found in vsprintf.c. The first argument
|
||
|
* is the string to translate (To an unsigned long
|
||
|
* obviously), the second argument can be the address
|
||
|
* of any character variable or a NULL. If a variable
|
||
|
* is given, the end pointer of the string will be
|
||
|
* stored in that variable; if a NULL is given the end
|
||
|
* pointer will not be returned. The last argument is
|
||
|
* the base to use. If a 0 is indicated, the routine
|
||
|
* will attempt to determine the proper base by looking
|
||
|
* at the values prefix (A '0' for octal, a 'x' for
|
||
|
* hex, etc ... If a value is given it will use that
|
||
|
* value as the base.
|
||
|
*/
|
||
|
board.numports = simple_strtoul(str, NULL, 0);
|
||
|
nbdevs += board.numports;
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 5:
|
||
|
t2 = str;
|
||
|
while (isxdigit(*t2))
|
||
|
t2++;
|
||
|
|
||
|
if (*t2) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_PORT_BASE;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
board.port = simple_strtoul(str, NULL, 16);
|
||
|
last = index;
|
||
|
break;
|
||
|
|
||
|
case 6:
|
||
|
t2 = str;
|
||
|
while (isxdigit(*t2))
|
||
|
t2++;
|
||
|
|
||
|
if (*t2) {
|
||
|
printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str);
|
||
|
invalid_lilo_config = 1;
|
||
|
setup_error_code |= INVALID_MEM_BASE;
|
||
|
return;
|
||
|
}
|
||
|
board.membase = simple_strtoul(str, NULL, 16);
|
||
|
last = index;
|
||
|
break;
|
||
|
default:
|
||
|
printk(KERN_ERR "epca: Too many string parms\n");
|
||
|
return;
|
||
|
}
|
||
|
str = temp;
|
||
|
} /* End while there is a string arg */
|
||
|
|
||
|
if (last < 6) {
|
||
|
printk(KERN_ERR "epca: Insufficient parms specified\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* I should REALLY validate the stuff here */
|
||
|
/* Copies our local copy of board into boards */
|
||
|
memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board));
|
||
|
/* Does this get called once per lilo arg are what ? */
|
||
|
printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
|
||
|
num_cards, board_desc[board.type],
|
||
|
board.numports, (int)board.port, (unsigned int) board.membase);
|
||
|
num_cards++;
|
||
|
}
|
||
|
|
||
|
static int __init epca_real_setup(char *str)
|
||
|
{
|
||
|
int ints[11];
|
||
|
|
||
|
epca_setup(get_options(str, 11, ints), ints);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("digiepca", epca_real_setup);
|
||
|
#endif
|
||
|
|
||
|
enum epic_board_types {
|
||
|
brd_xr = 0,
|
||
|
brd_xem,
|
||
|
brd_cx,
|
||
|
brd_xrj,
|
||
|
};
|
||
|
|
||
|
/* indexed directly by epic_board_types enum */
|
||
|
static struct {
|
||
|
unsigned char board_type;
|
||
|
unsigned bar_idx; /* PCI base address region */
|
||
|
} epca_info_tbl[] = {
|
||
|
{ PCIXR, 0, },
|
||
|
{ PCIXEM, 0, },
|
||
|
{ PCICX, 0, },
|
||
|
{ PCIXRJ, 2, },
|
||
|
};
|
||
|
|
||
|
static int __devinit epca_init_one(struct pci_dev *pdev,
|
||
|
const struct pci_device_id *ent)
|
||
|
{
|
||
|
static int board_num = -1;
|
||
|
int board_idx, info_idx = ent->driver_data;
|
||
|
unsigned long addr;
|
||
|
|
||
|
if (pci_enable_device(pdev))
|
||
|
return -EIO;
|
||
|
|
||
|
board_num++;
|
||
|
board_idx = board_num + num_cards;
|
||
|
if (board_idx >= MAXBOARDS)
|
||
|
goto err_out;
|
||
|
|
||
|
addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx);
|
||
|
if (!addr) {
|
||
|
printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n",
|
||
|
epca_info_tbl[info_idx].bar_idx);
|
||
|
goto err_out;
|
||
|
}
|
||
|
|
||
|
boards[board_idx].status = ENABLED;
|
||
|
boards[board_idx].type = epca_info_tbl[info_idx].board_type;
|
||
|
boards[board_idx].numports = 0x0;
|
||
|
boards[board_idx].port = addr + PCI_IO_OFFSET;
|
||
|
boards[board_idx].membase = addr;
|
||
|
|
||
|
if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) {
|
||
|
printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
|
||
|
0x200000, addr + PCI_IO_OFFSET);
|
||
|
goto err_out;
|
||
|
}
|
||
|
|
||
|
boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET,
|
||
|
0x200000);
|
||
|
if (!boards[board_idx].re_map_port) {
|
||
|
printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
|
||
|
0x200000, addr + PCI_IO_OFFSET);
|
||
|
goto err_out_free_pciio;
|
||
|
}
|
||
|
|
||
|
if (!request_mem_region(addr, 0x200000, "epca")) {
|
||
|
printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
|
||
|
0x200000, addr);
|
||
|
goto err_out_free_iounmap;
|
||
|
}
|
||
|
|
||
|
boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000);
|
||
|
if (!boards[board_idx].re_map_membase) {
|
||
|
printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
|
||
|
0x200000, addr + PCI_IO_OFFSET);
|
||
|
goto err_out_free_memregion;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* I don't know what the below does, but the hardware guys say its
|
||
|
* required on everything except PLX (In this case XRJ).
|
||
|
*/
|
||
|
if (info_idx != brd_xrj) {
|
||
|
pci_write_config_byte(pdev, 0x40, 0);
|
||
|
pci_write_config_byte(pdev, 0x46, 0);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_out_free_memregion:
|
||
|
release_mem_region(addr, 0x200000);
|
||
|
err_out_free_iounmap:
|
||
|
iounmap(boards[board_idx].re_map_port);
|
||
|
err_out_free_pciio:
|
||
|
release_mem_region(addr + PCI_IO_OFFSET, 0x200000);
|
||
|
err_out:
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct pci_device_id epca_pci_tbl[] = {
|
||
|
{ PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
|
||
|
{ PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
|
||
|
{ PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
|
||
|
{ PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
|
||
|
{ 0, }
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
|
||
|
|
||
|
static int __init init_PCI(void)
|
||
|
{
|
||
|
memset(&epca_driver, 0, sizeof(epca_driver));
|
||
|
epca_driver.name = "epca";
|
||
|
epca_driver.id_table = epca_pci_tbl;
|
||
|
epca_driver.probe = epca_init_one;
|
||
|
|
||
|
return pci_register_driver(&epca_driver);
|
||
|
}
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|