1295 lines
36 KiB
C
1295 lines
36 KiB
C
|
/*
|
||
|
* Copyright (C) 2001-2004 by David Brownell
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software Foundation,
|
||
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
/* this file is part of ehci-hcd.c */
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
|
||
|
*
|
||
|
* Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
|
||
|
* entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
|
||
|
* buffers needed for the larger number). We use one QH per endpoint, queue
|
||
|
* multiple urbs (all three types) per endpoint. URBs may need several qtds.
|
||
|
*
|
||
|
* ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
|
||
|
* interrupts) needs careful scheduling. Performance improvements can be
|
||
|
* an ongoing challenge. That's in "ehci-sched.c".
|
||
|
*
|
||
|
* USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
|
||
|
* or otherwise through transaction translators (TTs) in USB 2.0 hubs using
|
||
|
* (b) special fields in qh entries or (c) split iso entries. TTs will
|
||
|
* buffer low/full speed data so the host collects it at high speed.
|
||
|
*/
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
/* fill a qtd, returning how much of the buffer we were able to queue up */
|
||
|
|
||
|
static int
|
||
|
qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
|
||
|
size_t len, int token, int maxpacket)
|
||
|
{
|
||
|
int i, count;
|
||
|
u64 addr = buf;
|
||
|
|
||
|
/* one buffer entry per 4K ... first might be short or unaligned */
|
||
|
qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
|
||
|
qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
|
||
|
count = 0x1000 - (buf & 0x0fff); /* rest of that page */
|
||
|
if (likely (len < count)) /* ... iff needed */
|
||
|
count = len;
|
||
|
else {
|
||
|
buf += 0x1000;
|
||
|
buf &= ~0x0fff;
|
||
|
|
||
|
/* per-qtd limit: from 16K to 20K (best alignment) */
|
||
|
for (i = 1; count < len && i < 5; i++) {
|
||
|
addr = buf;
|
||
|
qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
|
||
|
qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
|
||
|
(u32)(addr >> 32));
|
||
|
buf += 0x1000;
|
||
|
if ((count + 0x1000) < len)
|
||
|
count += 0x1000;
|
||
|
else
|
||
|
count = len;
|
||
|
}
|
||
|
|
||
|
/* short packets may only terminate transfers */
|
||
|
if (count != len)
|
||
|
count -= (count % maxpacket);
|
||
|
}
|
||
|
qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
|
||
|
qtd->length = count;
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
static inline void
|
||
|
qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
|
||
|
{
|
||
|
struct ehci_qh_hw *hw = qh->hw;
|
||
|
|
||
|
/* writes to an active overlay are unsafe */
|
||
|
BUG_ON(qh->qh_state != QH_STATE_IDLE);
|
||
|
|
||
|
hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
|
hw->hw_alt_next = EHCI_LIST_END(ehci);
|
||
|
|
||
|
/* Except for control endpoints, we make hardware maintain data
|
||
|
* toggle (like OHCI) ... here (re)initialize the toggle in the QH,
|
||
|
* and set the pseudo-toggle in udev. Only usb_clear_halt() will
|
||
|
* ever clear it.
|
||
|
*/
|
||
|
if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
|
||
|
unsigned is_out, epnum;
|
||
|
|
||
|
is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
|
||
|
epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
|
||
|
if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
|
||
|
hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
|
||
|
usb_settoggle (qh->dev, epnum, is_out, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
|
||
|
wmb ();
|
||
|
hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
|
||
|
}
|
||
|
|
||
|
/* if it weren't for a common silicon quirk (writing the dummy into the qh
|
||
|
* overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
|
||
|
* recovery (including urb dequeue) would need software changes to a QH...
|
||
|
*/
|
||
|
static void
|
||
|
qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
|
{
|
||
|
struct ehci_qtd *qtd;
|
||
|
|
||
|
if (list_empty (&qh->qtd_list))
|
||
|
qtd = qh->dummy;
|
||
|
else {
|
||
|
qtd = list_entry (qh->qtd_list.next,
|
||
|
struct ehci_qtd, qtd_list);
|
||
|
/* first qtd may already be partially processed */
|
||
|
if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current)
|
||
|
qtd = NULL;
|
||
|
}
|
||
|
|
||
|
if (qtd)
|
||
|
qh_update (ehci, qh, qtd);
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
|
||
|
static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
|
||
|
struct ehci_qh *qh = ep->hcpriv;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&ehci->lock, flags);
|
||
|
qh->clearing_tt = 0;
|
||
|
if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
|
||
|
&& HC_IS_RUNNING(hcd->state))
|
||
|
qh_link_async(ehci, qh);
|
||
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
||
|
}
|
||
|
|
||
|
static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
|
||
|
struct urb *urb, u32 token)
|
||
|
{
|
||
|
|
||
|
/* If an async split transaction gets an error or is unlinked,
|
||
|
* the TT buffer may be left in an indeterminate state. We
|
||
|
* have to clear the TT buffer.
|
||
|
*
|
||
|
* Note: this routine is never called for Isochronous transfers.
|
||
|
*/
|
||
|
if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
|
||
|
#ifdef DEBUG
|
||
|
struct usb_device *tt = urb->dev->tt->hub;
|
||
|
dev_dbg(&tt->dev,
|
||
|
"clear tt buffer port %d, a%d ep%d t%08x\n",
|
||
|
urb->dev->ttport, urb->dev->devnum,
|
||
|
usb_pipeendpoint(urb->pipe), token);
|
||
|
#endif /* DEBUG */
|
||
|
if (!ehci_is_TDI(ehci)
|
||
|
|| urb->dev->tt->hub !=
|
||
|
ehci_to_hcd(ehci)->self.root_hub) {
|
||
|
if (usb_hub_clear_tt_buffer(urb) == 0)
|
||
|
qh->clearing_tt = 1;
|
||
|
} else {
|
||
|
|
||
|
/* REVISIT ARC-derived cores don't clear the root
|
||
|
* hub TT buffer in this way...
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int qtd_copy_status (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
size_t length,
|
||
|
u32 token
|
||
|
)
|
||
|
{
|
||
|
int status = -EINPROGRESS;
|
||
|
|
||
|
/* count IN/OUT bytes, not SETUP (even short packets) */
|
||
|
if (likely (QTD_PID (token) != 2))
|
||
|
urb->actual_length += length - QTD_LENGTH (token);
|
||
|
|
||
|
/* don't modify error codes */
|
||
|
if (unlikely(urb->unlinked))
|
||
|
return status;
|
||
|
|
||
|
/* force cleanup after short read; not always an error */
|
||
|
if (unlikely (IS_SHORT_READ (token)))
|
||
|
status = -EREMOTEIO;
|
||
|
|
||
|
/* serious "can't proceed" faults reported by the hardware */
|
||
|
if (token & QTD_STS_HALT) {
|
||
|
if (token & QTD_STS_BABBLE) {
|
||
|
/* FIXME "must" disable babbling device's port too */
|
||
|
status = -EOVERFLOW;
|
||
|
/* CERR nonzero + halt --> stall */
|
||
|
} else if (QTD_CERR(token)) {
|
||
|
status = -EPIPE;
|
||
|
|
||
|
/* In theory, more than one of the following bits can be set
|
||
|
* since they are sticky and the transaction is retried.
|
||
|
* Which to test first is rather arbitrary.
|
||
|
*/
|
||
|
} else if (token & QTD_STS_MMF) {
|
||
|
/* fs/ls interrupt xfer missed the complete-split */
|
||
|
status = -EPROTO;
|
||
|
} else if (token & QTD_STS_DBE) {
|
||
|
status = (QTD_PID (token) == 1) /* IN ? */
|
||
|
? -ENOSR /* hc couldn't read data */
|
||
|
: -ECOMM; /* hc couldn't write data */
|
||
|
} else if (token & QTD_STS_XACT) {
|
||
|
/* timeout, bad CRC, wrong PID, etc */
|
||
|
ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
|
||
|
urb->dev->devpath,
|
||
|
usb_pipeendpoint(urb->pipe),
|
||
|
usb_pipein(urb->pipe) ? "in" : "out");
|
||
|
status = -EPROTO;
|
||
|
} else { /* unknown */
|
||
|
status = -EPROTO;
|
||
|
}
|
||
|
|
||
|
ehci_vdbg (ehci,
|
||
|
"dev%d ep%d%s qtd token %08x --> status %d\n",
|
||
|
usb_pipedevice (urb->pipe),
|
||
|
usb_pipeendpoint (urb->pipe),
|
||
|
usb_pipein (urb->pipe) ? "in" : "out",
|
||
|
token, status);
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
|
||
|
__releases(ehci->lock)
|
||
|
__acquires(ehci->lock)
|
||
|
{
|
||
|
if (likely (urb->hcpriv != NULL)) {
|
||
|
struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
|
||
|
|
||
|
/* S-mask in a QH means it's an interrupt urb */
|
||
|
if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
|
||
|
|
||
|
/* ... update hc-wide periodic stats (for usbfs) */
|
||
|
ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
|
||
|
}
|
||
|
qh_put (qh);
|
||
|
}
|
||
|
|
||
|
if (unlikely(urb->unlinked)) {
|
||
|
COUNT(ehci->stats.unlink);
|
||
|
} else {
|
||
|
/* report non-error and short read status as zero */
|
||
|
if (status == -EINPROGRESS || status == -EREMOTEIO)
|
||
|
status = 0;
|
||
|
COUNT(ehci->stats.complete);
|
||
|
}
|
||
|
|
||
|
#ifdef EHCI_URB_TRACE
|
||
|
ehci_dbg (ehci,
|
||
|
"%s %s urb %p ep%d%s status %d len %d/%d\n",
|
||
|
__func__, urb->dev->devpath, urb,
|
||
|
usb_pipeendpoint (urb->pipe),
|
||
|
usb_pipein (urb->pipe) ? "in" : "out",
|
||
|
status,
|
||
|
urb->actual_length, urb->transfer_buffer_length);
|
||
|
#endif
|
||
|
|
||
|
/* complete() can reenter this HCD */
|
||
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
||
|
spin_unlock (&ehci->lock);
|
||
|
usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
|
||
|
spin_lock (&ehci->lock);
|
||
|
}
|
||
|
|
||
|
static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
|
||
|
static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
|
||
|
/*
|
||
|
* Process and free completed qtds for a qh, returning URBs to drivers.
|
||
|
* Chases up to qh->hw_current. Returns number of completions called,
|
||
|
* indicating how much "real" work we did.
|
||
|
*/
|
||
|
static unsigned
|
||
|
qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
|
{
|
||
|
struct ehci_qtd *last, *end = qh->dummy;
|
||
|
struct list_head *entry, *tmp;
|
||
|
int last_status;
|
||
|
int stopped;
|
||
|
unsigned count = 0;
|
||
|
u8 state;
|
||
|
struct ehci_qh_hw *hw = qh->hw;
|
||
|
|
||
|
if (unlikely (list_empty (&qh->qtd_list)))
|
||
|
return count;
|
||
|
|
||
|
/* completions (or tasks on other cpus) must never clobber HALT
|
||
|
* till we've gone through and cleaned everything up, even when
|
||
|
* they add urbs to this qh's queue or mark them for unlinking.
|
||
|
*
|
||
|
* NOTE: unlinking expects to be done in queue order.
|
||
|
*
|
||
|
* It's a bug for qh->qh_state to be anything other than
|
||
|
* QH_STATE_IDLE, unless our caller is scan_async() or
|
||
|
* scan_periodic().
|
||
|
*/
|
||
|
state = qh->qh_state;
|
||
|
qh->qh_state = QH_STATE_COMPLETING;
|
||
|
stopped = (state == QH_STATE_IDLE);
|
||
|
|
||
|
rescan:
|
||
|
last = NULL;
|
||
|
last_status = -EINPROGRESS;
|
||
|
qh->needs_rescan = 0;
|
||
|
|
||
|
/* remove de-activated QTDs from front of queue.
|
||
|
* after faults (including short reads), cleanup this urb
|
||
|
* then let the queue advance.
|
||
|
* if queue is stopped, handles unlinks.
|
||
|
*/
|
||
|
list_for_each_safe (entry, tmp, &qh->qtd_list) {
|
||
|
struct ehci_qtd *qtd;
|
||
|
struct urb *urb;
|
||
|
u32 token = 0;
|
||
|
|
||
|
qtd = list_entry (entry, struct ehci_qtd, qtd_list);
|
||
|
urb = qtd->urb;
|
||
|
|
||
|
/* clean up any state from previous QTD ...*/
|
||
|
if (last) {
|
||
|
if (likely (last->urb != urb)) {
|
||
|
ehci_urb_done(ehci, last->urb, last_status);
|
||
|
count++;
|
||
|
last_status = -EINPROGRESS;
|
||
|
}
|
||
|
ehci_qtd_free (ehci, last);
|
||
|
last = NULL;
|
||
|
}
|
||
|
|
||
|
/* ignore urbs submitted during completions we reported */
|
||
|
if (qtd == end)
|
||
|
break;
|
||
|
|
||
|
/* hardware copies qtd out of qh overlay */
|
||
|
rmb ();
|
||
|
token = hc32_to_cpu(ehci, qtd->hw_token);
|
||
|
|
||
|
/* always clean up qtds the hc de-activated */
|
||
|
retry_xacterr:
|
||
|
if ((token & QTD_STS_ACTIVE) == 0) {
|
||
|
|
||
|
/* on STALL, error, and short reads this urb must
|
||
|
* complete and all its qtds must be recycled.
|
||
|
*/
|
||
|
if ((token & QTD_STS_HALT) != 0) {
|
||
|
|
||
|
/* retry transaction errors until we
|
||
|
* reach the software xacterr limit
|
||
|
*/
|
||
|
if ((token & QTD_STS_XACT) &&
|
||
|
QTD_CERR(token) == 0 &&
|
||
|
++qh->xacterrs < QH_XACTERR_MAX &&
|
||
|
!urb->unlinked) {
|
||
|
ehci_dbg(ehci,
|
||
|
"detected XactErr len %zu/%zu retry %d\n",
|
||
|
qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
|
||
|
|
||
|
/* reset the token in the qtd and the
|
||
|
* qh overlay (which still contains
|
||
|
* the qtd) so that we pick up from
|
||
|
* where we left off
|
||
|
*/
|
||
|
token &= ~QTD_STS_HALT;
|
||
|
token |= QTD_STS_ACTIVE |
|
||
|
(EHCI_TUNE_CERR << 10);
|
||
|
qtd->hw_token = cpu_to_hc32(ehci,
|
||
|
token);
|
||
|
wmb();
|
||
|
hw->hw_token = cpu_to_hc32(ehci,
|
||
|
token);
|
||
|
goto retry_xacterr;
|
||
|
}
|
||
|
stopped = 1;
|
||
|
|
||
|
/* magic dummy for some short reads; qh won't advance.
|
||
|
* that silicon quirk can kick in with this dummy too.
|
||
|
*
|
||
|
* other short reads won't stop the queue, including
|
||
|
* control transfers (status stage handles that) or
|
||
|
* most other single-qtd reads ... the queue stops if
|
||
|
* URB_SHORT_NOT_OK was set so the driver submitting
|
||
|
* the urbs could clean it up.
|
||
|
*/
|
||
|
} else if (IS_SHORT_READ (token)
|
||
|
&& !(qtd->hw_alt_next
|
||
|
& EHCI_LIST_END(ehci))) {
|
||
|
stopped = 1;
|
||
|
}
|
||
|
|
||
|
/* stop scanning when we reach qtds the hc is using */
|
||
|
} else if (likely (!stopped
|
||
|
&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
|
||
|
break;
|
||
|
|
||
|
/* scan the whole queue for unlinks whenever it stops */
|
||
|
} else {
|
||
|
stopped = 1;
|
||
|
|
||
|
/* cancel everything if we halt, suspend, etc */
|
||
|
if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
|
||
|
last_status = -ESHUTDOWN;
|
||
|
|
||
|
/* this qtd is active; skip it unless a previous qtd
|
||
|
* for its urb faulted, or its urb was canceled.
|
||
|
*/
|
||
|
else if (last_status == -EINPROGRESS && !urb->unlinked)
|
||
|
continue;
|
||
|
|
||
|
/* qh unlinked; token in overlay may be most current */
|
||
|
if (state == QH_STATE_IDLE
|
||
|
&& cpu_to_hc32(ehci, qtd->qtd_dma)
|
||
|
== hw->hw_current) {
|
||
|
token = hc32_to_cpu(ehci, hw->hw_token);
|
||
|
|
||
|
/* An unlink may leave an incomplete
|
||
|
* async transaction in the TT buffer.
|
||
|
* We have to clear it.
|
||
|
*/
|
||
|
ehci_clear_tt_buffer(ehci, qh, urb, token);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* unless we already know the urb's status, collect qtd status
|
||
|
* and update count of bytes transferred. in common short read
|
||
|
* cases with only one data qtd (including control transfers),
|
||
|
* queue processing won't halt. but with two or more qtds (for
|
||
|
* example, with a 32 KB transfer), when the first qtd gets a
|
||
|
* short read the second must be removed by hand.
|
||
|
*/
|
||
|
if (last_status == -EINPROGRESS) {
|
||
|
last_status = qtd_copy_status(ehci, urb,
|
||
|
qtd->length, token);
|
||
|
if (last_status == -EREMOTEIO
|
||
|
&& (qtd->hw_alt_next
|
||
|
& EHCI_LIST_END(ehci)))
|
||
|
last_status = -EINPROGRESS;
|
||
|
|
||
|
/* As part of low/full-speed endpoint-halt processing
|
||
|
* we must clear the TT buffer (11.17.5).
|
||
|
*/
|
||
|
if (unlikely(last_status != -EINPROGRESS &&
|
||
|
last_status != -EREMOTEIO)) {
|
||
|
/* The TT's in some hubs malfunction when they
|
||
|
* receive this request following a STALL (they
|
||
|
* stop sending isochronous packets). Since a
|
||
|
* STALL can't leave the TT buffer in a busy
|
||
|
* state (if you believe Figures 11-48 - 11-51
|
||
|
* in the USB 2.0 spec), we won't clear the TT
|
||
|
* buffer in this case. Strictly speaking this
|
||
|
* is a violation of the spec.
|
||
|
*/
|
||
|
if (last_status != -EPIPE)
|
||
|
ehci_clear_tt_buffer(ehci, qh, urb,
|
||
|
token);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* if we're removing something not at the queue head,
|
||
|
* patch the hardware queue pointer.
|
||
|
*/
|
||
|
if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
|
||
|
last = list_entry (qtd->qtd_list.prev,
|
||
|
struct ehci_qtd, qtd_list);
|
||
|
last->hw_next = qtd->hw_next;
|
||
|
}
|
||
|
|
||
|
/* remove qtd; it's recycled after possible urb completion */
|
||
|
list_del (&qtd->qtd_list);
|
||
|
last = qtd;
|
||
|
|
||
|
/* reinit the xacterr counter for the next qtd */
|
||
|
qh->xacterrs = 0;
|
||
|
}
|
||
|
|
||
|
/* last urb's completion might still need calling */
|
||
|
if (likely (last != NULL)) {
|
||
|
ehci_urb_done(ehci, last->urb, last_status);
|
||
|
count++;
|
||
|
ehci_qtd_free (ehci, last);
|
||
|
}
|
||
|
|
||
|
/* Do we need to rescan for URBs dequeued during a giveback? */
|
||
|
if (unlikely(qh->needs_rescan)) {
|
||
|
/* If the QH is already unlinked, do the rescan now. */
|
||
|
if (state == QH_STATE_IDLE)
|
||
|
goto rescan;
|
||
|
|
||
|
/* Otherwise we have to wait until the QH is fully unlinked.
|
||
|
* Our caller will start an unlink if qh->needs_rescan is
|
||
|
* set. But if an unlink has already started, nothing needs
|
||
|
* to be done.
|
||
|
*/
|
||
|
if (state != QH_STATE_LINKED)
|
||
|
qh->needs_rescan = 0;
|
||
|
}
|
||
|
|
||
|
/* restore original state; caller must unlink or relink */
|
||
|
qh->qh_state = state;
|
||
|
|
||
|
/* be sure the hardware's done with the qh before refreshing
|
||
|
* it after fault cleanup, or recovering from silicon wrongly
|
||
|
* overlaying the dummy qtd (which reduces DMA chatter).
|
||
|
*/
|
||
|
if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
|
||
|
switch (state) {
|
||
|
case QH_STATE_IDLE:
|
||
|
qh_refresh(ehci, qh);
|
||
|
break;
|
||
|
case QH_STATE_LINKED:
|
||
|
/* We won't refresh a QH that's linked (after the HC
|
||
|
* stopped the queue). That avoids a race:
|
||
|
* - HC reads first part of QH;
|
||
|
* - CPU updates that first part and the token;
|
||
|
* - HC reads rest of that QH, including token
|
||
|
* Result: HC gets an inconsistent image, and then
|
||
|
* DMAs to/from the wrong memory (corrupting it).
|
||
|
*
|
||
|
* That should be rare for interrupt transfers,
|
||
|
* except maybe high bandwidth ...
|
||
|
*/
|
||
|
|
||
|
/* Tell the caller to start an unlink */
|
||
|
qh->needs_rescan = 1;
|
||
|
break;
|
||
|
/* otherwise, unlink already started */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
|
||
|
#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
|
||
|
// ... and packet size, for any kind of endpoint descriptor
|
||
|
#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
|
||
|
|
||
|
/*
|
||
|
* reverse of qh_urb_transaction: free a list of TDs.
|
||
|
* used for cleanup after errors, before HC sees an URB's TDs.
|
||
|
*/
|
||
|
static void qtd_list_free (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
struct list_head *qtd_list
|
||
|
) {
|
||
|
struct list_head *entry, *temp;
|
||
|
|
||
|
list_for_each_safe (entry, temp, qtd_list) {
|
||
|
struct ehci_qtd *qtd;
|
||
|
|
||
|
qtd = list_entry (entry, struct ehci_qtd, qtd_list);
|
||
|
list_del (&qtd->qtd_list);
|
||
|
ehci_qtd_free (ehci, qtd);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* create a list of filled qtds for this URB; won't link into qh.
|
||
|
*/
|
||
|
static struct list_head *
|
||
|
qh_urb_transaction (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
struct list_head *head,
|
||
|
gfp_t flags
|
||
|
) {
|
||
|
struct ehci_qtd *qtd, *qtd_prev;
|
||
|
dma_addr_t buf;
|
||
|
int len, maxpacket;
|
||
|
int is_input;
|
||
|
u32 token;
|
||
|
|
||
|
/*
|
||
|
* URBs map to sequences of QTDs: one logical transaction
|
||
|
*/
|
||
|
qtd = ehci_qtd_alloc (ehci, flags);
|
||
|
if (unlikely (!qtd))
|
||
|
return NULL;
|
||
|
list_add_tail (&qtd->qtd_list, head);
|
||
|
qtd->urb = urb;
|
||
|
|
||
|
is_input = usb_pipein (urb->pipe);
|
||
|
|
||
|
token = QTD_STS_ACTIVE;
|
||
|
#ifdef CONFIG_CPU_SUBTYPE_STX7100
|
||
|
/* The problem is that packets where the checksum has large numbers of 1's
|
||
|
* the bitstuffing is still not correct. SMSC hubs seem to be very tight on the
|
||
|
* specification, and fail. The workaround is to set the retry to infinite,
|
||
|
* eventually the packet will go through, although it can rarely take up to a dozen
|
||
|
* attempts. We only do this for output pipes, we leave input pipes with the
|
||
|
* default TUNE_CERR value.
|
||
|
*/
|
||
|
if(is_input) token |= (EHCI_TUNE_CERR << 10);
|
||
|
#else
|
||
|
token |= (EHCI_TUNE_CERR << 10);
|
||
|
#endif
|
||
|
|
||
|
/* for split transactions, SplitXState initialized to zero */
|
||
|
|
||
|
len = urb->transfer_buffer_length;
|
||
|
if (usb_pipecontrol (urb->pipe)) {
|
||
|
/* SETUP pid */
|
||
|
qtd_fill(ehci, qtd, urb->setup_dma,
|
||
|
sizeof (struct usb_ctrlrequest),
|
||
|
token | (2 /* "setup" */ << 8), 8);
|
||
|
|
||
|
/* ... and always at least one more pid */
|
||
|
token ^= QTD_TOGGLE;
|
||
|
qtd_prev = qtd;
|
||
|
qtd = ehci_qtd_alloc (ehci, flags);
|
||
|
if (unlikely (!qtd))
|
||
|
goto cleanup;
|
||
|
qtd->urb = urb;
|
||
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
|
list_add_tail (&qtd->qtd_list, head);
|
||
|
|
||
|
/* for zero length DATA stages, STATUS is always IN */
|
||
|
if (len == 0)
|
||
|
token |= (1 /* "in" */ << 8);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* data transfer stage: buffer setup
|
||
|
*/
|
||
|
buf = urb->transfer_dma;
|
||
|
|
||
|
if (is_input)
|
||
|
token |= (1 /* "in" */ << 8);
|
||
|
/* else it's already initted to "out" pid (0 << 8) */
|
||
|
|
||
|
maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
|
||
|
|
||
|
/*
|
||
|
* buffer gets wrapped in one or more qtds;
|
||
|
* last one may be "short" (including zero len)
|
||
|
* and may serve as a control status ack
|
||
|
*/
|
||
|
for (;;) {
|
||
|
int this_qtd_len;
|
||
|
|
||
|
this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
|
||
|
len -= this_qtd_len;
|
||
|
buf += this_qtd_len;
|
||
|
|
||
|
/*
|
||
|
* short reads advance to a "magic" dummy instead of the next
|
||
|
* qtd ... that forces the queue to stop, for manual cleanup.
|
||
|
* (this will usually be overridden later.)
|
||
|
*/
|
||
|
if (is_input)
|
||
|
qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
|
||
|
|
||
|
/* qh makes control packets use qtd toggle; maybe switch it */
|
||
|
if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
|
||
|
token ^= QTD_TOGGLE;
|
||
|
|
||
|
if (likely (len <= 0))
|
||
|
break;
|
||
|
|
||
|
qtd_prev = qtd;
|
||
|
qtd = ehci_qtd_alloc (ehci, flags);
|
||
|
if (unlikely (!qtd))
|
||
|
goto cleanup;
|
||
|
qtd->urb = urb;
|
||
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
|
list_add_tail (&qtd->qtd_list, head);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* unless the caller requires manual cleanup after short reads,
|
||
|
* have the alt_next mechanism keep the queue running after the
|
||
|
* last data qtd (the only one, for control and most other cases).
|
||
|
*/
|
||
|
if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
|
||
|
|| usb_pipecontrol (urb->pipe)))
|
||
|
qtd->hw_alt_next = EHCI_LIST_END(ehci);
|
||
|
|
||
|
/*
|
||
|
* control requests may need a terminating data "status" ack;
|
||
|
* bulk ones may need a terminating short packet (zero length).
|
||
|
*/
|
||
|
if (likely (urb->transfer_buffer_length != 0)) {
|
||
|
int one_more = 0;
|
||
|
|
||
|
if (usb_pipecontrol (urb->pipe)) {
|
||
|
one_more = 1;
|
||
|
token ^= 0x0100; /* "in" <--> "out" */
|
||
|
token |= QTD_TOGGLE; /* force DATA1 */
|
||
|
} else if (usb_pipebulk (urb->pipe)
|
||
|
&& (urb->transfer_flags & URB_ZERO_PACKET)
|
||
|
&& !(urb->transfer_buffer_length % maxpacket)) {
|
||
|
one_more = 1;
|
||
|
}
|
||
|
if (one_more) {
|
||
|
qtd_prev = qtd;
|
||
|
qtd = ehci_qtd_alloc (ehci, flags);
|
||
|
if (unlikely (!qtd))
|
||
|
goto cleanup;
|
||
|
qtd->urb = urb;
|
||
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
|
list_add_tail (&qtd->qtd_list, head);
|
||
|
|
||
|
/* never any data in such packets */
|
||
|
qtd_fill(ehci, qtd, 0, 0, token, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* by default, enable interrupt on urb completion */
|
||
|
if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
|
||
|
qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
|
||
|
return head;
|
||
|
|
||
|
cleanup:
|
||
|
qtd_list_free (ehci, urb, head);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
// Would be best to create all qh's from config descriptors,
|
||
|
// when each interface/altsetting is established. Unlink
|
||
|
// any previous qh and cancel its urbs first; endpoints are
|
||
|
// implicitly reset then (data toggle too).
|
||
|
// That'd mean updating how usbcore talks to HCDs. (2.7?)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Each QH holds a qtd list; a QH is used for everything except iso.
|
||
|
*
|
||
|
* For interrupt urbs, the scheduler must set the microframe scheduling
|
||
|
* mask(s) each time the QH gets scheduled. For highspeed, that's
|
||
|
* just one microframe in the s-mask. For split interrupt transactions
|
||
|
* there are additional complications: c-mask, maybe FSTNs.
|
||
|
*/
|
||
|
static struct ehci_qh *
|
||
|
qh_make (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
gfp_t flags
|
||
|
) {
|
||
|
struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
|
||
|
u32 info1 = 0, info2 = 0;
|
||
|
int is_input, type;
|
||
|
int maxp = 0;
|
||
|
struct usb_tt *tt = urb->dev->tt;
|
||
|
struct ehci_qh_hw *hw;
|
||
|
|
||
|
if (!qh)
|
||
|
return qh;
|
||
|
|
||
|
/*
|
||
|
* init endpoint/device data for this QH
|
||
|
*/
|
||
|
info1 |= usb_pipeendpoint (urb->pipe) << 8;
|
||
|
info1 |= usb_pipedevice (urb->pipe) << 0;
|
||
|
|
||
|
is_input = usb_pipein (urb->pipe);
|
||
|
type = usb_pipetype (urb->pipe);
|
||
|
maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
|
||
|
|
||
|
/* 1024 byte maxpacket is a hardware ceiling. High bandwidth
|
||
|
* acts like up to 3KB, but is built from smaller packets.
|
||
|
*/
|
||
|
if (max_packet(maxp) > 1024) {
|
||
|
ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* Compute interrupt scheduling parameters just once, and save.
|
||
|
* - allowing for high bandwidth, how many nsec/uframe are used?
|
||
|
* - split transactions need a second CSPLIT uframe; same question
|
||
|
* - splits also need a schedule gap (for full/low speed I/O)
|
||
|
* - qh has a polling interval
|
||
|
*
|
||
|
* For control/bulk requests, the HC or TT handles these.
|
||
|
*/
|
||
|
if (type == PIPE_INTERRUPT) {
|
||
|
qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
|
||
|
is_input, 0,
|
||
|
hb_mult(maxp) * max_packet(maxp)));
|
||
|
qh->start = NO_FRAME;
|
||
|
|
||
|
if (urb->dev->speed == USB_SPEED_HIGH) {
|
||
|
qh->c_usecs = 0;
|
||
|
qh->gap_uf = 0;
|
||
|
|
||
|
qh->period = urb->interval >> 3;
|
||
|
if (qh->period == 0 && urb->interval != 1) {
|
||
|
/* NOTE interval 2 or 4 uframes could work.
|
||
|
* But interval 1 scheduling is simpler, and
|
||
|
* includes high bandwidth.
|
||
|
*/
|
||
|
urb->interval = 1;
|
||
|
} else if (qh->period > ehci->periodic_size) {
|
||
|
qh->period = ehci->periodic_size;
|
||
|
urb->interval = qh->period << 3;
|
||
|
}
|
||
|
} else {
|
||
|
int think_time;
|
||
|
|
||
|
/* gap is f(FS/LS transfer times) */
|
||
|
qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
|
||
|
is_input, 0, maxp) / (125 * 1000);
|
||
|
|
||
|
/* FIXME this just approximates SPLIT/CSPLIT times */
|
||
|
if (is_input) { // SPLIT, gap, CSPLIT+DATA
|
||
|
qh->c_usecs = qh->usecs + HS_USECS (0);
|
||
|
qh->usecs = HS_USECS (1);
|
||
|
} else { // SPLIT+DATA, gap, CSPLIT
|
||
|
qh->usecs += HS_USECS (1);
|
||
|
qh->c_usecs = HS_USECS (0);
|
||
|
}
|
||
|
|
||
|
think_time = tt ? tt->think_time : 0;
|
||
|
qh->tt_usecs = NS_TO_US (think_time +
|
||
|
usb_calc_bus_time (urb->dev->speed,
|
||
|
is_input, 0, max_packet (maxp)));
|
||
|
qh->period = urb->interval;
|
||
|
if (qh->period > ehci->periodic_size) {
|
||
|
qh->period = ehci->periodic_size;
|
||
|
urb->interval = qh->period;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* support for tt scheduling, and access to toggles */
|
||
|
qh->dev = urb->dev;
|
||
|
|
||
|
/* using TT? */
|
||
|
switch (urb->dev->speed) {
|
||
|
case USB_SPEED_LOW:
|
||
|
info1 |= (1 << 12); /* EPS "low" */
|
||
|
/* FALL THROUGH */
|
||
|
|
||
|
case USB_SPEED_FULL:
|
||
|
/* EPS 0 means "full" */
|
||
|
if (type != PIPE_INTERRUPT)
|
||
|
info1 |= (EHCI_TUNE_RL_TT << 28);
|
||
|
if (type == PIPE_CONTROL) {
|
||
|
info1 |= (1 << 27); /* for TT */
|
||
|
info1 |= 1 << 14; /* toggle from qtd */
|
||
|
}
|
||
|
info1 |= maxp << 16;
|
||
|
|
||
|
info2 |= (EHCI_TUNE_MULT_TT << 30);
|
||
|
|
||
|
/* Some Freescale processors have an erratum in which the
|
||
|
* port number in the queue head was 0..N-1 instead of 1..N.
|
||
|
*/
|
||
|
if (ehci_has_fsl_portno_bug(ehci))
|
||
|
info2 |= (urb->dev->ttport-1) << 23;
|
||
|
else
|
||
|
info2 |= urb->dev->ttport << 23;
|
||
|
|
||
|
/* set the address of the TT; for TDI's integrated
|
||
|
* root hub tt, leave it zeroed.
|
||
|
*/
|
||
|
if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
|
||
|
info2 |= tt->hub->devnum << 16;
|
||
|
|
||
|
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
|
||
|
|
||
|
break;
|
||
|
|
||
|
case USB_SPEED_HIGH: /* no TT involved */
|
||
|
info1 |= (2 << 12); /* EPS "high" */
|
||
|
if (type == PIPE_CONTROL) {
|
||
|
info1 |= (EHCI_TUNE_RL_HS << 28);
|
||
|
info1 |= 64 << 16; /* usb2 fixed maxpacket */
|
||
|
info1 |= 1 << 14; /* toggle from qtd */
|
||
|
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
||
|
} else if (type == PIPE_BULK) {
|
||
|
info1 |= (EHCI_TUNE_RL_HS << 28);
|
||
|
/* The USB spec says that high speed bulk endpoints
|
||
|
* always use 512 byte maxpacket. But some device
|
||
|
* vendors decided to ignore that, and MSFT is happy
|
||
|
* to help them do so. So now people expect to use
|
||
|
* such nonconformant devices with Linux too; sigh.
|
||
|
*/
|
||
|
info1 |= max_packet(maxp) << 16;
|
||
|
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
||
|
} else { /* PIPE_INTERRUPT */
|
||
|
info1 |= max_packet (maxp) << 16;
|
||
|
info2 |= hb_mult (maxp) << 30;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
|
||
|
done:
|
||
|
qh_put (qh);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
|
||
|
|
||
|
/* init as live, toggle clear, advance to dummy */
|
||
|
qh->qh_state = QH_STATE_IDLE;
|
||
|
hw = qh->hw;
|
||
|
hw->hw_info1 = cpu_to_hc32(ehci, info1);
|
||
|
hw->hw_info2 = cpu_to_hc32(ehci, info2);
|
||
|
usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
|
||
|
qh_refresh (ehci, qh);
|
||
|
return qh;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
/* move qh (and its qtds) onto async queue; maybe enable queue. */
|
||
|
|
||
|
static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
|
{
|
||
|
__hc32 dma = QH_NEXT(ehci, qh->qh_dma);
|
||
|
struct ehci_qh *head;
|
||
|
|
||
|
/* Don't link a QH if there's a Clear-TT-Buffer pending */
|
||
|
if (unlikely(qh->clearing_tt))
|
||
|
return;
|
||
|
|
||
|
WARN_ON(qh->qh_state != QH_STATE_IDLE);
|
||
|
|
||
|
/* (re)start the async schedule? */
|
||
|
head = ehci->async;
|
||
|
timer_action_done (ehci, TIMER_ASYNC_OFF);
|
||
|
if (!head->qh_next.qh) {
|
||
|
u32 cmd = ehci_readl(ehci, &ehci->regs->command);
|
||
|
|
||
|
if (!(cmd & CMD_ASE)) {
|
||
|
/* in case a clear of CMD_ASE didn't take yet */
|
||
|
(void)handshake(ehci, &ehci->regs->status,
|
||
|
STS_ASS, 0, 150);
|
||
|
cmd |= CMD_ASE | CMD_RUN;
|
||
|
ehci_writel(ehci, cmd, &ehci->regs->command);
|
||
|
ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
|
||
|
/* posted write need not be known to HC yet ... */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* clear halt and/or toggle; and maybe recover from silicon quirk */
|
||
|
qh_refresh(ehci, qh);
|
||
|
|
||
|
/* splice right after start */
|
||
|
qh->qh_next = head->qh_next;
|
||
|
qh->hw->hw_next = head->hw->hw_next;
|
||
|
wmb ();
|
||
|
|
||
|
head->qh_next.qh = qh;
|
||
|
head->hw->hw_next = dma;
|
||
|
|
||
|
qh_get(qh);
|
||
|
qh->xacterrs = 0;
|
||
|
qh->qh_state = QH_STATE_LINKED;
|
||
|
/* qtd completions reported later by interrupt */
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* For control/bulk/interrupt, return QH with these TDs appended.
|
||
|
* Allocates and initializes the QH if necessary.
|
||
|
* Returns null if it can't allocate a QH it needs to.
|
||
|
* If the QH has TDs (urbs) already, that's great.
|
||
|
*/
|
||
|
static struct ehci_qh *qh_append_tds (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
struct list_head *qtd_list,
|
||
|
int epnum,
|
||
|
void **ptr
|
||
|
)
|
||
|
{
|
||
|
struct ehci_qh *qh = NULL;
|
||
|
__hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
|
||
|
|
||
|
qh = (struct ehci_qh *) *ptr;
|
||
|
if (unlikely (qh == NULL)) {
|
||
|
/* can't sleep here, we have ehci->lock... */
|
||
|
qh = qh_make (ehci, urb, GFP_ATOMIC);
|
||
|
*ptr = qh;
|
||
|
}
|
||
|
if (likely (qh != NULL)) {
|
||
|
struct ehci_qtd *qtd;
|
||
|
|
||
|
if (unlikely (list_empty (qtd_list)))
|
||
|
qtd = NULL;
|
||
|
else
|
||
|
qtd = list_entry (qtd_list->next, struct ehci_qtd,
|
||
|
qtd_list);
|
||
|
|
||
|
/* control qh may need patching ... */
|
||
|
if (unlikely (epnum == 0)) {
|
||
|
|
||
|
/* usb_reset_device() briefly reverts to address 0 */
|
||
|
if (usb_pipedevice (urb->pipe) == 0)
|
||
|
qh->hw->hw_info1 &= ~qh_addr_mask;
|
||
|
}
|
||
|
|
||
|
/* just one way to queue requests: swap with the dummy qtd.
|
||
|
* only hc or qh_refresh() ever modify the overlay.
|
||
|
*/
|
||
|
if (likely (qtd != NULL)) {
|
||
|
struct ehci_qtd *dummy;
|
||
|
dma_addr_t dma;
|
||
|
__hc32 token;
|
||
|
|
||
|
/* to avoid racing the HC, use the dummy td instead of
|
||
|
* the first td of our list (becomes new dummy). both
|
||
|
* tds stay deactivated until we're done, when the
|
||
|
* HC is allowed to fetch the old dummy (4.10.2).
|
||
|
*/
|
||
|
token = qtd->hw_token;
|
||
|
qtd->hw_token = HALT_BIT(ehci);
|
||
|
wmb ();
|
||
|
dummy = qh->dummy;
|
||
|
|
||
|
dma = dummy->qtd_dma;
|
||
|
*dummy = *qtd;
|
||
|
dummy->qtd_dma = dma;
|
||
|
|
||
|
list_del (&qtd->qtd_list);
|
||
|
list_add (&dummy->qtd_list, qtd_list);
|
||
|
list_splice_tail(qtd_list, &qh->qtd_list);
|
||
|
|
||
|
ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
|
||
|
qh->dummy = qtd;
|
||
|
|
||
|
/* hc must see the new dummy at list end */
|
||
|
dma = qtd->qtd_dma;
|
||
|
qtd = list_entry (qh->qtd_list.prev,
|
||
|
struct ehci_qtd, qtd_list);
|
||
|
qtd->hw_next = QTD_NEXT(ehci, dma);
|
||
|
|
||
|
/* let the hc process these next qtds */
|
||
|
wmb ();
|
||
|
dummy->hw_token = token;
|
||
|
|
||
|
urb->hcpriv = qh_get (qh);
|
||
|
}
|
||
|
}
|
||
|
return qh;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
static int
|
||
|
submit_async (
|
||
|
struct ehci_hcd *ehci,
|
||
|
struct urb *urb,
|
||
|
struct list_head *qtd_list,
|
||
|
gfp_t mem_flags
|
||
|
) {
|
||
|
struct ehci_qtd *qtd;
|
||
|
int epnum;
|
||
|
unsigned long flags;
|
||
|
struct ehci_qh *qh = NULL;
|
||
|
int rc;
|
||
|
|
||
|
qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
|
||
|
epnum = urb->ep->desc.bEndpointAddress;
|
||
|
|
||
|
#ifdef EHCI_URB_TRACE
|
||
|
ehci_dbg (ehci,
|
||
|
"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
|
||
|
__func__, urb->dev->devpath, urb,
|
||
|
epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
|
||
|
urb->transfer_buffer_length,
|
||
|
qtd, urb->ep->hcpriv);
|
||
|
#endif
|
||
|
|
||
|
spin_lock_irqsave (&ehci->lock, flags);
|
||
|
if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
|
||
|
&ehci_to_hcd(ehci)->flags))) {
|
||
|
rc = -ESHUTDOWN;
|
||
|
goto done;
|
||
|
}
|
||
|
rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
||
|
if (unlikely(rc))
|
||
|
goto done;
|
||
|
|
||
|
qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
|
||
|
if (unlikely(qh == NULL)) {
|
||
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
||
|
rc = -ENOMEM;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* Control/bulk operations through TTs don't need scheduling,
|
||
|
* the HC and TT handle it when the TT has a buffer ready.
|
||
|
*/
|
||
|
if (likely (qh->qh_state == QH_STATE_IDLE))
|
||
|
qh_link_async(ehci, qh);
|
||
|
done:
|
||
|
spin_unlock_irqrestore (&ehci->lock, flags);
|
||
|
if (unlikely (qh == NULL))
|
||
|
qtd_list_free (ehci, urb, qtd_list);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
/* the async qh for the qtds being reclaimed are now unlinked from the HC */
|
||
|
|
||
|
static void end_unlink_async (struct ehci_hcd *ehci)
|
||
|
{
|
||
|
struct ehci_qh *qh = ehci->reclaim;
|
||
|
struct ehci_qh *next;
|
||
|
|
||
|
iaa_watchdog_done(ehci);
|
||
|
|
||
|
// qh->hw_next = cpu_to_hc32(qh->qh_dma);
|
||
|
qh->qh_state = QH_STATE_IDLE;
|
||
|
qh->qh_next.qh = NULL;
|
||
|
qh_put (qh); // refcount from reclaim
|
||
|
|
||
|
/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
|
||
|
next = qh->reclaim;
|
||
|
ehci->reclaim = next;
|
||
|
qh->reclaim = NULL;
|
||
|
|
||
|
qh_completions (ehci, qh);
|
||
|
|
||
|
if (!list_empty (&qh->qtd_list)
|
||
|
&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
|
||
|
qh_link_async (ehci, qh);
|
||
|
else {
|
||
|
/* it's not free to turn the async schedule on/off; leave it
|
||
|
* active but idle for a while once it empties.
|
||
|
*/
|
||
|
if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
|
||
|
&& ehci->async->qh_next.qh == NULL)
|
||
|
timer_action (ehci, TIMER_ASYNC_OFF);
|
||
|
}
|
||
|
qh_put(qh); /* refcount from async list */
|
||
|
|
||
|
if (next) {
|
||
|
ehci->reclaim = NULL;
|
||
|
start_unlink_async (ehci, next);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* makes sure the async qh will become idle */
|
||
|
/* caller must own ehci->lock */
|
||
|
|
||
|
static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
|
{
|
||
|
int cmd = ehci_readl(ehci, &ehci->regs->command);
|
||
|
struct ehci_qh *prev;
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
assert_spin_locked(&ehci->lock);
|
||
|
if (ehci->reclaim
|
||
|
|| (qh->qh_state != QH_STATE_LINKED
|
||
|
&& qh->qh_state != QH_STATE_UNLINK_WAIT)
|
||
|
)
|
||
|
BUG ();
|
||
|
#endif
|
||
|
|
||
|
/* stop async schedule right now? */
|
||
|
if (unlikely (qh == ehci->async)) {
|
||
|
/* can't get here without STS_ASS set */
|
||
|
if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
|
||
|
&& !ehci->reclaim) {
|
||
|
/* ... and CMD_IAAD clear */
|
||
|
ehci_writel(ehci, cmd & ~CMD_ASE,
|
||
|
&ehci->regs->command);
|
||
|
wmb ();
|
||
|
// handshake later, if we need to
|
||
|
timer_action_done (ehci, TIMER_ASYNC_OFF);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
qh->qh_state = QH_STATE_UNLINK;
|
||
|
ehci->reclaim = qh = qh_get (qh);
|
||
|
|
||
|
prev = ehci->async;
|
||
|
while (prev->qh_next.qh != qh)
|
||
|
prev = prev->qh_next.qh;
|
||
|
|
||
|
prev->hw->hw_next = qh->hw->hw_next;
|
||
|
prev->qh_next = qh->qh_next;
|
||
|
wmb ();
|
||
|
|
||
|
/* If the controller isn't running, we don't have to wait for it */
|
||
|
if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) {
|
||
|
/* if (unlikely (qh->reclaim != 0))
|
||
|
* this will recurse, probably not much
|
||
|
*/
|
||
|
end_unlink_async (ehci);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cmd |= CMD_IAAD;
|
||
|
ehci_writel(ehci, cmd, &ehci->regs->command);
|
||
|
(void)ehci_readl(ehci, &ehci->regs->command);
|
||
|
iaa_watchdog_start(ehci);
|
||
|
}
|
||
|
|
||
|
/*-------------------------------------------------------------------------*/
|
||
|
|
||
|
static void scan_async (struct ehci_hcd *ehci)
|
||
|
{
|
||
|
bool stopped;
|
||
|
struct ehci_qh *qh;
|
||
|
enum ehci_timer_action action = TIMER_IO_WATCHDOG;
|
||
|
|
||
|
ehci->stamp = ehci_readl(ehci, &ehci->regs->frame_index);
|
||
|
timer_action_done (ehci, TIMER_ASYNC_SHRINK);
|
||
|
rescan:
|
||
|
stopped = !HC_IS_RUNNING(ehci_to_hcd(ehci)->state);
|
||
|
qh = ehci->async->qh_next.qh;
|
||
|
if (likely (qh != NULL)) {
|
||
|
do {
|
||
|
/* clean any finished work for this qh */
|
||
|
if (!list_empty(&qh->qtd_list) && (stopped ||
|
||
|
qh->stamp != ehci->stamp)) {
|
||
|
int temp;
|
||
|
|
||
|
/* unlinks could happen here; completion
|
||
|
* reporting drops the lock. rescan using
|
||
|
* the latest schedule, but don't rescan
|
||
|
* qhs we already finished (no looping)
|
||
|
* unless the controller is stopped.
|
||
|
*/
|
||
|
qh = qh_get (qh);
|
||
|
qh->stamp = ehci->stamp;
|
||
|
temp = qh_completions (ehci, qh);
|
||
|
if (qh->needs_rescan)
|
||
|
unlink_async(ehci, qh);
|
||
|
qh_put (qh);
|
||
|
if (temp != 0) {
|
||
|
goto rescan;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* unlink idle entries, reducing DMA usage as well
|
||
|
* as HCD schedule-scanning costs. delay for any qh
|
||
|
* we just scanned, there's a not-unusual case that it
|
||
|
* doesn't stay idle for long.
|
||
|
* (plus, avoids some kind of re-activation race.)
|
||
|
*/
|
||
|
if (list_empty(&qh->qtd_list)
|
||
|
&& qh->qh_state == QH_STATE_LINKED) {
|
||
|
if (!ehci->reclaim && (stopped ||
|
||
|
((ehci->stamp - qh->stamp) & 0x1fff)
|
||
|
>= EHCI_SHRINK_FRAMES * 8))
|
||
|
start_unlink_async(ehci, qh);
|
||
|
else
|
||
|
action = TIMER_ASYNC_SHRINK;
|
||
|
}
|
||
|
|
||
|
qh = qh->qh_next.qh;
|
||
|
} while (qh);
|
||
|
}
|
||
|
if (action == TIMER_ASYNC_SHRINK)
|
||
|
timer_action (ehci, TIMER_ASYNC_SHRINK);
|
||
|
}
|