494 lines
13 KiB
C
Raw Normal View History

/*
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
* Due to massive hardware bugs, UltraDMA is only supported
* on the 646U2 and not on the 646U.
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 David S. Miller (davem@redhat.com)
*
* Copyright (C) 1999-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2007,2009 MontaVista Software, Inc. <source@mvista.com>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <asm/io.h>
#define DRV_NAME "cmd64x"
#define CMD_DEBUG 0
#if CMD_DEBUG
#define cmdprintk(x...) printk(x)
#else
#define cmdprintk(x...)
#endif
/*
* CMD64x specific registers definition.
*/
#define CFR 0x50
#define CFR_INTR_CH0 0x04
#define CMDTIM 0x52
#define ARTTIM0 0x53
#define DRWTIM0 0x54
#define ARTTIM1 0x55
#define DRWTIM1 0x56
#define ARTTIM23 0x57
#define ARTTIM23_DIS_RA2 0x04
#define ARTTIM23_DIS_RA3 0x08
#define ARTTIM23_INTR_CH1 0x10
#define DRWTIM2 0x58
#define BRST 0x59
#define DRWTIM3 0x5b
#define BMIDECR0 0x70
#define MRDMODE 0x71
#define MRDMODE_INTR_CH0 0x04
#define MRDMODE_INTR_CH1 0x08
#define UDIDETCR0 0x73
#define DTPR0 0x74
#define BMIDECR1 0x78
#define BMIDECSR 0x79
#define UDIDETCR1 0x7B
#define DTPR1 0x7C
static u8 quantize_timing(int timing, int quant)
{
return (timing + quant - 1) / quant;
}
/*
* This routine calculates active/recovery counts and then writes them into
* the chipset registers.
*/
static void program_cycle_times (ide_drive_t *drive, int cycle_time, int active_time)
{
struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
int clock_time = 1000 / (ide_pci_clk ? ide_pci_clk : 33);
u8 cycle_count, active_count, recovery_count, drwtim;
static const u8 recovery_values[] =
{15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0};
static const u8 drwtim_regs[4] = {DRWTIM0, DRWTIM1, DRWTIM2, DRWTIM3};
cmdprintk("program_cycle_times parameters: total=%d, active=%d\n",
cycle_time, active_time);
cycle_count = quantize_timing( cycle_time, clock_time);
active_count = quantize_timing(active_time, clock_time);
recovery_count = cycle_count - active_count;
/*
* In case we've got too long recovery phase, try to lengthen
* the active phase
*/
if (recovery_count > 16) {
active_count += recovery_count - 16;
recovery_count = 16;
}
if (active_count > 16) /* shouldn't actually happen... */
active_count = 16;
cmdprintk("Final counts: total=%d, active=%d, recovery=%d\n",
cycle_count, active_count, recovery_count);
/*
* Convert values to internal chipset representation
*/
recovery_count = recovery_values[recovery_count];
active_count &= 0x0f;
/* Program the active/recovery counts into the DRWTIM register */
drwtim = (active_count << 4) | recovery_count;
(void) pci_write_config_byte(dev, drwtim_regs[drive->dn], drwtim);
cmdprintk("Write 0x%02x to reg 0x%x\n", drwtim, drwtim_regs[drive->dn]);
}
/*
* This routine writes into the chipset registers
* PIO setup/active/recovery timings.
*/
static void cmd64x_tune_pio(ide_drive_t *drive, const u8 pio)
{
ide_hwif_t *hwif = drive->hwif;
struct pci_dev *dev = to_pci_dev(hwif->dev);
struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
unsigned long setup_count;
unsigned int cycle_time;
u8 arttim = 0;
static const u8 setup_values[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0};
static const u8 arttim_regs[4] = {ARTTIM0, ARTTIM1, ARTTIM23, ARTTIM23};
cycle_time = ide_pio_cycle_time(drive, pio);
program_cycle_times(drive, cycle_time, t->active);
setup_count = quantize_timing(t->setup,
1000 / (ide_pci_clk ? ide_pci_clk : 33));
/*
* The primary channel has individual address setup timing registers
* for each drive and the hardware selects the slowest timing itself.
* The secondary channel has one common register and we have to select
* the slowest address setup timing ourselves.
*/
if (hwif->channel) {
ide_drive_t *pair = ide_get_pair_dev(drive);
ide_set_drivedata(drive, (void *)setup_count);
if (pair)
setup_count = max_t(u8, setup_count,
(unsigned long)ide_get_drivedata(pair));
}
if (setup_count > 5) /* shouldn't actually happen... */
setup_count = 5;
cmdprintk("Final address setup count: %d\n", setup_count);
/*
* Program the address setup clocks into the ARTTIM registers.
* Avoid clearing the secondary channel's interrupt bit.
*/
(void) pci_read_config_byte (dev, arttim_regs[drive->dn], &arttim);
if (hwif->channel)
arttim &= ~ARTTIM23_INTR_CH1;
arttim &= ~0xc0;
arttim |= setup_values[setup_count];
(void) pci_write_config_byte(dev, arttim_regs[drive->dn], arttim);
cmdprintk("Write 0x%02x to reg 0x%x\n", arttim, arttim_regs[drive->dn]);
}
/*
* Attempts to set drive's PIO mode.
* Special cases are 8: prefetch off, 9: prefetch on (both never worked)
*/
static void cmd64x_set_pio_mode(ide_drive_t *drive, const u8 pio)
{
/*
* Filter out the prefetch control values
* to prevent PIO5 from being programmed
*/
if (pio == 8 || pio == 9)
return;
cmd64x_tune_pio(drive, pio);
}
static void cmd64x_set_dma_mode(ide_drive_t *drive, const u8 speed)
{
ide_hwif_t *hwif = drive->hwif;
struct pci_dev *dev = to_pci_dev(hwif->dev);
u8 unit = drive->dn & 0x01;
u8 regU = 0, pciU = hwif->channel ? UDIDETCR1 : UDIDETCR0;
if (speed >= XFER_SW_DMA_0) {
(void) pci_read_config_byte(dev, pciU, &regU);
regU &= ~(unit ? 0xCA : 0x35);
}
switch(speed) {
case XFER_UDMA_5:
regU |= unit ? 0x0A : 0x05;
break;
case XFER_UDMA_4:
regU |= unit ? 0x4A : 0x15;
break;
case XFER_UDMA_3:
regU |= unit ? 0x8A : 0x25;
break;
case XFER_UDMA_2:
regU |= unit ? 0x42 : 0x11;
break;
case XFER_UDMA_1:
regU |= unit ? 0x82 : 0x21;
break;
case XFER_UDMA_0:
regU |= unit ? 0xC2 : 0x31;
break;
case XFER_MW_DMA_2:
program_cycle_times(drive, 120, 70);
break;
case XFER_MW_DMA_1:
program_cycle_times(drive, 150, 80);
break;
case XFER_MW_DMA_0:
program_cycle_times(drive, 480, 215);
break;
}
if (speed >= XFER_SW_DMA_0)
(void) pci_write_config_byte(dev, pciU, regU);
}
static void cmd648_clear_irq(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct pci_dev *dev = to_pci_dev(hwif->dev);
unsigned long base = pci_resource_start(dev, 4);
u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 :
MRDMODE_INTR_CH0;
u8 mrdmode = inb(base + 1);
/* clear the interrupt bit */
outb((mrdmode & ~(MRDMODE_INTR_CH0 | MRDMODE_INTR_CH1)) | irq_mask,
base + 1);
}
static void cmd64x_clear_irq(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct pci_dev *dev = to_pci_dev(hwif->dev);
int irq_reg = hwif->channel ? ARTTIM23 : CFR;
u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 :
CFR_INTR_CH0;
u8 irq_stat = 0;
(void) pci_read_config_byte(dev, irq_reg, &irq_stat);
/* clear the interrupt bit */
(void) pci_write_config_byte(dev, irq_reg, irq_stat | irq_mask);
}
static int cmd648_test_irq(ide_hwif_t *hwif)
{
struct pci_dev *dev = to_pci_dev(hwif->dev);
unsigned long base = pci_resource_start(dev, 4);
u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 :
MRDMODE_INTR_CH0;
u8 mrdmode = inb(base + 1);
pr_debug("%s: mrdmode: 0x%02x irq_mask: 0x%02x\n",
hwif->name, mrdmode, irq_mask);
return (mrdmode & irq_mask) ? 1 : 0;
}
static int cmd64x_test_irq(ide_hwif_t *hwif)
{
struct pci_dev *dev = to_pci_dev(hwif->dev);
int irq_reg = hwif->channel ? ARTTIM23 : CFR;
u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 :
CFR_INTR_CH0;
u8 irq_stat = 0;
(void) pci_read_config_byte(dev, irq_reg, &irq_stat);
pr_debug("%s: irq_stat: 0x%02x irq_mask: 0x%02x\n",
hwif->name, irq_stat, irq_mask);
return (irq_stat & irq_mask) ? 1 : 0;
}
/*
* ASUS P55T2P4D with CMD646 chipset revision 0x01 requires the old
* event order for DMA transfers.
*/
static int cmd646_1_dma_end(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 dma_stat = 0, dma_cmd = 0;
/* get DMA status */
dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
/* read DMA command state */
dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
/* stop DMA */
outb(dma_cmd & ~1, hwif->dma_base + ATA_DMA_CMD);
/* clear the INTR & ERROR bits */
outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
/* verify good DMA status */
return (dma_stat & 7) != 4;
}
static int init_chipset_cmd64x(struct pci_dev *dev)
{
u8 mrdmode = 0;
/* Set a good latency timer and cache line size value. */
(void) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
/* FIXME: pci_set_master() to ensure a good latency timer value */
/*
* Enable interrupts, select MEMORY READ LINE for reads.
*
* NOTE: although not mentioned in the PCI0646U specs,
* bits 0-1 are write only and won't be read back as
* set or not -- PCI0646U2 specs clarify this point.
*/
(void) pci_read_config_byte (dev, MRDMODE, &mrdmode);
mrdmode &= ~0x30;
(void) pci_write_config_byte(dev, MRDMODE, (mrdmode | 0x02));
return 0;
}
static u8 cmd64x_cable_detect(ide_hwif_t *hwif)
{
struct pci_dev *dev = to_pci_dev(hwif->dev);
u8 bmidecsr = 0, mask = hwif->channel ? 0x02 : 0x01;
switch (dev->device) {
case PCI_DEVICE_ID_CMD_648:
case PCI_DEVICE_ID_CMD_649:
pci_read_config_byte(dev, BMIDECSR, &bmidecsr);
return (bmidecsr & mask) ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
default:
return ATA_CBL_PATA40;
}
}
static const struct ide_port_ops cmd64x_port_ops = {
.set_pio_mode = cmd64x_set_pio_mode,
.set_dma_mode = cmd64x_set_dma_mode,
.clear_irq = cmd64x_clear_irq,
.test_irq = cmd64x_test_irq,
.cable_detect = cmd64x_cable_detect,
};
static const struct ide_port_ops cmd648_port_ops = {
.set_pio_mode = cmd64x_set_pio_mode,
.set_dma_mode = cmd64x_set_dma_mode,
.clear_irq = cmd648_clear_irq,
.test_irq = cmd648_test_irq,
.cable_detect = cmd64x_cable_detect,
};
static const struct ide_dma_ops cmd646_rev1_dma_ops = {
.dma_host_set = ide_dma_host_set,
.dma_setup = ide_dma_setup,
.dma_start = ide_dma_start,
.dma_end = cmd646_1_dma_end,
.dma_test_irq = ide_dma_test_irq,
.dma_lost_irq = ide_dma_lost_irq,
.dma_timer_expiry = ide_dma_sff_timer_expiry,
.dma_sff_read_status = ide_dma_sff_read_status,
};
static const struct ide_port_info cmd64x_chipsets[] __devinitdata = {
{ /* 0: CMD643 */
.name = DRV_NAME,
.init_chipset = init_chipset_cmd64x,
.enablebits = {{0x00,0x00,0x00}, {0x51,0x08,0x08}},
.port_ops = &cmd64x_port_ops,
.host_flags = IDE_HFLAG_CLEAR_SIMPLEX |
IDE_HFLAG_ABUSE_PREFETCH |
IDE_HFLAG_SERIALIZE,
.pio_mask = ATA_PIO5,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = 0x00, /* no udma */
},
{ /* 1: CMD646 */
.name = DRV_NAME,
.init_chipset = init_chipset_cmd64x,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.port_ops = &cmd648_port_ops,
.host_flags = IDE_HFLAG_ABUSE_PREFETCH |
IDE_HFLAG_SERIALIZE,
.pio_mask = ATA_PIO5,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA2,
},
{ /* 2: CMD648 */
.name = DRV_NAME,
.init_chipset = init_chipset_cmd64x,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.port_ops = &cmd648_port_ops,
.host_flags = IDE_HFLAG_ABUSE_PREFETCH,
.pio_mask = ATA_PIO5,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA4,
},
{ /* 3: CMD649 */
.name = DRV_NAME,
.init_chipset = init_chipset_cmd64x,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.port_ops = &cmd648_port_ops,
.host_flags = IDE_HFLAG_ABUSE_PREFETCH,
.pio_mask = ATA_PIO5,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA5,
}
};
static int __devinit cmd64x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
struct ide_port_info d;
u8 idx = id->driver_data;
d = cmd64x_chipsets[idx];
if (idx == 1) {
/*
* UltraDMA only supported on PCI646U and PCI646U2, which
* correspond to revisions 0x03, 0x05 and 0x07 respectively.
* Actually, although the CMD tech support people won't
* tell me the details, the 0x03 revision cannot support
* UDMA correctly without hardware modifications, and even
* then it only works with Quantum disks due to some
* hold time assumptions in the 646U part which are fixed
* in the 646U2.
*
* So we only do UltraDMA on revision 0x05 and 0x07 chipsets.
*/
if (dev->revision < 5) {
d.udma_mask = 0x00;
/*
* The original PCI0646 didn't have the primary
* channel enable bit, it appeared starting with
* PCI0646U (i.e. revision ID 3).
*/
if (dev->revision < 3) {
d.enablebits[0].reg = 0;
d.port_ops = &cmd64x_port_ops;
if (dev->revision == 1)
d.dma_ops = &cmd646_rev1_dma_ops;
}
}
}
return ide_pci_init_one(dev, &d, NULL);
}
static const struct pci_device_id cmd64x_pci_tbl[] = {
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_643), 0 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_646), 1 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_648), 2 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_649), 3 },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, cmd64x_pci_tbl);
static struct pci_driver cmd64x_pci_driver = {
.name = "CMD64x_IDE",
.id_table = cmd64x_pci_tbl,
.probe = cmd64x_init_one,
.remove = ide_pci_remove,
.suspend = ide_pci_suspend,
.resume = ide_pci_resume,
};
static int __init cmd64x_ide_init(void)
{
return ide_pci_register_driver(&cmd64x_pci_driver);
}
static void __exit cmd64x_ide_exit(void)
{
pci_unregister_driver(&cmd64x_pci_driver);
}
module_init(cmd64x_ide_init);
module_exit(cmd64x_ide_exit);
MODULE_AUTHOR("Eddie Dost, David Miller, Andre Hedrick");
MODULE_DESCRIPTION("PCI driver module for CMD64x IDE");
MODULE_LICENSE("GPL");