1013 lines
24 KiB
C
1013 lines
24 KiB
C
|
/*
|
||
|
Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
|
||
|
<http://rt2x00.serialmonkey.com>
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the
|
||
|
Free Software Foundation, Inc.,
|
||
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Module: rt2x00lib
|
||
|
Abstract: rt2x00 generic device routines.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
#include "rt2x00.h"
|
||
|
#include "rt2x00lib.h"
|
||
|
|
||
|
/*
|
||
|
* Radio control handlers.
|
||
|
*/
|
||
|
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
int status;
|
||
|
|
||
|
/*
|
||
|
* Don't enable the radio twice.
|
||
|
* And check if the hardware button has been disabled.
|
||
|
*/
|
||
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Initialize all data queues.
|
||
|
*/
|
||
|
rt2x00queue_init_queues(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Enable radio.
|
||
|
*/
|
||
|
status =
|
||
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
|
||
|
|
||
|
rt2x00leds_led_radio(rt2x00dev, true);
|
||
|
rt2x00led_led_activity(rt2x00dev, true);
|
||
|
|
||
|
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
|
||
|
|
||
|
/*
|
||
|
* Enable RX.
|
||
|
*/
|
||
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
|
||
|
|
||
|
/*
|
||
|
* Start the TX queues.
|
||
|
*/
|
||
|
ieee80211_wake_queues(rt2x00dev->hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Stop the TX queues in mac80211.
|
||
|
*/
|
||
|
ieee80211_stop_queues(rt2x00dev->hw);
|
||
|
rt2x00queue_stop_queues(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Disable RX.
|
||
|
*/
|
||
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
|
||
|
|
||
|
/*
|
||
|
* Disable radio.
|
||
|
*/
|
||
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
|
||
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
||
|
rt2x00led_led_activity(rt2x00dev, false);
|
||
|
rt2x00leds_led_radio(rt2x00dev, false);
|
||
|
}
|
||
|
|
||
|
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
|
||
|
{
|
||
|
/*
|
||
|
* When we are disabling the RX, we should also stop the link tuner.
|
||
|
*/
|
||
|
if (state == STATE_RADIO_RX_OFF)
|
||
|
rt2x00link_stop_tuner(rt2x00dev);
|
||
|
|
||
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
||
|
|
||
|
/*
|
||
|
* When we are enabling the RX, we should also start the link tuner.
|
||
|
*/
|
||
|
if (state == STATE_RADIO_RX_ON)
|
||
|
rt2x00link_start_tuner(rt2x00dev);
|
||
|
}
|
||
|
|
||
|
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct rt2x00_dev *rt2x00dev = data;
|
||
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
||
|
int delayed_flags;
|
||
|
|
||
|
/*
|
||
|
* Copy all data we need during this action under the protection
|
||
|
* of a spinlock. Otherwise race conditions might occur which results
|
||
|
* into an invalid configuration.
|
||
|
*/
|
||
|
spin_lock(&intf->lock);
|
||
|
|
||
|
delayed_flags = intf->delayed_flags;
|
||
|
intf->delayed_flags = 0;
|
||
|
|
||
|
spin_unlock(&intf->lock);
|
||
|
|
||
|
/*
|
||
|
* It is possible the radio was disabled while the work had been
|
||
|
* scheduled. If that happens we should return here immediately,
|
||
|
* note that in the spinlock protected area above the delayed_flags
|
||
|
* have been cleared correctly.
|
||
|
*/
|
||
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
||
|
return;
|
||
|
|
||
|
if (delayed_flags & DELAYED_UPDATE_BEACON)
|
||
|
rt2x00queue_update_beacon(rt2x00dev, vif, true);
|
||
|
}
|
||
|
|
||
|
static void rt2x00lib_intf_scheduled(struct work_struct *work)
|
||
|
{
|
||
|
struct rt2x00_dev *rt2x00dev =
|
||
|
container_of(work, struct rt2x00_dev, intf_work);
|
||
|
|
||
|
/*
|
||
|
* Iterate over each interface and perform the
|
||
|
* requested configurations.
|
||
|
*/
|
||
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
||
|
rt2x00lib_intf_scheduled_iter,
|
||
|
rt2x00dev);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupt context handlers.
|
||
|
*/
|
||
|
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
||
|
|
||
|
if (vif->type != NL80211_IFTYPE_AP &&
|
||
|
vif->type != NL80211_IFTYPE_ADHOC &&
|
||
|
vif->type != NL80211_IFTYPE_MESH_POINT &&
|
||
|
vif->type != NL80211_IFTYPE_WDS)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&intf->lock);
|
||
|
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
|
||
|
spin_unlock(&intf->lock);
|
||
|
}
|
||
|
|
||
|
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
||
|
return;
|
||
|
|
||
|
ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
|
||
|
rt2x00lib_beacondone_iter,
|
||
|
rt2x00dev);
|
||
|
|
||
|
ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
|
||
|
|
||
|
void rt2x00lib_txdone(struct queue_entry *entry,
|
||
|
struct txdone_entry_desc *txdesc)
|
||
|
{
|
||
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
||
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
||
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
||
|
enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
|
||
|
unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
||
|
u8 rate_idx, rate_flags, retry_rates;
|
||
|
unsigned int i;
|
||
|
bool success;
|
||
|
|
||
|
/*
|
||
|
* Unmap the skb.
|
||
|
*/
|
||
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Remove L2 padding which was added during
|
||
|
*/
|
||
|
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
|
||
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
||
|
|
||
|
/*
|
||
|
* If the IV/EIV data was stripped from the frame before it was
|
||
|
* passed to the hardware, we should now reinsert it again because
|
||
|
* mac80211 will expect the the same data to be present it the
|
||
|
* frame as it was passed to us.
|
||
|
*/
|
||
|
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
|
||
|
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
|
||
|
|
||
|
/*
|
||
|
* Send frame to debugfs immediately, after this call is completed
|
||
|
* we are going to overwrite the skb->cb array.
|
||
|
*/
|
||
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Determine if the frame has been successfully transmitted.
|
||
|
*/
|
||
|
success =
|
||
|
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
|
||
|
test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
|
||
|
test_bit(TXDONE_FALLBACK, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Update TX statistics.
|
||
|
*/
|
||
|
rt2x00dev->link.qual.tx_success += success;
|
||
|
rt2x00dev->link.qual.tx_failed += !success;
|
||
|
|
||
|
rate_idx = skbdesc->tx_rate_idx;
|
||
|
rate_flags = skbdesc->tx_rate_flags;
|
||
|
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
|
||
|
(txdesc->retry + 1) : 1;
|
||
|
|
||
|
/*
|
||
|
* Initialize TX status
|
||
|
*/
|
||
|
memset(&tx_info->status, 0, sizeof(tx_info->status));
|
||
|
tx_info->status.ack_signal = 0;
|
||
|
|
||
|
/*
|
||
|
* Frame was send with retries, hardware tried
|
||
|
* different rates to send out the frame, at each
|
||
|
* retry it lowered the rate 1 step.
|
||
|
*/
|
||
|
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
|
||
|
tx_info->status.rates[i].idx = rate_idx - i;
|
||
|
tx_info->status.rates[i].flags = rate_flags;
|
||
|
tx_info->status.rates[i].count = 1;
|
||
|
}
|
||
|
if (i < (IEEE80211_TX_MAX_RATES - 1))
|
||
|
tx_info->status.rates[i].idx = -1; /* terminate */
|
||
|
|
||
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
|
||
|
if (success)
|
||
|
tx_info->flags |= IEEE80211_TX_STAT_ACK;
|
||
|
else
|
||
|
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
|
||
|
}
|
||
|
|
||
|
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
|
||
|
if (success)
|
||
|
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
|
||
|
else
|
||
|
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Only send the status report to mac80211 when TX status was
|
||
|
* requested by it. If this was a extra frame coming through
|
||
|
* a mac80211 library call (RTS/CTS) then we should not send the
|
||
|
* status report back.
|
||
|
*/
|
||
|
if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
|
||
|
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
|
||
|
else
|
||
|
dev_kfree_skb_irq(entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Make this entry available for reuse.
|
||
|
*/
|
||
|
entry->skb = NULL;
|
||
|
entry->flags = 0;
|
||
|
|
||
|
rt2x00dev->ops->lib->clear_entry(entry);
|
||
|
|
||
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
||
|
rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
|
||
|
|
||
|
/*
|
||
|
* If the data queue was below the threshold before the txdone
|
||
|
* handler we must make sure the packet queue in the mac80211 stack
|
||
|
* is reenabled when the txdone handler has finished.
|
||
|
*/
|
||
|
if (!rt2x00queue_threshold(entry->queue))
|
||
|
ieee80211_wake_queue(rt2x00dev->hw, qid);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
|
||
|
|
||
|
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
|
||
|
struct rxdone_entry_desc *rxdesc)
|
||
|
{
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
const struct rt2x00_rate *rate;
|
||
|
unsigned int i;
|
||
|
int signal;
|
||
|
int type;
|
||
|
|
||
|
/*
|
||
|
* For non-HT rates the MCS value needs to contain the
|
||
|
* actually used rate modulation (CCK or OFDM).
|
||
|
*/
|
||
|
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
|
||
|
signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
|
||
|
else
|
||
|
signal = rxdesc->signal;
|
||
|
|
||
|
type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
|
||
|
|
||
|
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
|
||
|
for (i = 0; i < sband->n_bitrates; i++) {
|
||
|
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
|
||
|
|
||
|
if (((type == RXDONE_SIGNAL_PLCP) &&
|
||
|
(rate->plcp == signal)) ||
|
||
|
((type == RXDONE_SIGNAL_BITRATE) &&
|
||
|
(rate->bitrate == signal)) ||
|
||
|
((type == RXDONE_SIGNAL_MCS) &&
|
||
|
(rate->mcs == signal))) {
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
WARNING(rt2x00dev, "Frame received with unrecognized signal, "
|
||
|
"signal=0x%.4x, type=%d.\n", signal, type);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
|
||
|
struct queue_entry *entry)
|
||
|
{
|
||
|
struct rxdone_entry_desc rxdesc;
|
||
|
struct sk_buff *skb;
|
||
|
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
|
||
|
unsigned int header_length;
|
||
|
int rate_idx;
|
||
|
/*
|
||
|
* Allocate a new sk_buffer. If no new buffer available, drop the
|
||
|
* received frame and reuse the existing buffer.
|
||
|
*/
|
||
|
skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
|
||
|
if (!skb)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Unmap the skb.
|
||
|
*/
|
||
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Extract the RXD details.
|
||
|
*/
|
||
|
memset(&rxdesc, 0, sizeof(rxdesc));
|
||
|
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
|
||
|
|
||
|
/* Trim buffer to correct size */
|
||
|
skb_trim(entry->skb, rxdesc.size);
|
||
|
|
||
|
/*
|
||
|
* The data behind the ieee80211 header must be
|
||
|
* aligned on a 4 byte boundary.
|
||
|
*/
|
||
|
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Hardware might have stripped the IV/EIV/ICV data,
|
||
|
* in that case it is possible that the data was
|
||
|
* provided seperately (through hardware descriptor)
|
||
|
* in which case we should reinsert the data into the frame.
|
||
|
*/
|
||
|
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
|
||
|
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
|
||
|
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
|
||
|
&rxdesc);
|
||
|
else if (rxdesc.dev_flags & RXDONE_L2PAD)
|
||
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
||
|
else
|
||
|
rt2x00queue_align_payload(entry->skb, header_length);
|
||
|
|
||
|
/*
|
||
|
* Check if the frame was received using HT. In that case,
|
||
|
* the rate is the MCS index and should be passed to mac80211
|
||
|
* directly. Otherwise we need to translate the signal to
|
||
|
* the correct bitrate index.
|
||
|
*/
|
||
|
if (rxdesc.rate_mode == RATE_MODE_CCK ||
|
||
|
rxdesc.rate_mode == RATE_MODE_OFDM) {
|
||
|
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
|
||
|
} else {
|
||
|
rxdesc.flags |= RX_FLAG_HT;
|
||
|
rate_idx = rxdesc.signal;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update extra components
|
||
|
*/
|
||
|
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
|
||
|
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
|
||
|
|
||
|
rx_status->mactime = rxdesc.timestamp;
|
||
|
rx_status->rate_idx = rate_idx;
|
||
|
rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
|
||
|
rx_status->signal = rxdesc.rssi;
|
||
|
rx_status->noise = rxdesc.noise;
|
||
|
rx_status->flag = rxdesc.flags;
|
||
|
rx_status->antenna = rt2x00dev->link.ant.active.rx;
|
||
|
|
||
|
/*
|
||
|
* Send frame to mac80211 & debugfs.
|
||
|
* mac80211 will clean up the skb structure.
|
||
|
*/
|
||
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
|
||
|
memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
|
||
|
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
|
||
|
|
||
|
/*
|
||
|
* Replace the skb with the freshly allocated one.
|
||
|
*/
|
||
|
entry->skb = skb;
|
||
|
entry->flags = 0;
|
||
|
|
||
|
rt2x00dev->ops->lib->clear_entry(entry);
|
||
|
|
||
|
rt2x00queue_index_inc(entry->queue, Q_INDEX);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
|
||
|
|
||
|
/*
|
||
|
* Driver initialization handlers.
|
||
|
*/
|
||
|
const struct rt2x00_rate rt2x00_supported_rates[12] = {
|
||
|
{
|
||
|
.flags = DEV_RATE_CCK,
|
||
|
.bitrate = 10,
|
||
|
.ratemask = BIT(0),
|
||
|
.plcp = 0x00,
|
||
|
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
||
|
.bitrate = 20,
|
||
|
.ratemask = BIT(1),
|
||
|
.plcp = 0x01,
|
||
|
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
||
|
.bitrate = 55,
|
||
|
.ratemask = BIT(2),
|
||
|
.plcp = 0x02,
|
||
|
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
||
|
.bitrate = 110,
|
||
|
.ratemask = BIT(3),
|
||
|
.plcp = 0x03,
|
||
|
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 60,
|
||
|
.ratemask = BIT(4),
|
||
|
.plcp = 0x0b,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 90,
|
||
|
.ratemask = BIT(5),
|
||
|
.plcp = 0x0f,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 120,
|
||
|
.ratemask = BIT(6),
|
||
|
.plcp = 0x0a,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 180,
|
||
|
.ratemask = BIT(7),
|
||
|
.plcp = 0x0e,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 240,
|
||
|
.ratemask = BIT(8),
|
||
|
.plcp = 0x09,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 360,
|
||
|
.ratemask = BIT(9),
|
||
|
.plcp = 0x0d,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 480,
|
||
|
.ratemask = BIT(10),
|
||
|
.plcp = 0x08,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
|
||
|
},
|
||
|
{
|
||
|
.flags = DEV_RATE_OFDM,
|
||
|
.bitrate = 540,
|
||
|
.ratemask = BIT(11),
|
||
|
.plcp = 0x0c,
|
||
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static void rt2x00lib_channel(struct ieee80211_channel *entry,
|
||
|
const int channel, const int tx_power,
|
||
|
const int value)
|
||
|
{
|
||
|
entry->center_freq = ieee80211_channel_to_frequency(channel);
|
||
|
entry->hw_value = value;
|
||
|
entry->max_power = tx_power;
|
||
|
entry->max_antenna_gain = 0xff;
|
||
|
}
|
||
|
|
||
|
static void rt2x00lib_rate(struct ieee80211_rate *entry,
|
||
|
const u16 index, const struct rt2x00_rate *rate)
|
||
|
{
|
||
|
entry->flags = 0;
|
||
|
entry->bitrate = rate->bitrate;
|
||
|
entry->hw_value =index;
|
||
|
entry->hw_value_short = index;
|
||
|
|
||
|
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
|
||
|
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
|
||
|
}
|
||
|
|
||
|
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
|
||
|
struct hw_mode_spec *spec)
|
||
|
{
|
||
|
struct ieee80211_hw *hw = rt2x00dev->hw;
|
||
|
struct ieee80211_channel *channels;
|
||
|
struct ieee80211_rate *rates;
|
||
|
unsigned int num_rates;
|
||
|
unsigned int i;
|
||
|
|
||
|
num_rates = 0;
|
||
|
if (spec->supported_rates & SUPPORT_RATE_CCK)
|
||
|
num_rates += 4;
|
||
|
if (spec->supported_rates & SUPPORT_RATE_OFDM)
|
||
|
num_rates += 8;
|
||
|
|
||
|
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
|
||
|
if (!channels)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
|
||
|
if (!rates)
|
||
|
goto exit_free_channels;
|
||
|
|
||
|
/*
|
||
|
* Initialize Rate list.
|
||
|
*/
|
||
|
for (i = 0; i < num_rates; i++)
|
||
|
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
|
||
|
|
||
|
/*
|
||
|
* Initialize Channel list.
|
||
|
*/
|
||
|
for (i = 0; i < spec->num_channels; i++) {
|
||
|
rt2x00lib_channel(&channels[i],
|
||
|
spec->channels[i].channel,
|
||
|
spec->channels_info[i].tx_power1, i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Intitialize 802.11b, 802.11g
|
||
|
* Rates: CCK, OFDM.
|
||
|
* Channels: 2.4 GHz
|
||
|
*/
|
||
|
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
|
||
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
|
||
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
|
||
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
|
||
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
|
||
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
|
||
|
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
|
||
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
|
||
|
&spec->ht, sizeof(spec->ht));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Intitialize 802.11a
|
||
|
* Rates: OFDM.
|
||
|
* Channels: OFDM, UNII, HiperLAN2.
|
||
|
*/
|
||
|
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
|
||
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
|
||
|
spec->num_channels - 14;
|
||
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
|
||
|
num_rates - 4;
|
||
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
|
||
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
|
||
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
||
|
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
|
||
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
|
||
|
&spec->ht, sizeof(spec->ht));
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
exit_free_channels:
|
||
|
kfree(channels);
|
||
|
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
||
|
ieee80211_unregister_hw(rt2x00dev->hw);
|
||
|
|
||
|
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
|
||
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
|
||
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
|
||
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
|
||
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
|
||
|
}
|
||
|
|
||
|
kfree(rt2x00dev->spec.channels_info);
|
||
|
}
|
||
|
|
||
|
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
||
|
int status;
|
||
|
|
||
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Initialize HW modes.
|
||
|
*/
|
||
|
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/*
|
||
|
* Initialize HW fields.
|
||
|
*/
|
||
|
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
|
||
|
|
||
|
/*
|
||
|
* Initialize extra TX headroom required.
|
||
|
*/
|
||
|
rt2x00dev->hw->extra_tx_headroom =
|
||
|
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
|
||
|
rt2x00dev->ops->extra_tx_headroom);
|
||
|
|
||
|
/*
|
||
|
* Take TX headroom required for alignment into account.
|
||
|
*/
|
||
|
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
|
||
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
|
||
|
else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
|
||
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
|
||
|
|
||
|
/*
|
||
|
* Register HW.
|
||
|
*/
|
||
|
status = ieee80211_register_hw(rt2x00dev->hw);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialization/uninitialization handlers.
|
||
|
*/
|
||
|
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Unregister extra components.
|
||
|
*/
|
||
|
rt2x00rfkill_unregister(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Allow the HW to uninitialize.
|
||
|
*/
|
||
|
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Free allocated queue entries.
|
||
|
*/
|
||
|
rt2x00queue_uninitialize(rt2x00dev);
|
||
|
}
|
||
|
|
||
|
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
int status;
|
||
|
|
||
|
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Allocate all queue entries.
|
||
|
*/
|
||
|
status = rt2x00queue_initialize(rt2x00dev);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/*
|
||
|
* Initialize the device.
|
||
|
*/
|
||
|
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
|
||
|
if (status) {
|
||
|
rt2x00queue_uninitialize(rt2x00dev);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
|
||
|
|
||
|
/*
|
||
|
* Register the extra components.
|
||
|
*/
|
||
|
rt2x00rfkill_register(rt2x00dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
int retval;
|
||
|
|
||
|
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* If this is the first interface which is added,
|
||
|
* we should load the firmware now.
|
||
|
*/
|
||
|
retval = rt2x00lib_load_firmware(rt2x00dev);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
/*
|
||
|
* Initialize the device.
|
||
|
*/
|
||
|
retval = rt2x00lib_initialize(rt2x00dev);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
rt2x00dev->intf_ap_count = 0;
|
||
|
rt2x00dev->intf_sta_count = 0;
|
||
|
rt2x00dev->intf_associated = 0;
|
||
|
|
||
|
/* Enable the radio */
|
||
|
retval = rt2x00lib_enable_radio(rt2x00dev);
|
||
|
if (retval) {
|
||
|
rt2x00queue_uninitialize(rt2x00dev);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Perhaps we can add something smarter here,
|
||
|
* but for now just disabling the radio should do.
|
||
|
*/
|
||
|
rt2x00lib_disable_radio(rt2x00dev);
|
||
|
|
||
|
rt2x00dev->intf_ap_count = 0;
|
||
|
rt2x00dev->intf_sta_count = 0;
|
||
|
rt2x00dev->intf_associated = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* driver allocation handlers.
|
||
|
*/
|
||
|
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
int retval = -ENOMEM;
|
||
|
|
||
|
mutex_init(&rt2x00dev->csr_mutex);
|
||
|
|
||
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
||
|
|
||
|
/*
|
||
|
* Make room for rt2x00_intf inside the per-interface
|
||
|
* structure ieee80211_vif.
|
||
|
*/
|
||
|
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
|
||
|
|
||
|
/*
|
||
|
* Determine which operating modes are supported, all modes
|
||
|
* which require beaconing, depend on the availability of
|
||
|
* beacon entries.
|
||
|
*/
|
||
|
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
|
||
|
if (rt2x00dev->ops->bcn->entry_num > 0)
|
||
|
rt2x00dev->hw->wiphy->interface_modes |=
|
||
|
BIT(NL80211_IFTYPE_ADHOC) |
|
||
|
BIT(NL80211_IFTYPE_AP) |
|
||
|
BIT(NL80211_IFTYPE_MESH_POINT) |
|
||
|
BIT(NL80211_IFTYPE_WDS);
|
||
|
|
||
|
/*
|
||
|
* Let the driver probe the device to detect the capabilities.
|
||
|
*/
|
||
|
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
|
||
|
if (retval) {
|
||
|
ERROR(rt2x00dev, "Failed to allocate device.\n");
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize configuration work.
|
||
|
*/
|
||
|
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
|
||
|
|
||
|
/*
|
||
|
* Allocate queue array.
|
||
|
*/
|
||
|
retval = rt2x00queue_allocate(rt2x00dev);
|
||
|
if (retval)
|
||
|
goto exit;
|
||
|
|
||
|
/*
|
||
|
* Initialize ieee80211 structure.
|
||
|
*/
|
||
|
retval = rt2x00lib_probe_hw(rt2x00dev);
|
||
|
if (retval) {
|
||
|
ERROR(rt2x00dev, "Failed to initialize hw.\n");
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Register extra components.
|
||
|
*/
|
||
|
rt2x00link_register(rt2x00dev);
|
||
|
rt2x00leds_register(rt2x00dev);
|
||
|
rt2x00debug_register(rt2x00dev);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
exit:
|
||
|
rt2x00lib_remove_dev(rt2x00dev);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
|
||
|
|
||
|
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
||
|
|
||
|
/*
|
||
|
* Disable radio.
|
||
|
*/
|
||
|
rt2x00lib_disable_radio(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Stop all work.
|
||
|
*/
|
||
|
cancel_work_sync(&rt2x00dev->intf_work);
|
||
|
|
||
|
/*
|
||
|
* Uninitialize device.
|
||
|
*/
|
||
|
rt2x00lib_uninitialize(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Free extra components
|
||
|
*/
|
||
|
rt2x00debug_deregister(rt2x00dev);
|
||
|
rt2x00leds_unregister(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Free ieee80211_hw memory.
|
||
|
*/
|
||
|
rt2x00lib_remove_hw(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Free firmware image.
|
||
|
*/
|
||
|
rt2x00lib_free_firmware(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Free queue structures.
|
||
|
*/
|
||
|
rt2x00queue_free(rt2x00dev);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
|
||
|
|
||
|
/*
|
||
|
* Device state handlers
|
||
|
*/
|
||
|
#ifdef CONFIG_PM
|
||
|
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
|
||
|
{
|
||
|
NOTICE(rt2x00dev, "Going to sleep.\n");
|
||
|
|
||
|
/*
|
||
|
* Prevent mac80211 from accessing driver while suspended.
|
||
|
*/
|
||
|
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Cleanup as much as possible.
|
||
|
*/
|
||
|
rt2x00lib_uninitialize(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Suspend/disable extra components.
|
||
|
*/
|
||
|
rt2x00leds_suspend(rt2x00dev);
|
||
|
rt2x00debug_deregister(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* Set device mode to sleep for power management,
|
||
|
* on some hardware this call seems to consistently fail.
|
||
|
* From the specifications it is hard to tell why it fails,
|
||
|
* and if this is a "bad thing".
|
||
|
* Overall it is safe to just ignore the failure and
|
||
|
* continue suspending. The only downside is that the
|
||
|
* device will not be in optimal power save mode, but with
|
||
|
* the radio and the other components already disabled the
|
||
|
* device is as good as disabled.
|
||
|
*/
|
||
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
|
||
|
WARNING(rt2x00dev, "Device failed to enter sleep state, "
|
||
|
"continue suspending.\n");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
|
||
|
|
||
|
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
NOTICE(rt2x00dev, "Waking up.\n");
|
||
|
|
||
|
/*
|
||
|
* Restore/enable extra components.
|
||
|
*/
|
||
|
rt2x00debug_register(rt2x00dev);
|
||
|
rt2x00leds_resume(rt2x00dev);
|
||
|
|
||
|
/*
|
||
|
* We are ready again to receive requests from mac80211.
|
||
|
*/
|
||
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
|
||
|
#endif /* CONFIG_PM */
|
||
|
|
||
|
/*
|
||
|
* rt2x00lib module information.
|
||
|
*/
|
||
|
MODULE_AUTHOR(DRV_PROJECT);
|
||
|
MODULE_VERSION(DRV_VERSION);
|
||
|
MODULE_DESCRIPTION("rt2x00 library");
|
||
|
MODULE_LICENSE("GPL");
|