1134 lines
32 KiB
C
1134 lines
32 KiB
C
|
/*
|
||
|
* xHCI host controller driver
|
||
|
*
|
||
|
* Copyright (C) 2008 Intel Corp.
|
||
|
*
|
||
|
* Author: Sarah Sharp
|
||
|
* Some code borrowed from the Linux EHCI driver.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software Foundation,
|
||
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/usb.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/dmapool.h>
|
||
|
|
||
|
#include "xhci.h"
|
||
|
|
||
|
/*
|
||
|
* Allocates a generic ring segment from the ring pool, sets the dma address,
|
||
|
* initializes the segment to zero, and sets the private next pointer to NULL.
|
||
|
*
|
||
|
* Section 4.11.1.1:
|
||
|
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
|
||
|
*/
|
||
|
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
||
|
{
|
||
|
struct xhci_segment *seg;
|
||
|
dma_addr_t dma;
|
||
|
|
||
|
seg = kzalloc(sizeof *seg, flags);
|
||
|
if (!seg)
|
||
|
return 0;
|
||
|
xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
|
||
|
|
||
|
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
|
||
|
if (!seg->trbs) {
|
||
|
kfree(seg);
|
||
|
return 0;
|
||
|
}
|
||
|
xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
|
||
|
seg->trbs, (unsigned long long)dma);
|
||
|
|
||
|
memset(seg->trbs, 0, SEGMENT_SIZE);
|
||
|
seg->dma = dma;
|
||
|
seg->next = NULL;
|
||
|
|
||
|
return seg;
|
||
|
}
|
||
|
|
||
|
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
|
||
|
{
|
||
|
if (!seg)
|
||
|
return;
|
||
|
if (seg->trbs) {
|
||
|
xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
|
||
|
seg->trbs, (unsigned long long)seg->dma);
|
||
|
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
|
||
|
seg->trbs = NULL;
|
||
|
}
|
||
|
xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
|
||
|
kfree(seg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make the prev segment point to the next segment.
|
||
|
*
|
||
|
* Change the last TRB in the prev segment to be a Link TRB which points to the
|
||
|
* DMA address of the next segment. The caller needs to set any Link TRB
|
||
|
* related flags, such as End TRB, Toggle Cycle, and no snoop.
|
||
|
*/
|
||
|
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
|
||
|
struct xhci_segment *next, bool link_trbs)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
if (!prev || !next)
|
||
|
return;
|
||
|
prev->next = next;
|
||
|
if (link_trbs) {
|
||
|
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
|
||
|
|
||
|
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
|
||
|
val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
|
||
|
val &= ~TRB_TYPE_BITMASK;
|
||
|
val |= TRB_TYPE(TRB_LINK);
|
||
|
/* Always set the chain bit with 0.95 hardware */
|
||
|
if (xhci_link_trb_quirk(xhci))
|
||
|
val |= TRB_CHAIN;
|
||
|
prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
|
||
|
}
|
||
|
xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
|
||
|
(unsigned long long)prev->dma,
|
||
|
(unsigned long long)next->dma);
|
||
|
}
|
||
|
|
||
|
/* XXX: Do we need the hcd structure in all these functions? */
|
||
|
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
||
|
{
|
||
|
struct xhci_segment *seg;
|
||
|
struct xhci_segment *first_seg;
|
||
|
|
||
|
if (!ring || !ring->first_seg)
|
||
|
return;
|
||
|
first_seg = ring->first_seg;
|
||
|
seg = first_seg->next;
|
||
|
xhci_dbg(xhci, "Freeing ring at %p\n", ring);
|
||
|
while (seg != first_seg) {
|
||
|
struct xhci_segment *next = seg->next;
|
||
|
xhci_segment_free(xhci, seg);
|
||
|
seg = next;
|
||
|
}
|
||
|
xhci_segment_free(xhci, first_seg);
|
||
|
ring->first_seg = NULL;
|
||
|
kfree(ring);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a new ring with zero or more segments.
|
||
|
*
|
||
|
* Link each segment together into a ring.
|
||
|
* Set the end flag and the cycle toggle bit on the last segment.
|
||
|
* See section 4.9.1 and figures 15 and 16.
|
||
|
*/
|
||
|
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
|
||
|
unsigned int num_segs, bool link_trbs, gfp_t flags)
|
||
|
{
|
||
|
struct xhci_ring *ring;
|
||
|
struct xhci_segment *prev;
|
||
|
|
||
|
ring = kzalloc(sizeof *(ring), flags);
|
||
|
xhci_dbg(xhci, "Allocating ring at %p\n", ring);
|
||
|
if (!ring)
|
||
|
return 0;
|
||
|
|
||
|
INIT_LIST_HEAD(&ring->td_list);
|
||
|
if (num_segs == 0)
|
||
|
return ring;
|
||
|
|
||
|
ring->first_seg = xhci_segment_alloc(xhci, flags);
|
||
|
if (!ring->first_seg)
|
||
|
goto fail;
|
||
|
num_segs--;
|
||
|
|
||
|
prev = ring->first_seg;
|
||
|
while (num_segs > 0) {
|
||
|
struct xhci_segment *next;
|
||
|
|
||
|
next = xhci_segment_alloc(xhci, flags);
|
||
|
if (!next)
|
||
|
goto fail;
|
||
|
xhci_link_segments(xhci, prev, next, link_trbs);
|
||
|
|
||
|
prev = next;
|
||
|
num_segs--;
|
||
|
}
|
||
|
xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
|
||
|
|
||
|
if (link_trbs) {
|
||
|
/* See section 4.9.2.1 and 6.4.4.1 */
|
||
|
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
|
||
|
xhci_dbg(xhci, "Wrote link toggle flag to"
|
||
|
" segment %p (virtual), 0x%llx (DMA)\n",
|
||
|
prev, (unsigned long long)prev->dma);
|
||
|
}
|
||
|
/* The ring is empty, so the enqueue pointer == dequeue pointer */
|
||
|
ring->enqueue = ring->first_seg->trbs;
|
||
|
ring->enq_seg = ring->first_seg;
|
||
|
ring->dequeue = ring->enqueue;
|
||
|
ring->deq_seg = ring->first_seg;
|
||
|
/* The ring is initialized to 0. The producer must write 1 to the cycle
|
||
|
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
|
||
|
* compare CCS to the cycle bit to check ownership, so CCS = 1.
|
||
|
*/
|
||
|
ring->cycle_state = 1;
|
||
|
|
||
|
return ring;
|
||
|
|
||
|
fail:
|
||
|
xhci_ring_free(xhci, ring);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
|
||
|
|
||
|
struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
|
||
|
int type, gfp_t flags)
|
||
|
{
|
||
|
struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
|
||
|
if (!ctx)
|
||
|
return NULL;
|
||
|
|
||
|
BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
|
||
|
ctx->type = type;
|
||
|
ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
|
||
|
if (type == XHCI_CTX_TYPE_INPUT)
|
||
|
ctx->size += CTX_SIZE(xhci->hcc_params);
|
||
|
|
||
|
ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
|
||
|
memset(ctx->bytes, 0, ctx->size);
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
void xhci_free_container_ctx(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *ctx)
|
||
|
{
|
||
|
dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
|
||
|
kfree(ctx);
|
||
|
}
|
||
|
|
||
|
struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *ctx)
|
||
|
{
|
||
|
BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
|
||
|
return (struct xhci_input_control_ctx *)ctx->bytes;
|
||
|
}
|
||
|
|
||
|
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *ctx)
|
||
|
{
|
||
|
if (ctx->type == XHCI_CTX_TYPE_DEVICE)
|
||
|
return (struct xhci_slot_ctx *)ctx->bytes;
|
||
|
|
||
|
return (struct xhci_slot_ctx *)
|
||
|
(ctx->bytes + CTX_SIZE(xhci->hcc_params));
|
||
|
}
|
||
|
|
||
|
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *ctx,
|
||
|
unsigned int ep_index)
|
||
|
{
|
||
|
/* increment ep index by offset of start of ep ctx array */
|
||
|
ep_index++;
|
||
|
if (ctx->type == XHCI_CTX_TYPE_INPUT)
|
||
|
ep_index++;
|
||
|
|
||
|
return (struct xhci_ep_ctx *)
|
||
|
(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
|
||
|
}
|
||
|
|
||
|
/* All the xhci_tds in the ring's TD list should be freed at this point */
|
||
|
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
|
||
|
{
|
||
|
struct xhci_virt_device *dev;
|
||
|
int i;
|
||
|
|
||
|
/* Slot ID 0 is reserved */
|
||
|
if (slot_id == 0 || !xhci->devs[slot_id])
|
||
|
return;
|
||
|
|
||
|
dev = xhci->devs[slot_id];
|
||
|
xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
|
||
|
if (!dev)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < 31; ++i)
|
||
|
if (dev->eps[i].ring)
|
||
|
xhci_ring_free(xhci, dev->eps[i].ring);
|
||
|
|
||
|
if (dev->in_ctx)
|
||
|
xhci_free_container_ctx(xhci, dev->in_ctx);
|
||
|
if (dev->out_ctx)
|
||
|
xhci_free_container_ctx(xhci, dev->out_ctx);
|
||
|
|
||
|
kfree(xhci->devs[slot_id]);
|
||
|
xhci->devs[slot_id] = 0;
|
||
|
}
|
||
|
|
||
|
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
|
||
|
struct usb_device *udev, gfp_t flags)
|
||
|
{
|
||
|
struct xhci_virt_device *dev;
|
||
|
int i;
|
||
|
|
||
|
/* Slot ID 0 is reserved */
|
||
|
if (slot_id == 0 || xhci->devs[slot_id]) {
|
||
|
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
|
||
|
if (!xhci->devs[slot_id])
|
||
|
return 0;
|
||
|
dev = xhci->devs[slot_id];
|
||
|
|
||
|
/* Allocate the (output) device context that will be used in the HC. */
|
||
|
dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
|
||
|
if (!dev->out_ctx)
|
||
|
goto fail;
|
||
|
|
||
|
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
|
||
|
(unsigned long long)dev->out_ctx->dma);
|
||
|
|
||
|
/* Allocate the (input) device context for address device command */
|
||
|
dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
|
||
|
if (!dev->in_ctx)
|
||
|
goto fail;
|
||
|
|
||
|
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
|
||
|
(unsigned long long)dev->in_ctx->dma);
|
||
|
|
||
|
/* Initialize the cancellation list for each endpoint */
|
||
|
for (i = 0; i < 31; i++)
|
||
|
INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
|
||
|
|
||
|
/* Allocate endpoint 0 ring */
|
||
|
dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
|
||
|
if (!dev->eps[0].ring)
|
||
|
goto fail;
|
||
|
|
||
|
init_completion(&dev->cmd_completion);
|
||
|
INIT_LIST_HEAD(&dev->cmd_list);
|
||
|
|
||
|
/* Point to output device context in dcbaa. */
|
||
|
xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
|
||
|
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
|
||
|
slot_id,
|
||
|
&xhci->dcbaa->dev_context_ptrs[slot_id],
|
||
|
(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
|
||
|
|
||
|
return 1;
|
||
|
fail:
|
||
|
xhci_free_virt_device(xhci, slot_id);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Setup an xHCI virtual device for a Set Address command */
|
||
|
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
|
||
|
{
|
||
|
struct xhci_virt_device *dev;
|
||
|
struct xhci_ep_ctx *ep0_ctx;
|
||
|
struct usb_device *top_dev;
|
||
|
struct xhci_slot_ctx *slot_ctx;
|
||
|
struct xhci_input_control_ctx *ctrl_ctx;
|
||
|
|
||
|
dev = xhci->devs[udev->slot_id];
|
||
|
/* Slot ID 0 is reserved */
|
||
|
if (udev->slot_id == 0 || !dev) {
|
||
|
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
|
||
|
udev->slot_id);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
|
||
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
|
||
|
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
|
||
|
|
||
|
/* 2) New slot context and endpoint 0 context are valid*/
|
||
|
ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
|
||
|
|
||
|
/* 3) Only the control endpoint is valid - one endpoint context */
|
||
|
slot_ctx->dev_info |= LAST_CTX(1);
|
||
|
|
||
|
slot_ctx->dev_info |= (u32) udev->route;
|
||
|
switch (udev->speed) {
|
||
|
case USB_SPEED_SUPER:
|
||
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
|
||
|
break;
|
||
|
case USB_SPEED_HIGH:
|
||
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
|
||
|
break;
|
||
|
case USB_SPEED_FULL:
|
||
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
|
||
|
break;
|
||
|
case USB_SPEED_LOW:
|
||
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
|
||
|
break;
|
||
|
case USB_SPEED_VARIABLE:
|
||
|
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
||
|
return -EINVAL;
|
||
|
break;
|
||
|
default:
|
||
|
/* Speed was set earlier, this shouldn't happen. */
|
||
|
BUG();
|
||
|
}
|
||
|
/* Find the root hub port this device is under */
|
||
|
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
|
||
|
top_dev = top_dev->parent)
|
||
|
/* Found device below root hub */;
|
||
|
slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
|
||
|
xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
|
||
|
|
||
|
/* Is this a LS/FS device under a HS hub? */
|
||
|
if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
|
||
|
udev->tt) {
|
||
|
slot_ctx->tt_info = udev->tt->hub->slot_id;
|
||
|
slot_ctx->tt_info |= udev->ttport << 8;
|
||
|
if (udev->tt->multi)
|
||
|
slot_ctx->dev_info |= DEV_MTT;
|
||
|
}
|
||
|
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
|
||
|
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
|
||
|
|
||
|
/* Step 4 - ring already allocated */
|
||
|
/* Step 5 */
|
||
|
ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
|
||
|
/*
|
||
|
* XXX: Not sure about wireless USB devices.
|
||
|
*/
|
||
|
switch (udev->speed) {
|
||
|
case USB_SPEED_SUPER:
|
||
|
ep0_ctx->ep_info2 |= MAX_PACKET(512);
|
||
|
break;
|
||
|
case USB_SPEED_HIGH:
|
||
|
/* USB core guesses at a 64-byte max packet first for FS devices */
|
||
|
case USB_SPEED_FULL:
|
||
|
ep0_ctx->ep_info2 |= MAX_PACKET(64);
|
||
|
break;
|
||
|
case USB_SPEED_LOW:
|
||
|
ep0_ctx->ep_info2 |= MAX_PACKET(8);
|
||
|
break;
|
||
|
case USB_SPEED_VARIABLE:
|
||
|
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
||
|
return -EINVAL;
|
||
|
break;
|
||
|
default:
|
||
|
/* New speed? */
|
||
|
BUG();
|
||
|
}
|
||
|
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
|
||
|
ep0_ctx->ep_info2 |= MAX_BURST(0);
|
||
|
ep0_ctx->ep_info2 |= ERROR_COUNT(3);
|
||
|
|
||
|
ep0_ctx->deq =
|
||
|
dev->eps[0].ring->first_seg->dma;
|
||
|
ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
|
||
|
|
||
|
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert interval expressed as 2^(bInterval - 1) == interval into
|
||
|
* straight exponent value 2^n == interval.
|
||
|
*
|
||
|
*/
|
||
|
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
unsigned int interval;
|
||
|
|
||
|
interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
|
||
|
if (interval != ep->desc.bInterval - 1)
|
||
|
dev_warn(&udev->dev,
|
||
|
"ep %#x - rounding interval to %d %sframes\n",
|
||
|
ep->desc.bEndpointAddress,
|
||
|
1 << interval,
|
||
|
udev->speed == USB_SPEED_FULL ? "" : "micro");
|
||
|
|
||
|
if (udev->speed == USB_SPEED_FULL) {
|
||
|
/*
|
||
|
* Full speed isoc endpoints specify interval in frames,
|
||
|
* not microframes. We are using microframes everywhere,
|
||
|
* so adjust accordingly.
|
||
|
*/
|
||
|
interval += 3; /* 1 frame = 2^3 uframes */
|
||
|
}
|
||
|
|
||
|
return interval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert bInterval expressed in frames (in 1-255 range) to exponent of
|
||
|
* microframes, rounded down to nearest power of 2.
|
||
|
*/
|
||
|
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
unsigned int interval;
|
||
|
|
||
|
interval = fls(8 * ep->desc.bInterval) - 1;
|
||
|
interval = clamp_val(interval, 3, 10);
|
||
|
if ((1 << interval) != 8 * ep->desc.bInterval)
|
||
|
dev_warn(&udev->dev,
|
||
|
"ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
|
||
|
ep->desc.bEndpointAddress,
|
||
|
1 << interval,
|
||
|
8 * ep->desc.bInterval);
|
||
|
|
||
|
return interval;
|
||
|
}
|
||
|
|
||
|
/* Return the polling or NAK interval.
|
||
|
*
|
||
|
* The polling interval is expressed in "microframes". If xHCI's Interval field
|
||
|
* is set to N, it will service the endpoint every 2^(Interval)*125us.
|
||
|
*
|
||
|
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
|
||
|
* is set to 0.
|
||
|
*/
|
||
|
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
unsigned int interval = 0;
|
||
|
|
||
|
switch (udev->speed) {
|
||
|
case USB_SPEED_HIGH:
|
||
|
/* Max NAK rate */
|
||
|
if (usb_endpoint_xfer_control(&ep->desc) ||
|
||
|
usb_endpoint_xfer_bulk(&ep->desc)) {
|
||
|
interval = ep->desc.bInterval;
|
||
|
break;
|
||
|
}
|
||
|
/* Fall through - SS and HS isoc/int have same decoding */
|
||
|
|
||
|
case USB_SPEED_SUPER:
|
||
|
if (usb_endpoint_xfer_int(&ep->desc) ||
|
||
|
usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
|
interval = xhci_parse_exponent_interval(udev, ep);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case USB_SPEED_FULL:
|
||
|
if (usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
|
interval = xhci_parse_exponent_interval(udev, ep);
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* Fall through for interrupt endpoint interval decoding
|
||
|
* since it uses the same rules as low speed interrupt
|
||
|
* endpoints.
|
||
|
*/
|
||
|
|
||
|
case USB_SPEED_LOW:
|
||
|
if (usb_endpoint_xfer_int(&ep->desc) ||
|
||
|
usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
|
|
||
|
interval = xhci_parse_frame_interval(udev, ep);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
return EP_INTERVAL(interval);
|
||
|
}
|
||
|
|
||
|
/* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
|
||
|
* High speed endpoint descriptors can define "the number of additional
|
||
|
* transaction opportunities per microframe", but that goes in the Max Burst
|
||
|
* endpoint context field.
|
||
|
*/
|
||
|
static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
if (udev->speed != USB_SPEED_SUPER || !ep->ss_ep_comp)
|
||
|
return 0;
|
||
|
return ep->ss_ep_comp->desc.bmAttributes;
|
||
|
}
|
||
|
|
||
|
static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
int in;
|
||
|
u32 type;
|
||
|
|
||
|
in = usb_endpoint_dir_in(&ep->desc);
|
||
|
if (usb_endpoint_xfer_control(&ep->desc)) {
|
||
|
type = EP_TYPE(CTRL_EP);
|
||
|
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
|
||
|
if (in)
|
||
|
type = EP_TYPE(BULK_IN_EP);
|
||
|
else
|
||
|
type = EP_TYPE(BULK_OUT_EP);
|
||
|
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
|
if (in)
|
||
|
type = EP_TYPE(ISOC_IN_EP);
|
||
|
else
|
||
|
type = EP_TYPE(ISOC_OUT_EP);
|
||
|
} else if (usb_endpoint_xfer_int(&ep->desc)) {
|
||
|
if (in)
|
||
|
type = EP_TYPE(INT_IN_EP);
|
||
|
else
|
||
|
type = EP_TYPE(INT_OUT_EP);
|
||
|
} else {
|
||
|
BUG();
|
||
|
}
|
||
|
return type;
|
||
|
}
|
||
|
|
||
|
/* Return the maximum endpoint service interval time (ESIT) payload.
|
||
|
* Basically, this is the maxpacket size, multiplied by the burst size
|
||
|
* and mult size.
|
||
|
*/
|
||
|
static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
|
||
|
struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
int max_burst;
|
||
|
int max_packet;
|
||
|
|
||
|
/* Only applies for interrupt or isochronous endpoints */
|
||
|
if (usb_endpoint_xfer_control(&ep->desc) ||
|
||
|
usb_endpoint_xfer_bulk(&ep->desc))
|
||
|
return 0;
|
||
|
|
||
|
if (udev->speed == USB_SPEED_SUPER) {
|
||
|
if (ep->ss_ep_comp)
|
||
|
return ep->ss_ep_comp->desc.wBytesPerInterval;
|
||
|
xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
|
||
|
/* Assume no bursts, no multiple opportunities to send. */
|
||
|
return ep->desc.wMaxPacketSize;
|
||
|
}
|
||
|
|
||
|
max_packet = ep->desc.wMaxPacketSize & 0x3ff;
|
||
|
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
||
|
/* A 0 in max burst means 1 transfer per ESIT */
|
||
|
return max_packet * (max_burst + 1);
|
||
|
}
|
||
|
|
||
|
int xhci_endpoint_init(struct xhci_hcd *xhci,
|
||
|
struct xhci_virt_device *virt_dev,
|
||
|
struct usb_device *udev,
|
||
|
struct usb_host_endpoint *ep,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
unsigned int ep_index;
|
||
|
struct xhci_ep_ctx *ep_ctx;
|
||
|
struct xhci_ring *ep_ring;
|
||
|
unsigned int max_packet;
|
||
|
unsigned int max_burst;
|
||
|
u32 max_esit_payload;
|
||
|
|
||
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
||
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
||
|
|
||
|
/* Set up the endpoint ring */
|
||
|
virt_dev->eps[ep_index].new_ring =
|
||
|
xhci_ring_alloc(xhci, 1, true, mem_flags);
|
||
|
if (!virt_dev->eps[ep_index].new_ring)
|
||
|
return -ENOMEM;
|
||
|
ep_ring = virt_dev->eps[ep_index].new_ring;
|
||
|
ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
|
||
|
|
||
|
ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
|
||
|
ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
|
||
|
|
||
|
/* FIXME dig Mult and streams info out of ep companion desc */
|
||
|
|
||
|
/* Allow 3 retries for everything but isoc;
|
||
|
* error count = 0 means infinite retries.
|
||
|
*/
|
||
|
if (!usb_endpoint_xfer_isoc(&ep->desc))
|
||
|
ep_ctx->ep_info2 = ERROR_COUNT(3);
|
||
|
else
|
||
|
ep_ctx->ep_info2 = ERROR_COUNT(1);
|
||
|
|
||
|
ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
|
||
|
|
||
|
/* Set the max packet size and max burst */
|
||
|
switch (udev->speed) {
|
||
|
case USB_SPEED_SUPER:
|
||
|
max_packet = ep->desc.wMaxPacketSize;
|
||
|
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
||
|
/* dig out max burst from ep companion desc */
|
||
|
if (!ep->ss_ep_comp) {
|
||
|
xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
|
||
|
max_packet = 0;
|
||
|
} else {
|
||
|
max_packet = ep->ss_ep_comp->desc.bMaxBurst;
|
||
|
}
|
||
|
ep_ctx->ep_info2 |= MAX_BURST(max_packet);
|
||
|
break;
|
||
|
case USB_SPEED_HIGH:
|
||
|
/* bits 11:12 specify the number of additional transaction
|
||
|
* opportunities per microframe (USB 2.0, section 9.6.6)
|
||
|
*/
|
||
|
if (usb_endpoint_xfer_isoc(&ep->desc) ||
|
||
|
usb_endpoint_xfer_int(&ep->desc)) {
|
||
|
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
||
|
ep_ctx->ep_info2 |= MAX_BURST(max_burst);
|
||
|
}
|
||
|
/* Fall through */
|
||
|
case USB_SPEED_FULL:
|
||
|
case USB_SPEED_LOW:
|
||
|
max_packet = ep->desc.wMaxPacketSize & 0x3ff;
|
||
|
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
|
||
|
ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
|
||
|
|
||
|
/*
|
||
|
* XXX no idea how to calculate the average TRB buffer length for bulk
|
||
|
* endpoints, as the driver gives us no clue how big each scatter gather
|
||
|
* list entry (or buffer) is going to be.
|
||
|
*
|
||
|
* For isochronous and interrupt endpoints, we set it to the max
|
||
|
* available, until we have new API in the USB core to allow drivers to
|
||
|
* declare how much bandwidth they actually need.
|
||
|
*
|
||
|
* Normally, it would be calculated by taking the total of the buffer
|
||
|
* lengths in the TD and then dividing by the number of TRBs in a TD,
|
||
|
* including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
|
||
|
* use Event Data TRBs, and we don't chain in a link TRB on short
|
||
|
* transfers, we're basically dividing by 1.
|
||
|
*/
|
||
|
ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
|
||
|
|
||
|
/* FIXME Debug endpoint context */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void xhci_endpoint_zero(struct xhci_hcd *xhci,
|
||
|
struct xhci_virt_device *virt_dev,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
unsigned int ep_index;
|
||
|
struct xhci_ep_ctx *ep_ctx;
|
||
|
|
||
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
||
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
||
|
|
||
|
ep_ctx->ep_info = 0;
|
||
|
ep_ctx->ep_info2 = 0;
|
||
|
ep_ctx->deq = 0;
|
||
|
ep_ctx->tx_info = 0;
|
||
|
/* Don't free the endpoint ring until the set interface or configuration
|
||
|
* request succeeds.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
|
||
|
* Useful when you want to change one particular aspect of the endpoint and then
|
||
|
* issue a configure endpoint command.
|
||
|
*/
|
||
|
void xhci_endpoint_copy(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *in_ctx,
|
||
|
struct xhci_container_ctx *out_ctx,
|
||
|
unsigned int ep_index)
|
||
|
{
|
||
|
struct xhci_ep_ctx *out_ep_ctx;
|
||
|
struct xhci_ep_ctx *in_ep_ctx;
|
||
|
|
||
|
out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
||
|
in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
|
||
|
|
||
|
in_ep_ctx->ep_info = out_ep_ctx->ep_info;
|
||
|
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
|
||
|
in_ep_ctx->deq = out_ep_ctx->deq;
|
||
|
in_ep_ctx->tx_info = out_ep_ctx->tx_info;
|
||
|
}
|
||
|
|
||
|
/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
|
||
|
* Useful when you want to change one particular aspect of the endpoint and then
|
||
|
* issue a configure endpoint command. Only the context entries field matters,
|
||
|
* but we'll copy the whole thing anyway.
|
||
|
*/
|
||
|
void xhci_slot_copy(struct xhci_hcd *xhci,
|
||
|
struct xhci_container_ctx *in_ctx,
|
||
|
struct xhci_container_ctx *out_ctx)
|
||
|
{
|
||
|
struct xhci_slot_ctx *in_slot_ctx;
|
||
|
struct xhci_slot_ctx *out_slot_ctx;
|
||
|
|
||
|
in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
|
||
|
out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
|
||
|
|
||
|
in_slot_ctx->dev_info = out_slot_ctx->dev_info;
|
||
|
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
|
||
|
in_slot_ctx->tt_info = out_slot_ctx->tt_info;
|
||
|
in_slot_ctx->dev_state = out_slot_ctx->dev_state;
|
||
|
}
|
||
|
|
||
|
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
|
||
|
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
||
|
{
|
||
|
int i;
|
||
|
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
||
|
int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
||
|
|
||
|
xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
|
||
|
|
||
|
if (!num_sp)
|
||
|
return 0;
|
||
|
|
||
|
xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
|
||
|
if (!xhci->scratchpad)
|
||
|
goto fail_sp;
|
||
|
|
||
|
xhci->scratchpad->sp_array =
|
||
|
pci_alloc_consistent(to_pci_dev(dev),
|
||
|
num_sp * sizeof(u64),
|
||
|
&xhci->scratchpad->sp_dma);
|
||
|
if (!xhci->scratchpad->sp_array)
|
||
|
goto fail_sp2;
|
||
|
|
||
|
xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
|
||
|
if (!xhci->scratchpad->sp_buffers)
|
||
|
goto fail_sp3;
|
||
|
|
||
|
xhci->scratchpad->sp_dma_buffers =
|
||
|
kzalloc(sizeof(dma_addr_t) * num_sp, flags);
|
||
|
|
||
|
if (!xhci->scratchpad->sp_dma_buffers)
|
||
|
goto fail_sp4;
|
||
|
|
||
|
xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
|
||
|
for (i = 0; i < num_sp; i++) {
|
||
|
dma_addr_t dma;
|
||
|
void *buf = pci_alloc_consistent(to_pci_dev(dev),
|
||
|
xhci->page_size, &dma);
|
||
|
if (!buf)
|
||
|
goto fail_sp5;
|
||
|
|
||
|
xhci->scratchpad->sp_array[i] = dma;
|
||
|
xhci->scratchpad->sp_buffers[i] = buf;
|
||
|
xhci->scratchpad->sp_dma_buffers[i] = dma;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail_sp5:
|
||
|
for (i = i - 1; i >= 0; i--) {
|
||
|
pci_free_consistent(to_pci_dev(dev), xhci->page_size,
|
||
|
xhci->scratchpad->sp_buffers[i],
|
||
|
xhci->scratchpad->sp_dma_buffers[i]);
|
||
|
}
|
||
|
kfree(xhci->scratchpad->sp_dma_buffers);
|
||
|
|
||
|
fail_sp4:
|
||
|
kfree(xhci->scratchpad->sp_buffers);
|
||
|
|
||
|
fail_sp3:
|
||
|
pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
|
||
|
xhci->scratchpad->sp_array,
|
||
|
xhci->scratchpad->sp_dma);
|
||
|
|
||
|
fail_sp2:
|
||
|
kfree(xhci->scratchpad);
|
||
|
xhci->scratchpad = NULL;
|
||
|
|
||
|
fail_sp:
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void scratchpad_free(struct xhci_hcd *xhci)
|
||
|
{
|
||
|
int num_sp;
|
||
|
int i;
|
||
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
|
|
||
|
if (!xhci->scratchpad)
|
||
|
return;
|
||
|
|
||
|
num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
||
|
|
||
|
for (i = 0; i < num_sp; i++) {
|
||
|
pci_free_consistent(pdev, xhci->page_size,
|
||
|
xhci->scratchpad->sp_buffers[i],
|
||
|
xhci->scratchpad->sp_dma_buffers[i]);
|
||
|
}
|
||
|
kfree(xhci->scratchpad->sp_dma_buffers);
|
||
|
kfree(xhci->scratchpad->sp_buffers);
|
||
|
pci_free_consistent(pdev, num_sp * sizeof(u64),
|
||
|
xhci->scratchpad->sp_array,
|
||
|
xhci->scratchpad->sp_dma);
|
||
|
kfree(xhci->scratchpad);
|
||
|
xhci->scratchpad = NULL;
|
||
|
}
|
||
|
|
||
|
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
|
||
|
bool allocate_completion, gfp_t mem_flags)
|
||
|
{
|
||
|
struct xhci_command *command;
|
||
|
|
||
|
command = kzalloc(sizeof(*command), mem_flags);
|
||
|
if (!command)
|
||
|
return NULL;
|
||
|
|
||
|
command->in_ctx =
|
||
|
xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
|
||
|
if (!command->in_ctx)
|
||
|
return NULL;
|
||
|
|
||
|
if (allocate_completion) {
|
||
|
command->completion =
|
||
|
kzalloc(sizeof(struct completion), mem_flags);
|
||
|
if (!command->completion) {
|
||
|
xhci_free_container_ctx(xhci, command->in_ctx);
|
||
|
return NULL;
|
||
|
}
|
||
|
init_completion(command->completion);
|
||
|
}
|
||
|
|
||
|
command->status = 0;
|
||
|
INIT_LIST_HEAD(&command->cmd_list);
|
||
|
return command;
|
||
|
}
|
||
|
|
||
|
void xhci_free_command(struct xhci_hcd *xhci,
|
||
|
struct xhci_command *command)
|
||
|
{
|
||
|
xhci_free_container_ctx(xhci,
|
||
|
command->in_ctx);
|
||
|
kfree(command->completion);
|
||
|
kfree(command);
|
||
|
}
|
||
|
|
||
|
void xhci_mem_cleanup(struct xhci_hcd *xhci)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
|
int size;
|
||
|
int i;
|
||
|
|
||
|
/* Free the Event Ring Segment Table and the actual Event Ring */
|
||
|
if (xhci->ir_set) {
|
||
|
xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
|
||
|
xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
|
||
|
xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
|
||
|
}
|
||
|
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
|
||
|
if (xhci->erst.entries)
|
||
|
pci_free_consistent(pdev, size,
|
||
|
xhci->erst.entries, xhci->erst.erst_dma_addr);
|
||
|
xhci->erst.entries = NULL;
|
||
|
xhci_dbg(xhci, "Freed ERST\n");
|
||
|
if (xhci->event_ring)
|
||
|
xhci_ring_free(xhci, xhci->event_ring);
|
||
|
xhci->event_ring = NULL;
|
||
|
xhci_dbg(xhci, "Freed event ring\n");
|
||
|
|
||
|
xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
|
||
|
if (xhci->cmd_ring)
|
||
|
xhci_ring_free(xhci, xhci->cmd_ring);
|
||
|
xhci->cmd_ring = NULL;
|
||
|
xhci_dbg(xhci, "Freed command ring\n");
|
||
|
|
||
|
for (i = 1; i < MAX_HC_SLOTS; ++i)
|
||
|
xhci_free_virt_device(xhci, i);
|
||
|
|
||
|
if (xhci->segment_pool)
|
||
|
dma_pool_destroy(xhci->segment_pool);
|
||
|
xhci->segment_pool = NULL;
|
||
|
xhci_dbg(xhci, "Freed segment pool\n");
|
||
|
|
||
|
if (xhci->device_pool)
|
||
|
dma_pool_destroy(xhci->device_pool);
|
||
|
xhci->device_pool = NULL;
|
||
|
xhci_dbg(xhci, "Freed device context pool\n");
|
||
|
|
||
|
xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
|
||
|
if (xhci->dcbaa)
|
||
|
pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
|
||
|
xhci->dcbaa, xhci->dcbaa->dma);
|
||
|
xhci->dcbaa = NULL;
|
||
|
|
||
|
scratchpad_free(xhci);
|
||
|
xhci->page_size = 0;
|
||
|
xhci->page_shift = 0;
|
||
|
}
|
||
|
|
||
|
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
|
||
|
{
|
||
|
dma_addr_t dma;
|
||
|
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
||
|
unsigned int val, val2;
|
||
|
u64 val_64;
|
||
|
struct xhci_segment *seg;
|
||
|
u32 page_size;
|
||
|
int i;
|
||
|
|
||
|
page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
|
||
|
xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
if ((0x1 & page_size) != 0)
|
||
|
break;
|
||
|
page_size = page_size >> 1;
|
||
|
}
|
||
|
if (i < 16)
|
||
|
xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
|
||
|
else
|
||
|
xhci_warn(xhci, "WARN: no supported page size\n");
|
||
|
/* Use 4K pages, since that's common and the minimum the HC supports */
|
||
|
xhci->page_shift = 12;
|
||
|
xhci->page_size = 1 << xhci->page_shift;
|
||
|
xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
|
||
|
|
||
|
/*
|
||
|
* Program the Number of Device Slots Enabled field in the CONFIG
|
||
|
* register with the max value of slots the HC can handle.
|
||
|
*/
|
||
|
val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
|
||
|
xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
|
||
|
(unsigned int) val);
|
||
|
val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
|
||
|
val |= (val2 & ~HCS_SLOTS_MASK);
|
||
|
xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
|
||
|
(unsigned int) val);
|
||
|
xhci_writel(xhci, val, &xhci->op_regs->config_reg);
|
||
|
|
||
|
/*
|
||
|
* Section 5.4.8 - doorbell array must be
|
||
|
* "physically contiguous and 64-byte (cache line) aligned".
|
||
|
*/
|
||
|
xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
|
||
|
sizeof(*xhci->dcbaa), &dma);
|
||
|
if (!xhci->dcbaa)
|
||
|
goto fail;
|
||
|
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
|
||
|
xhci->dcbaa->dma = dma;
|
||
|
xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
|
||
|
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
|
||
|
xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
|
||
|
|
||
|
/*
|
||
|
* Initialize the ring segment pool. The ring must be a contiguous
|
||
|
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
|
||
|
* however, the command ring segment needs 64-byte aligned segments,
|
||
|
* so we pick the greater alignment need.
|
||
|
*/
|
||
|
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
|
||
|
SEGMENT_SIZE, 64, xhci->page_size);
|
||
|
|
||
|
/* See Table 46 and Note on Figure 55 */
|
||
|
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
|
||
|
2112, 64, xhci->page_size);
|
||
|
if (!xhci->segment_pool || !xhci->device_pool)
|
||
|
goto fail;
|
||
|
|
||
|
/* Set up the command ring to have one segments for now. */
|
||
|
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
|
||
|
if (!xhci->cmd_ring)
|
||
|
goto fail;
|
||
|
xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
|
||
|
xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
|
||
|
(unsigned long long)xhci->cmd_ring->first_seg->dma);
|
||
|
|
||
|
/* Set the address in the Command Ring Control register */
|
||
|
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
||
|
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
|
||
|
(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
|
||
|
xhci->cmd_ring->cycle_state;
|
||
|
xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
|
||
|
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
|
||
|
xhci_dbg_cmd_ptrs(xhci);
|
||
|
|
||
|
val = xhci_readl(xhci, &xhci->cap_regs->db_off);
|
||
|
val &= DBOFF_MASK;
|
||
|
xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
|
||
|
" from cap regs base addr\n", val);
|
||
|
xhci->dba = (void *) xhci->cap_regs + val;
|
||
|
xhci_dbg_regs(xhci);
|
||
|
xhci_print_run_regs(xhci);
|
||
|
/* Set ir_set to interrupt register set 0 */
|
||
|
xhci->ir_set = (void *) xhci->run_regs->ir_set;
|
||
|
|
||
|
/*
|
||
|
* Event ring setup: Allocate a normal ring, but also setup
|
||
|
* the event ring segment table (ERST). Section 4.9.3.
|
||
|
*/
|
||
|
xhci_dbg(xhci, "// Allocating event ring\n");
|
||
|
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
|
||
|
if (!xhci->event_ring)
|
||
|
goto fail;
|
||
|
|
||
|
xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
|
||
|
sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
|
||
|
if (!xhci->erst.entries)
|
||
|
goto fail;
|
||
|
xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
|
||
|
(unsigned long long)dma);
|
||
|
|
||
|
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
|
||
|
xhci->erst.num_entries = ERST_NUM_SEGS;
|
||
|
xhci->erst.erst_dma_addr = dma;
|
||
|
xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
|
||
|
xhci->erst.num_entries,
|
||
|
xhci->erst.entries,
|
||
|
(unsigned long long)xhci->erst.erst_dma_addr);
|
||
|
|
||
|
/* set ring base address and size for each segment table entry */
|
||
|
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
|
||
|
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
|
||
|
entry->seg_addr = seg->dma;
|
||
|
entry->seg_size = TRBS_PER_SEGMENT;
|
||
|
entry->rsvd = 0;
|
||
|
seg = seg->next;
|
||
|
}
|
||
|
|
||
|
/* set ERST count with the number of entries in the segment table */
|
||
|
val = xhci_readl(xhci, &xhci->ir_set->erst_size);
|
||
|
val &= ERST_SIZE_MASK;
|
||
|
val |= ERST_NUM_SEGS;
|
||
|
xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
|
||
|
val);
|
||
|
xhci_writel(xhci, val, &xhci->ir_set->erst_size);
|
||
|
|
||
|
xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
|
||
|
/* set the segment table base address */
|
||
|
xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
|
||
|
(unsigned long long)xhci->erst.erst_dma_addr);
|
||
|
val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
|
||
|
val_64 &= ERST_PTR_MASK;
|
||
|
val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
|
||
|
xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
|
||
|
|
||
|
/* Set the event ring dequeue address */
|
||
|
xhci_set_hc_event_deq(xhci);
|
||
|
xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
|
||
|
xhci_print_ir_set(xhci, xhci->ir_set, 0);
|
||
|
|
||
|
/*
|
||
|
* XXX: Might need to set the Interrupter Moderation Register to
|
||
|
* something other than the default (~1ms minimum between interrupts).
|
||
|
* See section 5.5.1.2.
|
||
|
*/
|
||
|
init_completion(&xhci->addr_dev);
|
||
|
for (i = 0; i < MAX_HC_SLOTS; ++i)
|
||
|
xhci->devs[i] = 0;
|
||
|
|
||
|
if (scratchpad_alloc(xhci, flags))
|
||
|
goto fail;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
xhci_warn(xhci, "Couldn't initialize memory\n");
|
||
|
xhci_mem_cleanup(xhci);
|
||
|
return -ENOMEM;
|
||
|
}
|