454 lines
16 KiB
C
454 lines
16 KiB
C
|
/*
|
||
|
* arch/arm/include/asm/pgtable.h
|
||
|
*
|
||
|
* Copyright (C) 1995-2002 Russell King
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
#ifndef _ASMARM_PGTABLE_H
|
||
|
#define _ASMARM_PGTABLE_H
|
||
|
|
||
|
#include <asm-generic/4level-fixup.h>
|
||
|
#include <asm/proc-fns.h>
|
||
|
|
||
|
#ifndef CONFIG_MMU
|
||
|
|
||
|
#include "pgtable-nommu.h"
|
||
|
|
||
|
#else
|
||
|
|
||
|
#include <asm/memory.h>
|
||
|
#include <mach/vmalloc.h>
|
||
|
#include <asm/pgtable-hwdef.h>
|
||
|
|
||
|
/*
|
||
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
||
|
* current 8MB value just means that there will be a 8MB "hole" after the
|
||
|
* physical memory until the kernel virtual memory starts. That means that
|
||
|
* any out-of-bounds memory accesses will hopefully be caught.
|
||
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
||
|
* area for the same reason. ;)
|
||
|
*
|
||
|
* Note that platforms may override VMALLOC_START, but they must provide
|
||
|
* VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
|
||
|
* which may not overlap IO space.
|
||
|
*/
|
||
|
#ifndef VMALLOC_START
|
||
|
#define VMALLOC_OFFSET (8*1024*1024)
|
||
|
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Hardware-wise, we have a two level page table structure, where the first
|
||
|
* level has 4096 entries, and the second level has 256 entries. Each entry
|
||
|
* is one 32-bit word. Most of the bits in the second level entry are used
|
||
|
* by hardware, and there aren't any "accessed" and "dirty" bits.
|
||
|
*
|
||
|
* Linux on the other hand has a three level page table structure, which can
|
||
|
* be wrapped to fit a two level page table structure easily - using the PGD
|
||
|
* and PTE only. However, Linux also expects one "PTE" table per page, and
|
||
|
* at least a "dirty" bit.
|
||
|
*
|
||
|
* Therefore, we tweak the implementation slightly - we tell Linux that we
|
||
|
* have 2048 entries in the first level, each of which is 8 bytes (iow, two
|
||
|
* hardware pointers to the second level.) The second level contains two
|
||
|
* hardware PTE tables arranged contiguously, followed by Linux versions
|
||
|
* which contain the state information Linux needs. We, therefore, end up
|
||
|
* with 512 entries in the "PTE" level.
|
||
|
*
|
||
|
* This leads to the page tables having the following layout:
|
||
|
*
|
||
|
* pgd pte
|
||
|
* | |
|
||
|
* +--------+ +0
|
||
|
* | |-----> +------------+ +0
|
||
|
* +- - - - + +4 | h/w pt 0 |
|
||
|
* | |-----> +------------+ +1024
|
||
|
* +--------+ +8 | h/w pt 1 |
|
||
|
* | | +------------+ +2048
|
||
|
* +- - - - + | Linux pt 0 |
|
||
|
* | | +------------+ +3072
|
||
|
* +--------+ | Linux pt 1 |
|
||
|
* | | +------------+ +4096
|
||
|
*
|
||
|
* See L_PTE_xxx below for definitions of bits in the "Linux pt", and
|
||
|
* PTE_xxx for definitions of bits appearing in the "h/w pt".
|
||
|
*
|
||
|
* PMD_xxx definitions refer to bits in the first level page table.
|
||
|
*
|
||
|
* The "dirty" bit is emulated by only granting hardware write permission
|
||
|
* iff the page is marked "writable" and "dirty" in the Linux PTE. This
|
||
|
* means that a write to a clean page will cause a permission fault, and
|
||
|
* the Linux MM layer will mark the page dirty via handle_pte_fault().
|
||
|
* For the hardware to notice the permission change, the TLB entry must
|
||
|
* be flushed, and ptep_set_access_flags() does that for us.
|
||
|
*
|
||
|
* The "accessed" or "young" bit is emulated by a similar method; we only
|
||
|
* allow accesses to the page if the "young" bit is set. Accesses to the
|
||
|
* page will cause a fault, and handle_pte_fault() will set the young bit
|
||
|
* for us as long as the page is marked present in the corresponding Linux
|
||
|
* PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
|
||
|
* up to date.
|
||
|
*
|
||
|
* However, when the "young" bit is cleared, we deny access to the page
|
||
|
* by clearing the hardware PTE. Currently Linux does not flush the TLB
|
||
|
* for us in this case, which means the TLB will retain the transation
|
||
|
* until either the TLB entry is evicted under pressure, or a context
|
||
|
* switch which changes the user space mapping occurs.
|
||
|
*/
|
||
|
#define PTRS_PER_PTE 512
|
||
|
#define PTRS_PER_PMD 1
|
||
|
#define PTRS_PER_PGD 2048
|
||
|
|
||
|
/*
|
||
|
* PMD_SHIFT determines the size of the area a second-level page table can map
|
||
|
* PGDIR_SHIFT determines what a third-level page table entry can map
|
||
|
*/
|
||
|
#define PMD_SHIFT 21
|
||
|
#define PGDIR_SHIFT 21
|
||
|
|
||
|
#define LIBRARY_TEXT_START 0x0c000000
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
extern void __pte_error(const char *file, int line, unsigned long val);
|
||
|
extern void __pmd_error(const char *file, int line, unsigned long val);
|
||
|
extern void __pgd_error(const char *file, int line, unsigned long val);
|
||
|
|
||
|
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
|
||
|
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
|
||
|
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
||
|
#define PMD_MASK (~(PMD_SIZE-1))
|
||
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
||
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
||
|
|
||
|
/*
|
||
|
* This is the lowest virtual address we can permit any user space
|
||
|
* mapping to be mapped at. This is particularly important for
|
||
|
* non-high vector CPUs.
|
||
|
*/
|
||
|
#define FIRST_USER_ADDRESS PAGE_SIZE
|
||
|
|
||
|
#define FIRST_USER_PGD_NR 1
|
||
|
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
|
||
|
|
||
|
/*
|
||
|
* section address mask and size definitions.
|
||
|
*/
|
||
|
#define SECTION_SHIFT 20
|
||
|
#define SECTION_SIZE (1UL << SECTION_SHIFT)
|
||
|
#define SECTION_MASK (~(SECTION_SIZE-1))
|
||
|
|
||
|
/*
|
||
|
* ARMv6 supersection address mask and size definitions.
|
||
|
*/
|
||
|
#define SUPERSECTION_SHIFT 24
|
||
|
#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
|
||
|
#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
|
||
|
|
||
|
/*
|
||
|
* "Linux" PTE definitions.
|
||
|
*
|
||
|
* We keep two sets of PTEs - the hardware and the linux version.
|
||
|
* This allows greater flexibility in the way we map the Linux bits
|
||
|
* onto the hardware tables, and allows us to have YOUNG and DIRTY
|
||
|
* bits.
|
||
|
*
|
||
|
* The PTE table pointer refers to the hardware entries; the "Linux"
|
||
|
* entries are stored 1024 bytes below.
|
||
|
*/
|
||
|
#define L_PTE_PRESENT (1 << 0)
|
||
|
#define L_PTE_YOUNG (1 << 1)
|
||
|
#define L_PTE_FILE (1 << 2) /* only when !PRESENT */
|
||
|
#define L_PTE_DIRTY (1 << 6)
|
||
|
#define L_PTE_WRITE (1 << 7)
|
||
|
#define L_PTE_USER (1 << 8)
|
||
|
#define L_PTE_EXEC (1 << 9)
|
||
|
#define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */
|
||
|
|
||
|
/*
|
||
|
* These are the memory types, defined to be compatible with
|
||
|
* pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
|
||
|
*/
|
||
|
#define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */
|
||
|
#define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */
|
||
|
#define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */
|
||
|
#define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */
|
||
|
#define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */
|
||
|
#define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */
|
||
|
#define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */
|
||
|
#define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */
|
||
|
#define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */
|
||
|
#define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */
|
||
|
#define L_PTE_MT_MASK (0x0f << 2)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
/*
|
||
|
* The pgprot_* and protection_map entries will be fixed up in runtime
|
||
|
* to include the cachable and bufferable bits based on memory policy,
|
||
|
* as well as any architecture dependent bits like global/ASID and SMP
|
||
|
* shared mapping bits.
|
||
|
*/
|
||
|
#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
|
||
|
|
||
|
extern pgprot_t pgprot_user;
|
||
|
extern pgprot_t pgprot_kernel;
|
||
|
|
||
|
#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
|
||
|
|
||
|
#define PAGE_NONE pgprot_user
|
||
|
#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
|
||
|
#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
|
||
|
#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
|
||
|
#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
|
||
|
#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
|
||
|
#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
|
||
|
#define PAGE_KERNEL pgprot_kernel
|
||
|
#define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
|
||
|
|
||
|
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
|
||
|
#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
|
||
|
#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
|
||
|
#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
|
||
|
#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
|
||
|
#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
|
||
|
#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
/*
|
||
|
* The table below defines the page protection levels that we insert into our
|
||
|
* Linux page table version. These get translated into the best that the
|
||
|
* architecture can perform. Note that on most ARM hardware:
|
||
|
* 1) We cannot do execute protection
|
||
|
* 2) If we could do execute protection, then read is implied
|
||
|
* 3) write implies read permissions
|
||
|
*/
|
||
|
#define __P000 __PAGE_NONE
|
||
|
#define __P001 __PAGE_READONLY
|
||
|
#define __P010 __PAGE_COPY
|
||
|
#define __P011 __PAGE_COPY
|
||
|
#define __P100 __PAGE_READONLY_EXEC
|
||
|
#define __P101 __PAGE_READONLY_EXEC
|
||
|
#define __P110 __PAGE_COPY_EXEC
|
||
|
#define __P111 __PAGE_COPY_EXEC
|
||
|
|
||
|
#define __S000 __PAGE_NONE
|
||
|
#define __S001 __PAGE_READONLY
|
||
|
#define __S010 __PAGE_SHARED
|
||
|
#define __S011 __PAGE_SHARED
|
||
|
#define __S100 __PAGE_READONLY_EXEC
|
||
|
#define __S101 __PAGE_READONLY_EXEC
|
||
|
#define __S110 __PAGE_SHARED_EXEC
|
||
|
#define __S111 __PAGE_SHARED_EXEC
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
/*
|
||
|
* ZERO_PAGE is a global shared page that is always zero: used
|
||
|
* for zero-mapped memory areas etc..
|
||
|
*/
|
||
|
extern struct page *empty_zero_page;
|
||
|
#define ZERO_PAGE(vaddr) (empty_zero_page)
|
||
|
|
||
|
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
|
||
|
#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
|
||
|
|
||
|
#define pte_none(pte) (!pte_val(pte))
|
||
|
#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
|
||
|
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
|
||
|
#define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
|
||
|
|
||
|
#define pte_offset_map(dir,addr) (__pte_map(dir, KM_PTE0) + __pte_index(addr))
|
||
|
#define pte_offset_map_nested(dir,addr) (__pte_map(dir, KM_PTE1) + __pte_index(addr))
|
||
|
#define pte_unmap(pte) __pte_unmap(pte, KM_PTE0)
|
||
|
#define pte_unmap_nested(pte) __pte_unmap(pte, KM_PTE1)
|
||
|
|
||
|
#ifndef CONFIG_HIGHPTE
|
||
|
#define __pte_map(dir,km) pmd_page_vaddr(*(dir))
|
||
|
#define __pte_unmap(pte,km) do { } while (0)
|
||
|
#else
|
||
|
#define __pte_map(dir,km) ((pte_t *)kmap_atomic(pmd_page(*(dir)), km) + PTRS_PER_PTE)
|
||
|
#define __pte_unmap(pte,km) kunmap_atomic((pte - PTRS_PER_PTE), km)
|
||
|
#endif
|
||
|
|
||
|
#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
|
||
|
|
||
|
#define set_pte_at(mm,addr,ptep,pteval) do { \
|
||
|
set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \
|
||
|
} while (0)
|
||
|
|
||
|
/*
|
||
|
* The following only work if pte_present() is true.
|
||
|
* Undefined behaviour if not..
|
||
|
*/
|
||
|
#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
|
||
|
#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
|
||
|
#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
|
||
|
#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
|
||
|
#define pte_special(pte) (0)
|
||
|
|
||
|
#define PTE_BIT_FUNC(fn,op) \
|
||
|
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
|
||
|
|
||
|
PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
|
||
|
PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
|
||
|
PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
|
||
|
PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
|
||
|
PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
|
||
|
PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
|
||
|
|
||
|
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
|
||
|
|
||
|
/*
|
||
|
* Mark the prot value as uncacheable and unbufferable.
|
||
|
*/
|
||
|
#define pgprot_noncached(prot) \
|
||
|
__pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_UNCACHED)
|
||
|
#define pgprot_writecombine(prot) \
|
||
|
__pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_BUFFERABLE)
|
||
|
|
||
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
||
|
#define pmd_present(pmd) (pmd_val(pmd))
|
||
|
#define pmd_bad(pmd) (pmd_val(pmd) & 2)
|
||
|
|
||
|
#define copy_pmd(pmdpd,pmdps) \
|
||
|
do { \
|
||
|
pmdpd[0] = pmdps[0]; \
|
||
|
pmdpd[1] = pmdps[1]; \
|
||
|
flush_pmd_entry(pmdpd); \
|
||
|
} while (0)
|
||
|
|
||
|
#define pmd_clear(pmdp) \
|
||
|
do { \
|
||
|
pmdp[0] = __pmd(0); \
|
||
|
pmdp[1] = __pmd(0); \
|
||
|
clean_pmd_entry(pmdp); \
|
||
|
} while (0)
|
||
|
|
||
|
static inline pte_t *pmd_page_vaddr(pmd_t pmd)
|
||
|
{
|
||
|
unsigned long ptr;
|
||
|
|
||
|
ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
|
||
|
ptr += PTRS_PER_PTE * sizeof(void *);
|
||
|
|
||
|
return __va(ptr);
|
||
|
}
|
||
|
|
||
|
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
|
||
|
|
||
|
/*
|
||
|
* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*/
|
||
|
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
|
||
|
|
||
|
/*
|
||
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
||
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
||
|
* into the pgd entry)
|
||
|
*/
|
||
|
#define pgd_none(pgd) (0)
|
||
|
#define pgd_bad(pgd) (0)
|
||
|
#define pgd_present(pgd) (1)
|
||
|
#define pgd_clear(pgdp) do { } while (0)
|
||
|
#define set_pgd(pgd,pgdp) do { } while (0)
|
||
|
|
||
|
/* to find an entry in a page-table-directory */
|
||
|
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
|
||
|
|
||
|
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
|
||
|
|
||
|
/* to find an entry in a kernel page-table-directory */
|
||
|
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
|
||
|
|
||
|
/* Find an entry in the second-level page table.. */
|
||
|
#define pmd_offset(dir, addr) ((pmd_t *)(dir))
|
||
|
|
||
|
/* Find an entry in the third-level page table.. */
|
||
|
#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
|
||
|
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
||
|
|
||
|
/*
|
||
|
* Encode and decode a swap entry. Swap entries are stored in the Linux
|
||
|
* page tables as follows:
|
||
|
*
|
||
|
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
|
||
|
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
||
|
* <--------------- offset --------------------> <- type --> 0 0 0
|
||
|
*
|
||
|
* This gives us up to 63 swap files and 32GB per swap file. Note that
|
||
|
* the offset field is always non-zero.
|
||
|
*/
|
||
|
#define __SWP_TYPE_SHIFT 3
|
||
|
#define __SWP_TYPE_BITS 6
|
||
|
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
|
||
|
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
|
||
|
|
||
|
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
|
||
|
#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
|
||
|
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
|
||
|
|
||
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
||
|
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
|
||
|
|
||
|
/*
|
||
|
* It is an error for the kernel to have more swap files than we can
|
||
|
* encode in the PTEs. This ensures that we know when MAX_SWAPFILES
|
||
|
* is increased beyond what we presently support.
|
||
|
*/
|
||
|
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
|
||
|
|
||
|
/*
|
||
|
* Encode and decode a file entry. File entries are stored in the Linux
|
||
|
* page tables as follows:
|
||
|
*
|
||
|
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
|
||
|
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
||
|
* <----------------------- offset ------------------------> 1 0 0
|
||
|
*/
|
||
|
#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
|
||
|
#define pte_to_pgoff(x) (pte_val(x) >> 3)
|
||
|
#define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
|
||
|
|
||
|
#define PTE_FILE_MAX_BITS 29
|
||
|
|
||
|
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
|
||
|
/* FIXME: this is not correct */
|
||
|
#define kern_addr_valid(addr) (1)
|
||
|
|
||
|
#include <asm-generic/pgtable.h>
|
||
|
|
||
|
/*
|
||
|
* We provide our own arch_get_unmapped_area to cope with VIPT caches.
|
||
|
*/
|
||
|
#define HAVE_ARCH_UNMAPPED_AREA
|
||
|
|
||
|
/*
|
||
|
* remap a physical page `pfn' of size `size' with page protection `prot'
|
||
|
* into virtual address `from'
|
||
|
*/
|
||
|
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
|
||
|
remap_pfn_range(vma, from, pfn, size, prot)
|
||
|
|
||
|
#define pgtable_cache_init() do { } while (0)
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
#endif /* _ASMARM_PGTABLE_H */
|