314 lines
10 KiB
C
314 lines
10 KiB
C
|
#ifndef _LINUX_MMU_NOTIFIER_H
|
||
|
#define _LINUX_MMU_NOTIFIER_H
|
||
|
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
|
||
|
struct mmu_notifier;
|
||
|
struct mmu_notifier_ops;
|
||
|
|
||
|
#ifdef CONFIG_MMU_NOTIFIER
|
||
|
|
||
|
/*
|
||
|
* The mmu notifier_mm structure is allocated and installed in
|
||
|
* mm->mmu_notifier_mm inside the mm_take_all_locks() protected
|
||
|
* critical section and it's released only when mm_count reaches zero
|
||
|
* in mmdrop().
|
||
|
*/
|
||
|
struct mmu_notifier_mm {
|
||
|
/* all mmu notifiers registerd in this mm are queued in this list */
|
||
|
struct hlist_head list;
|
||
|
/* to serialize the list modifications and hlist_unhashed */
|
||
|
spinlock_t lock;
|
||
|
};
|
||
|
|
||
|
struct mmu_notifier_ops {
|
||
|
/*
|
||
|
* Called either by mmu_notifier_unregister or when the mm is
|
||
|
* being destroyed by exit_mmap, always before all pages are
|
||
|
* freed. This can run concurrently with other mmu notifier
|
||
|
* methods (the ones invoked outside the mm context) and it
|
||
|
* should tear down all secondary mmu mappings and freeze the
|
||
|
* secondary mmu. If this method isn't implemented you've to
|
||
|
* be sure that nothing could possibly write to the pages
|
||
|
* through the secondary mmu by the time the last thread with
|
||
|
* tsk->mm == mm exits.
|
||
|
*
|
||
|
* As side note: the pages freed after ->release returns could
|
||
|
* be immediately reallocated by the gart at an alias physical
|
||
|
* address with a different cache model, so if ->release isn't
|
||
|
* implemented because all _software_ driven memory accesses
|
||
|
* through the secondary mmu are terminated by the time the
|
||
|
* last thread of this mm quits, you've also to be sure that
|
||
|
* speculative _hardware_ operations can't allocate dirty
|
||
|
* cachelines in the cpu that could not be snooped and made
|
||
|
* coherent with the other read and write operations happening
|
||
|
* through the gart alias address, so leading to memory
|
||
|
* corruption.
|
||
|
*/
|
||
|
void (*release)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm);
|
||
|
|
||
|
/*
|
||
|
* clear_flush_young is called after the VM is
|
||
|
* test-and-clearing the young/accessed bitflag in the
|
||
|
* pte. This way the VM will provide proper aging to the
|
||
|
* accesses to the page through the secondary MMUs and not
|
||
|
* only to the ones through the Linux pte.
|
||
|
*/
|
||
|
int (*clear_flush_young)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address);
|
||
|
|
||
|
/*
|
||
|
* change_pte is called in cases that pte mapping to page is changed:
|
||
|
* for example, when ksm remaps pte to point to a new shared page.
|
||
|
*/
|
||
|
void (*change_pte)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address,
|
||
|
pte_t pte);
|
||
|
|
||
|
/*
|
||
|
* Before this is invoked any secondary MMU is still ok to
|
||
|
* read/write to the page previously pointed to by the Linux
|
||
|
* pte because the page hasn't been freed yet and it won't be
|
||
|
* freed until this returns. If required set_page_dirty has to
|
||
|
* be called internally to this method.
|
||
|
*/
|
||
|
void (*invalidate_page)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address);
|
||
|
|
||
|
/*
|
||
|
* invalidate_range_start() and invalidate_range_end() must be
|
||
|
* paired and are called only when the mmap_sem and/or the
|
||
|
* locks protecting the reverse maps are held. The subsystem
|
||
|
* must guarantee that no additional references are taken to
|
||
|
* the pages in the range established between the call to
|
||
|
* invalidate_range_start() and the matching call to
|
||
|
* invalidate_range_end().
|
||
|
*
|
||
|
* Invalidation of multiple concurrent ranges may be
|
||
|
* optionally permitted by the driver. Either way the
|
||
|
* establishment of sptes is forbidden in the range passed to
|
||
|
* invalidate_range_begin/end for the whole duration of the
|
||
|
* invalidate_range_begin/end critical section.
|
||
|
*
|
||
|
* invalidate_range_start() is called when all pages in the
|
||
|
* range are still mapped and have at least a refcount of one.
|
||
|
*
|
||
|
* invalidate_range_end() is called when all pages in the
|
||
|
* range have been unmapped and the pages have been freed by
|
||
|
* the VM.
|
||
|
*
|
||
|
* The VM will remove the page table entries and potentially
|
||
|
* the page between invalidate_range_start() and
|
||
|
* invalidate_range_end(). If the page must not be freed
|
||
|
* because of pending I/O or other circumstances then the
|
||
|
* invalidate_range_start() callback (or the initial mapping
|
||
|
* by the driver) must make sure that the refcount is kept
|
||
|
* elevated.
|
||
|
*
|
||
|
* If the driver increases the refcount when the pages are
|
||
|
* initially mapped into an address space then either
|
||
|
* invalidate_range_start() or invalidate_range_end() may
|
||
|
* decrease the refcount. If the refcount is decreased on
|
||
|
* invalidate_range_start() then the VM can free pages as page
|
||
|
* table entries are removed. If the refcount is only
|
||
|
* droppped on invalidate_range_end() then the driver itself
|
||
|
* will drop the last refcount but it must take care to flush
|
||
|
* any secondary tlb before doing the final free on the
|
||
|
* page. Pages will no longer be referenced by the linux
|
||
|
* address space but may still be referenced by sptes until
|
||
|
* the last refcount is dropped.
|
||
|
*/
|
||
|
void (*invalidate_range_start)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end);
|
||
|
void (*invalidate_range_end)(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end);
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* The notifier chains are protected by mmap_sem and/or the reverse map
|
||
|
* semaphores. Notifier chains are only changed when all reverse maps and
|
||
|
* the mmap_sem locks are taken.
|
||
|
*
|
||
|
* Therefore notifier chains can only be traversed when either
|
||
|
*
|
||
|
* 1. mmap_sem is held.
|
||
|
* 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
|
||
|
* 3. No other concurrent thread can access the list (release)
|
||
|
*/
|
||
|
struct mmu_notifier {
|
||
|
struct hlist_node hlist;
|
||
|
const struct mmu_notifier_ops *ops;
|
||
|
};
|
||
|
|
||
|
static inline int mm_has_notifiers(struct mm_struct *mm)
|
||
|
{
|
||
|
return unlikely(mm->mmu_notifier_mm);
|
||
|
}
|
||
|
|
||
|
extern int mmu_notifier_register(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm);
|
||
|
extern int __mmu_notifier_register(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm);
|
||
|
extern void mmu_notifier_unregister(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm);
|
||
|
extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
|
||
|
extern void __mmu_notifier_release(struct mm_struct *mm);
|
||
|
extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
|
||
|
unsigned long address);
|
||
|
extern void __mmu_notifier_change_pte(struct mm_struct *mm,
|
||
|
unsigned long address, pte_t pte);
|
||
|
extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
|
||
|
unsigned long address);
|
||
|
extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end);
|
||
|
extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end);
|
||
|
|
||
|
static inline void mmu_notifier_release(struct mm_struct *mm)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_release(mm);
|
||
|
}
|
||
|
|
||
|
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
return __mmu_notifier_clear_flush_young(mm, address);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
|
||
|
unsigned long address, pte_t pte)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_change_pte(mm, address, pte);
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_invalidate_page(mm, address);
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_invalidate_range_start(mm, start, end);
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_invalidate_range_end(mm, start, end);
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_mm_init(struct mm_struct *mm)
|
||
|
{
|
||
|
mm->mmu_notifier_mm = NULL;
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
|
||
|
{
|
||
|
if (mm_has_notifiers(mm))
|
||
|
__mmu_notifier_mm_destroy(mm);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These two macros will sometime replace ptep_clear_flush.
|
||
|
* ptep_clear_flush is impleemnted as macro itself, so this also is
|
||
|
* implemented as a macro until ptep_clear_flush will converted to an
|
||
|
* inline function, to diminish the risk of compilation failure. The
|
||
|
* invalidate_page method over time can be moved outside the PT lock
|
||
|
* and these two macros can be later removed.
|
||
|
*/
|
||
|
#define ptep_clear_flush_notify(__vma, __address, __ptep) \
|
||
|
({ \
|
||
|
pte_t __pte; \
|
||
|
struct vm_area_struct *___vma = __vma; \
|
||
|
unsigned long ___address = __address; \
|
||
|
__pte = ptep_clear_flush(___vma, ___address, __ptep); \
|
||
|
mmu_notifier_invalidate_page(___vma->vm_mm, ___address); \
|
||
|
__pte; \
|
||
|
})
|
||
|
|
||
|
#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
|
||
|
({ \
|
||
|
int __young; \
|
||
|
struct vm_area_struct *___vma = __vma; \
|
||
|
unsigned long ___address = __address; \
|
||
|
__young = ptep_clear_flush_young(___vma, ___address, __ptep); \
|
||
|
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
|
||
|
___address); \
|
||
|
__young; \
|
||
|
})
|
||
|
|
||
|
#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
|
||
|
({ \
|
||
|
struct mm_struct *___mm = __mm; \
|
||
|
unsigned long ___address = __address; \
|
||
|
pte_t ___pte = __pte; \
|
||
|
\
|
||
|
set_pte_at(___mm, ___address, __ptep, ___pte); \
|
||
|
mmu_notifier_change_pte(___mm, ___address, ___pte); \
|
||
|
})
|
||
|
|
||
|
#else /* CONFIG_MMU_NOTIFIER */
|
||
|
|
||
|
static inline void mmu_notifier_release(struct mm_struct *mm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
|
||
|
unsigned long address, pte_t pte)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
|
||
|
unsigned long start, unsigned long end)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_mm_init(struct mm_struct *mm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#define ptep_clear_flush_young_notify ptep_clear_flush_young
|
||
|
#define ptep_clear_flush_notify ptep_clear_flush
|
||
|
#define set_pte_at_notify set_pte_at
|
||
|
|
||
|
#endif /* CONFIG_MMU_NOTIFIER */
|
||
|
|
||
|
#endif /* _LINUX_MMU_NOTIFIER_H */
|