2355 lines
61 KiB
C
2355 lines
61 KiB
C
|
/*
|
||
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
||
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
||
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
||
|
* Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* DOC: Wireless regulatory infrastructure
|
||
|
*
|
||
|
* The usual implementation is for a driver to read a device EEPROM to
|
||
|
* determine which regulatory domain it should be operating under, then
|
||
|
* looking up the allowable channels in a driver-local table and finally
|
||
|
* registering those channels in the wiphy structure.
|
||
|
*
|
||
|
* Another set of compliance enforcement is for drivers to use their
|
||
|
* own compliance limits which can be stored on the EEPROM. The host
|
||
|
* driver or firmware may ensure these are used.
|
||
|
*
|
||
|
* In addition to all this we provide an extra layer of regulatory
|
||
|
* conformance. For drivers which do not have any regulatory
|
||
|
* information CRDA provides the complete regulatory solution.
|
||
|
* For others it provides a community effort on further restrictions
|
||
|
* to enhance compliance.
|
||
|
*
|
||
|
* Note: When number of rules --> infinity we will not be able to
|
||
|
* index on alpha2 any more, instead we'll probably have to
|
||
|
* rely on some SHA1 checksum of the regdomain for example.
|
||
|
*
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/nl80211.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <net/cfg80211.h>
|
||
|
#include "core.h"
|
||
|
#include "reg.h"
|
||
|
#include "nl80211.h"
|
||
|
|
||
|
/* Receipt of information from last regulatory request */
|
||
|
static struct regulatory_request *last_request;
|
||
|
|
||
|
/* To trigger userspace events */
|
||
|
static struct platform_device *reg_pdev;
|
||
|
|
||
|
/*
|
||
|
* Central wireless core regulatory domains, we only need two,
|
||
|
* the current one and a world regulatory domain in case we have no
|
||
|
* information to give us an alpha2
|
||
|
*/
|
||
|
const struct ieee80211_regdomain *cfg80211_regdomain;
|
||
|
|
||
|
/*
|
||
|
* We use this as a place for the rd structure built from the
|
||
|
* last parsed country IE to rest until CRDA gets back to us with
|
||
|
* what it thinks should apply for the same country
|
||
|
*/
|
||
|
static const struct ieee80211_regdomain *country_ie_regdomain;
|
||
|
|
||
|
/*
|
||
|
* Protects static reg.c components:
|
||
|
* - cfg80211_world_regdom
|
||
|
* - cfg80211_regdom
|
||
|
* - country_ie_regdomain
|
||
|
* - last_request
|
||
|
*/
|
||
|
DEFINE_MUTEX(reg_mutex);
|
||
|
#define assert_reg_lock() WARN_ON(!mutex_is_locked(®_mutex))
|
||
|
|
||
|
/* Used to queue up regulatory hints */
|
||
|
static LIST_HEAD(reg_requests_list);
|
||
|
static spinlock_t reg_requests_lock;
|
||
|
|
||
|
/* Used to queue up beacon hints for review */
|
||
|
static LIST_HEAD(reg_pending_beacons);
|
||
|
static spinlock_t reg_pending_beacons_lock;
|
||
|
|
||
|
/* Used to keep track of processed beacon hints */
|
||
|
static LIST_HEAD(reg_beacon_list);
|
||
|
|
||
|
struct reg_beacon {
|
||
|
struct list_head list;
|
||
|
struct ieee80211_channel chan;
|
||
|
};
|
||
|
|
||
|
/* We keep a static world regulatory domain in case of the absence of CRDA */
|
||
|
static const struct ieee80211_regdomain world_regdom = {
|
||
|
.n_reg_rules = 5,
|
||
|
.alpha2 = "00",
|
||
|
.reg_rules = {
|
||
|
/* IEEE 802.11b/g, channels 1..11 */
|
||
|
REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
|
||
|
/* IEEE 802.11b/g, channels 12..13. No HT40
|
||
|
* channel fits here. */
|
||
|
REG_RULE(2467-10, 2472+10, 20, 6, 20,
|
||
|
NL80211_RRF_PASSIVE_SCAN |
|
||
|
NL80211_RRF_NO_IBSS),
|
||
|
/* IEEE 802.11 channel 14 - Only JP enables
|
||
|
* this and for 802.11b only */
|
||
|
REG_RULE(2484-10, 2484+10, 20, 6, 20,
|
||
|
NL80211_RRF_PASSIVE_SCAN |
|
||
|
NL80211_RRF_NO_IBSS |
|
||
|
NL80211_RRF_NO_OFDM),
|
||
|
/* IEEE 802.11a, channel 36..48 */
|
||
|
REG_RULE(5180-10, 5240+10, 40, 6, 20,
|
||
|
NL80211_RRF_PASSIVE_SCAN |
|
||
|
NL80211_RRF_NO_IBSS),
|
||
|
|
||
|
/* NB: 5260 MHz - 5700 MHz requies DFS */
|
||
|
|
||
|
/* IEEE 802.11a, channel 149..165 */
|
||
|
REG_RULE(5745-10, 5825+10, 40, 6, 20,
|
||
|
NL80211_RRF_PASSIVE_SCAN |
|
||
|
NL80211_RRF_NO_IBSS),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct ieee80211_regdomain *cfg80211_world_regdom =
|
||
|
&world_regdom;
|
||
|
|
||
|
static char *ieee80211_regdom = "00";
|
||
|
|
||
|
module_param(ieee80211_regdom, charp, 0444);
|
||
|
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
|
||
|
|
||
|
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
|
||
|
/*
|
||
|
* We assume 40 MHz bandwidth for the old regulatory work.
|
||
|
* We make emphasis we are using the exact same frequencies
|
||
|
* as before
|
||
|
*/
|
||
|
|
||
|
static const struct ieee80211_regdomain us_regdom = {
|
||
|
.n_reg_rules = 6,
|
||
|
.alpha2 = "US",
|
||
|
.reg_rules = {
|
||
|
/* IEEE 802.11b/g, channels 1..11 */
|
||
|
REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
|
||
|
/* IEEE 802.11a, channel 36 */
|
||
|
REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
|
||
|
/* IEEE 802.11a, channel 40 */
|
||
|
REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
|
||
|
/* IEEE 802.11a, channel 44 */
|
||
|
REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
|
||
|
/* IEEE 802.11a, channels 48..64 */
|
||
|
REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
|
||
|
/* IEEE 802.11a, channels 149..165, outdoor */
|
||
|
REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct ieee80211_regdomain jp_regdom = {
|
||
|
.n_reg_rules = 3,
|
||
|
.alpha2 = "JP",
|
||
|
.reg_rules = {
|
||
|
/* IEEE 802.11b/g, channels 1..14 */
|
||
|
REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
|
||
|
/* IEEE 802.11a, channels 34..48 */
|
||
|
REG_RULE(5170-10, 5240+10, 40, 6, 20,
|
||
|
NL80211_RRF_PASSIVE_SCAN),
|
||
|
/* IEEE 802.11a, channels 52..64 */
|
||
|
REG_RULE(5260-10, 5320+10, 40, 6, 20,
|
||
|
NL80211_RRF_NO_IBSS |
|
||
|
NL80211_RRF_DFS),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct ieee80211_regdomain eu_regdom = {
|
||
|
.n_reg_rules = 6,
|
||
|
/*
|
||
|
* This alpha2 is bogus, we leave it here just for stupid
|
||
|
* backward compatibility
|
||
|
*/
|
||
|
.alpha2 = "EU",
|
||
|
.reg_rules = {
|
||
|
/* IEEE 802.11b/g, channels 1..13 */
|
||
|
REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
|
||
|
/* IEEE 802.11a, channel 36 */
|
||
|
REG_RULE(5180-10, 5180+10, 40, 6, 23,
|
||
|
NL80211_RRF_PASSIVE_SCAN),
|
||
|
/* IEEE 802.11a, channel 40 */
|
||
|
REG_RULE(5200-10, 5200+10, 40, 6, 23,
|
||
|
NL80211_RRF_PASSIVE_SCAN),
|
||
|
/* IEEE 802.11a, channel 44 */
|
||
|
REG_RULE(5220-10, 5220+10, 40, 6, 23,
|
||
|
NL80211_RRF_PASSIVE_SCAN),
|
||
|
/* IEEE 802.11a, channels 48..64 */
|
||
|
REG_RULE(5240-10, 5320+10, 40, 6, 20,
|
||
|
NL80211_RRF_NO_IBSS |
|
||
|
NL80211_RRF_DFS),
|
||
|
/* IEEE 802.11a, channels 100..140 */
|
||
|
REG_RULE(5500-10, 5700+10, 40, 6, 30,
|
||
|
NL80211_RRF_NO_IBSS |
|
||
|
NL80211_RRF_DFS),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct ieee80211_regdomain *static_regdom(char *alpha2)
|
||
|
{
|
||
|
if (alpha2[0] == 'U' && alpha2[1] == 'S')
|
||
|
return &us_regdom;
|
||
|
if (alpha2[0] == 'J' && alpha2[1] == 'P')
|
||
|
return &jp_regdom;
|
||
|
if (alpha2[0] == 'E' && alpha2[1] == 'U')
|
||
|
return &eu_regdom;
|
||
|
/* Default, as per the old rules */
|
||
|
return &us_regdom;
|
||
|
}
|
||
|
|
||
|
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
#else
|
||
|
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void reset_regdomains(void)
|
||
|
{
|
||
|
/* avoid freeing static information or freeing something twice */
|
||
|
if (cfg80211_regdomain == cfg80211_world_regdom)
|
||
|
cfg80211_regdomain = NULL;
|
||
|
if (cfg80211_world_regdom == &world_regdom)
|
||
|
cfg80211_world_regdom = NULL;
|
||
|
if (cfg80211_regdomain == &world_regdom)
|
||
|
cfg80211_regdomain = NULL;
|
||
|
if (is_old_static_regdom(cfg80211_regdomain))
|
||
|
cfg80211_regdomain = NULL;
|
||
|
|
||
|
kfree(cfg80211_regdomain);
|
||
|
kfree(cfg80211_world_regdom);
|
||
|
|
||
|
cfg80211_world_regdom = &world_regdom;
|
||
|
cfg80211_regdomain = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dynamic world regulatory domain requested by the wireless
|
||
|
* core upon initialization
|
||
|
*/
|
||
|
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
BUG_ON(!last_request);
|
||
|
|
||
|
reset_regdomains();
|
||
|
|
||
|
cfg80211_world_regdom = rd;
|
||
|
cfg80211_regdomain = rd;
|
||
|
}
|
||
|
|
||
|
bool is_world_regdom(const char *alpha2)
|
||
|
{
|
||
|
if (!alpha2)
|
||
|
return false;
|
||
|
if (alpha2[0] == '0' && alpha2[1] == '0')
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_alpha2_set(const char *alpha2)
|
||
|
{
|
||
|
if (!alpha2)
|
||
|
return false;
|
||
|
if (alpha2[0] != 0 && alpha2[1] != 0)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_alpha_upper(char letter)
|
||
|
{
|
||
|
/* ASCII A - Z */
|
||
|
if (letter >= 65 && letter <= 90)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_unknown_alpha2(const char *alpha2)
|
||
|
{
|
||
|
if (!alpha2)
|
||
|
return false;
|
||
|
/*
|
||
|
* Special case where regulatory domain was built by driver
|
||
|
* but a specific alpha2 cannot be determined
|
||
|
*/
|
||
|
if (alpha2[0] == '9' && alpha2[1] == '9')
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_intersected_alpha2(const char *alpha2)
|
||
|
{
|
||
|
if (!alpha2)
|
||
|
return false;
|
||
|
/*
|
||
|
* Special case where regulatory domain is the
|
||
|
* result of an intersection between two regulatory domain
|
||
|
* structures
|
||
|
*/
|
||
|
if (alpha2[0] == '9' && alpha2[1] == '8')
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_an_alpha2(const char *alpha2)
|
||
|
{
|
||
|
if (!alpha2)
|
||
|
return false;
|
||
|
if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
|
||
|
{
|
||
|
if (!alpha2_x || !alpha2_y)
|
||
|
return false;
|
||
|
if (alpha2_x[0] == alpha2_y[0] &&
|
||
|
alpha2_x[1] == alpha2_y[1])
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool regdom_changes(const char *alpha2)
|
||
|
{
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
if (!cfg80211_regdomain)
|
||
|
return true;
|
||
|
if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* country_ie_integrity_changes - tells us if the country IE has changed
|
||
|
* @checksum: checksum of country IE of fields we are interested in
|
||
|
*
|
||
|
* If the country IE has not changed you can ignore it safely. This is
|
||
|
* useful to determine if two devices are seeing two different country IEs
|
||
|
* even on the same alpha2. Note that this will return false if no IE has
|
||
|
* been set on the wireless core yet.
|
||
|
*/
|
||
|
static bool country_ie_integrity_changes(u32 checksum)
|
||
|
{
|
||
|
/* If no IE has been set then the checksum doesn't change */
|
||
|
if (unlikely(!last_request->country_ie_checksum))
|
||
|
return false;
|
||
|
if (unlikely(last_request->country_ie_checksum != checksum))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This lets us keep regulatory code which is updated on a regulatory
|
||
|
* basis in userspace.
|
||
|
*/
|
||
|
static int call_crda(const char *alpha2)
|
||
|
{
|
||
|
char country_env[9 + 2] = "COUNTRY=";
|
||
|
char *envp[] = {
|
||
|
country_env,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
if (!is_world_regdom((char *) alpha2))
|
||
|
printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
|
||
|
alpha2[0], alpha2[1]);
|
||
|
else
|
||
|
printk(KERN_INFO "cfg80211: Calling CRDA to update world "
|
||
|
"regulatory domain\n");
|
||
|
|
||
|
country_env[8] = alpha2[0];
|
||
|
country_env[9] = alpha2[1];
|
||
|
|
||
|
return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp);
|
||
|
}
|
||
|
|
||
|
/* Used by nl80211 before kmalloc'ing our regulatory domain */
|
||
|
bool reg_is_valid_request(const char *alpha2)
|
||
|
{
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
if (!last_request)
|
||
|
return false;
|
||
|
|
||
|
return alpha2_equal(last_request->alpha2, alpha2);
|
||
|
}
|
||
|
|
||
|
/* Sanity check on a regulatory rule */
|
||
|
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
|
||
|
{
|
||
|
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
|
||
|
u32 freq_diff;
|
||
|
|
||
|
if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
|
||
|
return false;
|
||
|
|
||
|
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
|
||
|
return false;
|
||
|
|
||
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
||
|
|
||
|
if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
|
||
|
freq_range->max_bandwidth_khz > freq_diff)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
||
|
unsigned int i;
|
||
|
|
||
|
if (!rd->n_reg_rules)
|
||
|
return false;
|
||
|
|
||
|
if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
|
||
|
return false;
|
||
|
|
||
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
||
|
reg_rule = &rd->reg_rules[i];
|
||
|
if (!is_valid_reg_rule(reg_rule))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
|
||
|
u32 center_freq_khz,
|
||
|
u32 bw_khz)
|
||
|
{
|
||
|
u32 start_freq_khz, end_freq_khz;
|
||
|
|
||
|
start_freq_khz = center_freq_khz - (bw_khz/2);
|
||
|
end_freq_khz = center_freq_khz + (bw_khz/2);
|
||
|
|
||
|
if (start_freq_khz >= freq_range->start_freq_khz &&
|
||
|
end_freq_khz <= freq_range->end_freq_khz)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* freq_in_rule_band - tells us if a frequency is in a frequency band
|
||
|
* @freq_range: frequency rule we want to query
|
||
|
* @freq_khz: frequency we are inquiring about
|
||
|
*
|
||
|
* This lets us know if a specific frequency rule is or is not relevant to
|
||
|
* a specific frequency's band. Bands are device specific and artificial
|
||
|
* definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
|
||
|
* safe for now to assume that a frequency rule should not be part of a
|
||
|
* frequency's band if the start freq or end freq are off by more than 2 GHz.
|
||
|
* This resolution can be lowered and should be considered as we add
|
||
|
* regulatory rule support for other "bands".
|
||
|
**/
|
||
|
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
|
||
|
u32 freq_khz)
|
||
|
{
|
||
|
#define ONE_GHZ_IN_KHZ 1000000
|
||
|
if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
||
|
return true;
|
||
|
if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
||
|
return true;
|
||
|
return false;
|
||
|
#undef ONE_GHZ_IN_KHZ
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Converts a country IE to a regulatory domain. A regulatory domain
|
||
|
* structure has a lot of information which the IE doesn't yet have,
|
||
|
* so for the other values we use upper max values as we will intersect
|
||
|
* with our userspace regulatory agent to get lower bounds.
|
||
|
*/
|
||
|
static struct ieee80211_regdomain *country_ie_2_rd(
|
||
|
u8 *country_ie,
|
||
|
u8 country_ie_len,
|
||
|
u32 *checksum)
|
||
|
{
|
||
|
struct ieee80211_regdomain *rd = NULL;
|
||
|
unsigned int i = 0;
|
||
|
char alpha2[2];
|
||
|
u32 flags = 0;
|
||
|
u32 num_rules = 0, size_of_regd = 0;
|
||
|
u8 *triplets_start = NULL;
|
||
|
u8 len_at_triplet = 0;
|
||
|
/* the last channel we have registered in a subband (triplet) */
|
||
|
int last_sub_max_channel = 0;
|
||
|
|
||
|
*checksum = 0xDEADBEEF;
|
||
|
|
||
|
/* Country IE requirements */
|
||
|
BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
|
||
|
country_ie_len & 0x01);
|
||
|
|
||
|
alpha2[0] = country_ie[0];
|
||
|
alpha2[1] = country_ie[1];
|
||
|
|
||
|
/*
|
||
|
* Third octet can be:
|
||
|
* 'I' - Indoor
|
||
|
* 'O' - Outdoor
|
||
|
*
|
||
|
* anything else we assume is no restrictions
|
||
|
*/
|
||
|
if (country_ie[2] == 'I')
|
||
|
flags = NL80211_RRF_NO_OUTDOOR;
|
||
|
else if (country_ie[2] == 'O')
|
||
|
flags = NL80211_RRF_NO_INDOOR;
|
||
|
|
||
|
country_ie += 3;
|
||
|
country_ie_len -= 3;
|
||
|
|
||
|
triplets_start = country_ie;
|
||
|
len_at_triplet = country_ie_len;
|
||
|
|
||
|
*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
|
||
|
|
||
|
/*
|
||
|
* We need to build a reg rule for each triplet, but first we must
|
||
|
* calculate the number of reg rules we will need. We will need one
|
||
|
* for each channel subband
|
||
|
*/
|
||
|
while (country_ie_len >= 3) {
|
||
|
int end_channel = 0;
|
||
|
struct ieee80211_country_ie_triplet *triplet =
|
||
|
(struct ieee80211_country_ie_triplet *) country_ie;
|
||
|
int cur_sub_max_channel = 0, cur_channel = 0;
|
||
|
|
||
|
if (triplet->ext.reg_extension_id >=
|
||
|
IEEE80211_COUNTRY_EXTENSION_ID) {
|
||
|
country_ie += 3;
|
||
|
country_ie_len -= 3;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* 2 GHz */
|
||
|
if (triplet->chans.first_channel <= 14)
|
||
|
end_channel = triplet->chans.first_channel +
|
||
|
triplet->chans.num_channels;
|
||
|
else
|
||
|
/*
|
||
|
* 5 GHz -- For example in country IEs if the first
|
||
|
* channel given is 36 and the number of channels is 4
|
||
|
* then the individual channel numbers defined for the
|
||
|
* 5 GHz PHY by these parameters are: 36, 40, 44, and 48
|
||
|
* and not 36, 37, 38, 39.
|
||
|
*
|
||
|
* See: http://tinyurl.com/11d-clarification
|
||
|
*/
|
||
|
end_channel = triplet->chans.first_channel +
|
||
|
(4 * (triplet->chans.num_channels - 1));
|
||
|
|
||
|
cur_channel = triplet->chans.first_channel;
|
||
|
cur_sub_max_channel = end_channel;
|
||
|
|
||
|
/* Basic sanity check */
|
||
|
if (cur_sub_max_channel < cur_channel)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* Do not allow overlapping channels. Also channels
|
||
|
* passed in each subband must be monotonically
|
||
|
* increasing
|
||
|
*/
|
||
|
if (last_sub_max_channel) {
|
||
|
if (cur_channel <= last_sub_max_channel)
|
||
|
return NULL;
|
||
|
if (cur_sub_max_channel <= last_sub_max_channel)
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When dot11RegulatoryClassesRequired is supported
|
||
|
* we can throw ext triplets as part of this soup,
|
||
|
* for now we don't care when those change as we
|
||
|
* don't support them
|
||
|
*/
|
||
|
*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
|
||
|
((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
|
||
|
((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
|
||
|
|
||
|
last_sub_max_channel = cur_sub_max_channel;
|
||
|
|
||
|
country_ie += 3;
|
||
|
country_ie_len -= 3;
|
||
|
num_rules++;
|
||
|
|
||
|
/*
|
||
|
* Note: this is not a IEEE requirement but
|
||
|
* simply a memory requirement
|
||
|
*/
|
||
|
if (num_rules > NL80211_MAX_SUPP_REG_RULES)
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
country_ie = triplets_start;
|
||
|
country_ie_len = len_at_triplet;
|
||
|
|
||
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
||
|
(num_rules * sizeof(struct ieee80211_reg_rule));
|
||
|
|
||
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
||
|
if (!rd)
|
||
|
return NULL;
|
||
|
|
||
|
rd->n_reg_rules = num_rules;
|
||
|
rd->alpha2[0] = alpha2[0];
|
||
|
rd->alpha2[1] = alpha2[1];
|
||
|
|
||
|
/* This time around we fill in the rd */
|
||
|
while (country_ie_len >= 3) {
|
||
|
int end_channel = 0;
|
||
|
struct ieee80211_country_ie_triplet *triplet =
|
||
|
(struct ieee80211_country_ie_triplet *) country_ie;
|
||
|
struct ieee80211_reg_rule *reg_rule = NULL;
|
||
|
struct ieee80211_freq_range *freq_range = NULL;
|
||
|
struct ieee80211_power_rule *power_rule = NULL;
|
||
|
|
||
|
/*
|
||
|
* Must parse if dot11RegulatoryClassesRequired is true,
|
||
|
* we don't support this yet
|
||
|
*/
|
||
|
if (triplet->ext.reg_extension_id >=
|
||
|
IEEE80211_COUNTRY_EXTENSION_ID) {
|
||
|
country_ie += 3;
|
||
|
country_ie_len -= 3;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
reg_rule = &rd->reg_rules[i];
|
||
|
freq_range = ®_rule->freq_range;
|
||
|
power_rule = ®_rule->power_rule;
|
||
|
|
||
|
reg_rule->flags = flags;
|
||
|
|
||
|
/* 2 GHz */
|
||
|
if (triplet->chans.first_channel <= 14)
|
||
|
end_channel = triplet->chans.first_channel +
|
||
|
triplet->chans.num_channels;
|
||
|
else
|
||
|
end_channel = triplet->chans.first_channel +
|
||
|
(4 * (triplet->chans.num_channels - 1));
|
||
|
|
||
|
/*
|
||
|
* The +10 is since the regulatory domain expects
|
||
|
* the actual band edge, not the center of freq for
|
||
|
* its start and end freqs, assuming 20 MHz bandwidth on
|
||
|
* the channels passed
|
||
|
*/
|
||
|
freq_range->start_freq_khz =
|
||
|
MHZ_TO_KHZ(ieee80211_channel_to_frequency(
|
||
|
triplet->chans.first_channel) - 10);
|
||
|
freq_range->end_freq_khz =
|
||
|
MHZ_TO_KHZ(ieee80211_channel_to_frequency(
|
||
|
end_channel) + 10);
|
||
|
|
||
|
/*
|
||
|
* These are large arbitrary values we use to intersect later.
|
||
|
* Increment this if we ever support >= 40 MHz channels
|
||
|
* in IEEE 802.11
|
||
|
*/
|
||
|
freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
|
||
|
power_rule->max_antenna_gain = DBI_TO_MBI(100);
|
||
|
power_rule->max_eirp = DBM_TO_MBM(100);
|
||
|
|
||
|
country_ie += 3;
|
||
|
country_ie_len -= 3;
|
||
|
i++;
|
||
|
|
||
|
BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
|
||
|
}
|
||
|
|
||
|
return rd;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Helper for regdom_intersect(), this does the real
|
||
|
* mathematical intersection fun
|
||
|
*/
|
||
|
static int reg_rules_intersect(
|
||
|
const struct ieee80211_reg_rule *rule1,
|
||
|
const struct ieee80211_reg_rule *rule2,
|
||
|
struct ieee80211_reg_rule *intersected_rule)
|
||
|
{
|
||
|
const struct ieee80211_freq_range *freq_range1, *freq_range2;
|
||
|
struct ieee80211_freq_range *freq_range;
|
||
|
const struct ieee80211_power_rule *power_rule1, *power_rule2;
|
||
|
struct ieee80211_power_rule *power_rule;
|
||
|
u32 freq_diff;
|
||
|
|
||
|
freq_range1 = &rule1->freq_range;
|
||
|
freq_range2 = &rule2->freq_range;
|
||
|
freq_range = &intersected_rule->freq_range;
|
||
|
|
||
|
power_rule1 = &rule1->power_rule;
|
||
|
power_rule2 = &rule2->power_rule;
|
||
|
power_rule = &intersected_rule->power_rule;
|
||
|
|
||
|
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
|
||
|
freq_range2->start_freq_khz);
|
||
|
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
|
||
|
freq_range2->end_freq_khz);
|
||
|
freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
|
||
|
freq_range2->max_bandwidth_khz);
|
||
|
|
||
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
||
|
if (freq_range->max_bandwidth_khz > freq_diff)
|
||
|
freq_range->max_bandwidth_khz = freq_diff;
|
||
|
|
||
|
power_rule->max_eirp = min(power_rule1->max_eirp,
|
||
|
power_rule2->max_eirp);
|
||
|
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
|
||
|
power_rule2->max_antenna_gain);
|
||
|
|
||
|
intersected_rule->flags = (rule1->flags | rule2->flags);
|
||
|
|
||
|
if (!is_valid_reg_rule(intersected_rule))
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* regdom_intersect - do the intersection between two regulatory domains
|
||
|
* @rd1: first regulatory domain
|
||
|
* @rd2: second regulatory domain
|
||
|
*
|
||
|
* Use this function to get the intersection between two regulatory domains.
|
||
|
* Once completed we will mark the alpha2 for the rd as intersected, "98",
|
||
|
* as no one single alpha2 can represent this regulatory domain.
|
||
|
*
|
||
|
* Returns a pointer to the regulatory domain structure which will hold the
|
||
|
* resulting intersection of rules between rd1 and rd2. We will
|
||
|
* kzalloc() this structure for you.
|
||
|
*/
|
||
|
static struct ieee80211_regdomain *regdom_intersect(
|
||
|
const struct ieee80211_regdomain *rd1,
|
||
|
const struct ieee80211_regdomain *rd2)
|
||
|
{
|
||
|
int r, size_of_regd;
|
||
|
unsigned int x, y;
|
||
|
unsigned int num_rules = 0, rule_idx = 0;
|
||
|
const struct ieee80211_reg_rule *rule1, *rule2;
|
||
|
struct ieee80211_reg_rule *intersected_rule;
|
||
|
struct ieee80211_regdomain *rd;
|
||
|
/* This is just a dummy holder to help us count */
|
||
|
struct ieee80211_reg_rule irule;
|
||
|
|
||
|
/* Uses the stack temporarily for counter arithmetic */
|
||
|
intersected_rule = &irule;
|
||
|
|
||
|
memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
|
||
|
|
||
|
if (!rd1 || !rd2)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* First we get a count of the rules we'll need, then we actually
|
||
|
* build them. This is to so we can malloc() and free() a
|
||
|
* regdomain once. The reason we use reg_rules_intersect() here
|
||
|
* is it will return -EINVAL if the rule computed makes no sense.
|
||
|
* All rules that do check out OK are valid.
|
||
|
*/
|
||
|
|
||
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
||
|
rule1 = &rd1->reg_rules[x];
|
||
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
||
|
rule2 = &rd2->reg_rules[y];
|
||
|
if (!reg_rules_intersect(rule1, rule2,
|
||
|
intersected_rule))
|
||
|
num_rules++;
|
||
|
memset(intersected_rule, 0,
|
||
|
sizeof(struct ieee80211_reg_rule));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!num_rules)
|
||
|
return NULL;
|
||
|
|
||
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
||
|
((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
||
|
|
||
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
||
|
if (!rd)
|
||
|
return NULL;
|
||
|
|
||
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
||
|
rule1 = &rd1->reg_rules[x];
|
||
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
||
|
rule2 = &rd2->reg_rules[y];
|
||
|
/*
|
||
|
* This time around instead of using the stack lets
|
||
|
* write to the target rule directly saving ourselves
|
||
|
* a memcpy()
|
||
|
*/
|
||
|
intersected_rule = &rd->reg_rules[rule_idx];
|
||
|
r = reg_rules_intersect(rule1, rule2,
|
||
|
intersected_rule);
|
||
|
/*
|
||
|
* No need to memset here the intersected rule here as
|
||
|
* we're not using the stack anymore
|
||
|
*/
|
||
|
if (r)
|
||
|
continue;
|
||
|
rule_idx++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (rule_idx != num_rules) {
|
||
|
kfree(rd);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
rd->n_reg_rules = num_rules;
|
||
|
rd->alpha2[0] = '9';
|
||
|
rd->alpha2[1] = '8';
|
||
|
|
||
|
return rd;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
|
||
|
* want to just have the channel structure use these
|
||
|
*/
|
||
|
static u32 map_regdom_flags(u32 rd_flags)
|
||
|
{
|
||
|
u32 channel_flags = 0;
|
||
|
if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
|
||
|
channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
||
|
if (rd_flags & NL80211_RRF_NO_IBSS)
|
||
|
channel_flags |= IEEE80211_CHAN_NO_IBSS;
|
||
|
if (rd_flags & NL80211_RRF_DFS)
|
||
|
channel_flags |= IEEE80211_CHAN_RADAR;
|
||
|
return channel_flags;
|
||
|
}
|
||
|
|
||
|
static int freq_reg_info_regd(struct wiphy *wiphy,
|
||
|
u32 center_freq,
|
||
|
u32 desired_bw_khz,
|
||
|
const struct ieee80211_reg_rule **reg_rule,
|
||
|
const struct ieee80211_regdomain *custom_regd)
|
||
|
{
|
||
|
int i;
|
||
|
bool band_rule_found = false;
|
||
|
const struct ieee80211_regdomain *regd;
|
||
|
bool bw_fits = false;
|
||
|
|
||
|
if (!desired_bw_khz)
|
||
|
desired_bw_khz = MHZ_TO_KHZ(20);
|
||
|
|
||
|
regd = custom_regd ? custom_regd : cfg80211_regdomain;
|
||
|
|
||
|
/*
|
||
|
* Follow the driver's regulatory domain, if present, unless a country
|
||
|
* IE has been processed or a user wants to help complaince further
|
||
|
*/
|
||
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
||
|
last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
|
||
|
wiphy->regd)
|
||
|
regd = wiphy->regd;
|
||
|
|
||
|
if (!regd)
|
||
|
return -EINVAL;
|
||
|
|
||
|
for (i = 0; i < regd->n_reg_rules; i++) {
|
||
|
const struct ieee80211_reg_rule *rr;
|
||
|
const struct ieee80211_freq_range *fr = NULL;
|
||
|
const struct ieee80211_power_rule *pr = NULL;
|
||
|
|
||
|
rr = ®d->reg_rules[i];
|
||
|
fr = &rr->freq_range;
|
||
|
pr = &rr->power_rule;
|
||
|
|
||
|
/*
|
||
|
* We only need to know if one frequency rule was
|
||
|
* was in center_freq's band, that's enough, so lets
|
||
|
* not overwrite it once found
|
||
|
*/
|
||
|
if (!band_rule_found)
|
||
|
band_rule_found = freq_in_rule_band(fr, center_freq);
|
||
|
|
||
|
bw_fits = reg_does_bw_fit(fr,
|
||
|
center_freq,
|
||
|
desired_bw_khz);
|
||
|
|
||
|
if (band_rule_found && bw_fits) {
|
||
|
*reg_rule = rr;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!band_rule_found)
|
||
|
return -ERANGE;
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(freq_reg_info);
|
||
|
|
||
|
int freq_reg_info(struct wiphy *wiphy,
|
||
|
u32 center_freq,
|
||
|
u32 desired_bw_khz,
|
||
|
const struct ieee80211_reg_rule **reg_rule)
|
||
|
{
|
||
|
assert_cfg80211_lock();
|
||
|
return freq_reg_info_regd(wiphy,
|
||
|
center_freq,
|
||
|
desired_bw_khz,
|
||
|
reg_rule,
|
||
|
NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that right now we assume the desired channel bandwidth
|
||
|
* is always 20 MHz for each individual channel (HT40 uses 20 MHz
|
||
|
* per channel, the primary and the extension channel). To support
|
||
|
* smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
|
||
|
* new ieee80211_channel.target_bw and re run the regulatory check
|
||
|
* on the wiphy with the target_bw specified. Then we can simply use
|
||
|
* that below for the desired_bw_khz below.
|
||
|
*/
|
||
|
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
|
||
|
unsigned int chan_idx)
|
||
|
{
|
||
|
int r;
|
||
|
u32 flags, bw_flags = 0;
|
||
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
||
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
||
|
const struct ieee80211_power_rule *power_rule = NULL;
|
||
|
const struct ieee80211_freq_range *freq_range = NULL;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct ieee80211_channel *chan;
|
||
|
struct wiphy *request_wiphy = NULL;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
||
|
|
||
|
sband = wiphy->bands[band];
|
||
|
BUG_ON(chan_idx >= sband->n_channels);
|
||
|
chan = &sband->channels[chan_idx];
|
||
|
|
||
|
flags = chan->orig_flags;
|
||
|
|
||
|
r = freq_reg_info(wiphy,
|
||
|
MHZ_TO_KHZ(chan->center_freq),
|
||
|
desired_bw_khz,
|
||
|
®_rule);
|
||
|
|
||
|
if (r) {
|
||
|
/*
|
||
|
* This means no regulatory rule was found in the country IE
|
||
|
* with a frequency range on the center_freq's band, since
|
||
|
* IEEE-802.11 allows for a country IE to have a subset of the
|
||
|
* regulatory information provided in a country we ignore
|
||
|
* disabling the channel unless at least one reg rule was
|
||
|
* found on the center_freq's band. For details see this
|
||
|
* clarification:
|
||
|
*
|
||
|
* http://tinyurl.com/11d-clarification
|
||
|
*/
|
||
|
if (r == -ERANGE &&
|
||
|
last_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
||
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
||
|
printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
|
||
|
"intact on %s - no rule found in band on "
|
||
|
"Country IE\n",
|
||
|
chan->center_freq, wiphy_name(wiphy));
|
||
|
#endif
|
||
|
} else {
|
||
|
/*
|
||
|
* In this case we know the country IE has at least one reg rule
|
||
|
* for the band so we respect its band definitions
|
||
|
*/
|
||
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
||
|
if (last_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE)
|
||
|
printk(KERN_DEBUG "cfg80211: Disabling "
|
||
|
"channel %d MHz on %s due to "
|
||
|
"Country IE\n",
|
||
|
chan->center_freq, wiphy_name(wiphy));
|
||
|
#endif
|
||
|
flags |= IEEE80211_CHAN_DISABLED;
|
||
|
chan->flags = flags;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
power_rule = ®_rule->power_rule;
|
||
|
freq_range = ®_rule->freq_range;
|
||
|
|
||
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
||
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
||
|
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
||
|
request_wiphy && request_wiphy == wiphy &&
|
||
|
request_wiphy->strict_regulatory) {
|
||
|
/*
|
||
|
* This gaurantees the driver's requested regulatory domain
|
||
|
* will always be used as a base for further regulatory
|
||
|
* settings
|
||
|
*/
|
||
|
chan->flags = chan->orig_flags =
|
||
|
map_regdom_flags(reg_rule->flags) | bw_flags;
|
||
|
chan->max_antenna_gain = chan->orig_mag =
|
||
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
||
|
chan->max_power = chan->orig_mpwr =
|
||
|
(int) MBM_TO_DBM(power_rule->max_eirp);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
|
||
|
chan->max_antenna_gain = min(chan->orig_mag,
|
||
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain));
|
||
|
if (chan->orig_mpwr)
|
||
|
chan->max_power = min(chan->orig_mpwr,
|
||
|
(int) MBM_TO_DBM(power_rule->max_eirp));
|
||
|
else
|
||
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
||
|
}
|
||
|
|
||
|
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
BUG_ON(!wiphy->bands[band]);
|
||
|
sband = wiphy->bands[band];
|
||
|
|
||
|
for (i = 0; i < sband->n_channels; i++)
|
||
|
handle_channel(wiphy, band, i);
|
||
|
}
|
||
|
|
||
|
static bool ignore_reg_update(struct wiphy *wiphy,
|
||
|
enum nl80211_reg_initiator initiator)
|
||
|
{
|
||
|
if (!last_request)
|
||
|
return true;
|
||
|
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
|
||
|
wiphy->custom_regulatory)
|
||
|
return true;
|
||
|
/*
|
||
|
* wiphy->regd will be set once the device has its own
|
||
|
* desired regulatory domain set
|
||
|
*/
|
||
|
if (wiphy->strict_regulatory && !wiphy->regd &&
|
||
|
!is_world_regdom(last_request->alpha2))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
|
||
|
{
|
||
|
struct cfg80211_registered_device *rdev;
|
||
|
|
||
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
||
|
wiphy_update_regulatory(&rdev->wiphy, initiator);
|
||
|
}
|
||
|
|
||
|
static void handle_reg_beacon(struct wiphy *wiphy,
|
||
|
unsigned int chan_idx,
|
||
|
struct reg_beacon *reg_beacon)
|
||
|
{
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct ieee80211_channel *chan;
|
||
|
bool channel_changed = false;
|
||
|
struct ieee80211_channel chan_before;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
sband = wiphy->bands[reg_beacon->chan.band];
|
||
|
chan = &sband->channels[chan_idx];
|
||
|
|
||
|
if (likely(chan->center_freq != reg_beacon->chan.center_freq))
|
||
|
return;
|
||
|
|
||
|
if (chan->beacon_found)
|
||
|
return;
|
||
|
|
||
|
chan->beacon_found = true;
|
||
|
|
||
|
if (wiphy->disable_beacon_hints)
|
||
|
return;
|
||
|
|
||
|
chan_before.center_freq = chan->center_freq;
|
||
|
chan_before.flags = chan->flags;
|
||
|
|
||
|
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
|
||
|
chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
|
||
|
channel_changed = true;
|
||
|
}
|
||
|
|
||
|
if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
|
||
|
chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
|
||
|
channel_changed = true;
|
||
|
}
|
||
|
|
||
|
if (channel_changed)
|
||
|
nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when a scan on a wiphy finds a beacon on
|
||
|
* new channel
|
||
|
*/
|
||
|
static void wiphy_update_new_beacon(struct wiphy *wiphy,
|
||
|
struct reg_beacon *reg_beacon)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
if (!wiphy->bands[reg_beacon->chan.band])
|
||
|
return;
|
||
|
|
||
|
sband = wiphy->bands[reg_beacon->chan.band];
|
||
|
|
||
|
for (i = 0; i < sband->n_channels; i++)
|
||
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called upon reg changes or a new wiphy is added
|
||
|
*/
|
||
|
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct reg_beacon *reg_beacon;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
if (list_empty(®_beacon_list))
|
||
|
return;
|
||
|
|
||
|
list_for_each_entry(reg_beacon, ®_beacon_list, list) {
|
||
|
if (!wiphy->bands[reg_beacon->chan.band])
|
||
|
continue;
|
||
|
sband = wiphy->bands[reg_beacon->chan.band];
|
||
|
for (i = 0; i < sband->n_channels; i++)
|
||
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool reg_is_world_roaming(struct wiphy *wiphy)
|
||
|
{
|
||
|
if (is_world_regdom(cfg80211_regdomain->alpha2) ||
|
||
|
(wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
|
||
|
return true;
|
||
|
if (last_request &&
|
||
|
last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
||
|
wiphy->custom_regulatory)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Reap the advantages of previously found beacons */
|
||
|
static void reg_process_beacons(struct wiphy *wiphy)
|
||
|
{
|
||
|
/*
|
||
|
* Means we are just firing up cfg80211, so no beacons would
|
||
|
* have been processed yet.
|
||
|
*/
|
||
|
if (!last_request)
|
||
|
return;
|
||
|
if (!reg_is_world_roaming(wiphy))
|
||
|
return;
|
||
|
wiphy_update_beacon_reg(wiphy);
|
||
|
}
|
||
|
|
||
|
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
|
||
|
{
|
||
|
if (!chan)
|
||
|
return true;
|
||
|
if (chan->flags & IEEE80211_CHAN_DISABLED)
|
||
|
return true;
|
||
|
/* This would happen when regulatory rules disallow HT40 completely */
|
||
|
if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void reg_process_ht_flags_channel(struct wiphy *wiphy,
|
||
|
enum ieee80211_band band,
|
||
|
unsigned int chan_idx)
|
||
|
{
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct ieee80211_channel *channel;
|
||
|
struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
|
||
|
unsigned int i;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
sband = wiphy->bands[band];
|
||
|
BUG_ON(chan_idx >= sband->n_channels);
|
||
|
channel = &sband->channels[chan_idx];
|
||
|
|
||
|
if (is_ht40_not_allowed(channel)) {
|
||
|
channel->flags |= IEEE80211_CHAN_NO_HT40;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to ensure the extension channels exist to
|
||
|
* be able to use HT40- or HT40+, this finds them (or not)
|
||
|
*/
|
||
|
for (i = 0; i < sband->n_channels; i++) {
|
||
|
struct ieee80211_channel *c = &sband->channels[i];
|
||
|
if (c->center_freq == (channel->center_freq - 20))
|
||
|
channel_before = c;
|
||
|
if (c->center_freq == (channel->center_freq + 20))
|
||
|
channel_after = c;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Please note that this assumes target bandwidth is 20 MHz,
|
||
|
* if that ever changes we also need to change the below logic
|
||
|
* to include that as well.
|
||
|
*/
|
||
|
if (is_ht40_not_allowed(channel_before))
|
||
|
channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
|
||
|
else
|
||
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
||
|
|
||
|
if (is_ht40_not_allowed(channel_after))
|
||
|
channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
|
||
|
else
|
||
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
||
|
}
|
||
|
|
||
|
static void reg_process_ht_flags_band(struct wiphy *wiphy,
|
||
|
enum ieee80211_band band)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
BUG_ON(!wiphy->bands[band]);
|
||
|
sband = wiphy->bands[band];
|
||
|
|
||
|
for (i = 0; i < sband->n_channels; i++)
|
||
|
reg_process_ht_flags_channel(wiphy, band, i);
|
||
|
}
|
||
|
|
||
|
static void reg_process_ht_flags(struct wiphy *wiphy)
|
||
|
{
|
||
|
enum ieee80211_band band;
|
||
|
|
||
|
if (!wiphy)
|
||
|
return;
|
||
|
|
||
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
||
|
if (wiphy->bands[band])
|
||
|
reg_process_ht_flags_band(wiphy, band);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void wiphy_update_regulatory(struct wiphy *wiphy,
|
||
|
enum nl80211_reg_initiator initiator)
|
||
|
{
|
||
|
enum ieee80211_band band;
|
||
|
|
||
|
if (ignore_reg_update(wiphy, initiator))
|
||
|
goto out;
|
||
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
||
|
if (wiphy->bands[band])
|
||
|
handle_band(wiphy, band);
|
||
|
}
|
||
|
out:
|
||
|
reg_process_beacons(wiphy);
|
||
|
reg_process_ht_flags(wiphy);
|
||
|
if (wiphy->reg_notifier)
|
||
|
wiphy->reg_notifier(wiphy, last_request);
|
||
|
}
|
||
|
|
||
|
static void handle_channel_custom(struct wiphy *wiphy,
|
||
|
enum ieee80211_band band,
|
||
|
unsigned int chan_idx,
|
||
|
const struct ieee80211_regdomain *regd)
|
||
|
{
|
||
|
int r;
|
||
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
||
|
u32 bw_flags = 0;
|
||
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
||
|
const struct ieee80211_power_rule *power_rule = NULL;
|
||
|
const struct ieee80211_freq_range *freq_range = NULL;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct ieee80211_channel *chan;
|
||
|
|
||
|
assert_reg_lock();
|
||
|
|
||
|
sband = wiphy->bands[band];
|
||
|
BUG_ON(chan_idx >= sband->n_channels);
|
||
|
chan = &sband->channels[chan_idx];
|
||
|
|
||
|
r = freq_reg_info_regd(wiphy,
|
||
|
MHZ_TO_KHZ(chan->center_freq),
|
||
|
desired_bw_khz,
|
||
|
®_rule,
|
||
|
regd);
|
||
|
|
||
|
if (r) {
|
||
|
chan->flags = IEEE80211_CHAN_DISABLED;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
power_rule = ®_rule->power_rule;
|
||
|
freq_range = ®_rule->freq_range;
|
||
|
|
||
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
||
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
||
|
|
||
|
chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
|
||
|
chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
||
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
||
|
}
|
||
|
|
||
|
static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
|
||
|
const struct ieee80211_regdomain *regd)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
BUG_ON(!wiphy->bands[band]);
|
||
|
sband = wiphy->bands[band];
|
||
|
|
||
|
for (i = 0; i < sband->n_channels; i++)
|
||
|
handle_channel_custom(wiphy, band, i, regd);
|
||
|
}
|
||
|
|
||
|
/* Used by drivers prior to wiphy registration */
|
||
|
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
|
||
|
const struct ieee80211_regdomain *regd)
|
||
|
{
|
||
|
enum ieee80211_band band;
|
||
|
unsigned int bands_set = 0;
|
||
|
|
||
|
mutex_lock(®_mutex);
|
||
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
||
|
if (!wiphy->bands[band])
|
||
|
continue;
|
||
|
handle_band_custom(wiphy, band, regd);
|
||
|
bands_set++;
|
||
|
}
|
||
|
mutex_unlock(®_mutex);
|
||
|
|
||
|
/*
|
||
|
* no point in calling this if it won't have any effect
|
||
|
* on your device's supportd bands.
|
||
|
*/
|
||
|
WARN_ON(!bands_set);
|
||
|
}
|
||
|
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
|
||
|
|
||
|
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
|
||
|
const struct ieee80211_regdomain *src_regd)
|
||
|
{
|
||
|
struct ieee80211_regdomain *regd;
|
||
|
int size_of_regd = 0;
|
||
|
unsigned int i;
|
||
|
|
||
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
||
|
((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
||
|
|
||
|
regd = kzalloc(size_of_regd, GFP_KERNEL);
|
||
|
if (!regd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
|
||
|
|
||
|
for (i = 0; i < src_regd->n_reg_rules; i++)
|
||
|
memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
|
||
|
sizeof(struct ieee80211_reg_rule));
|
||
|
|
||
|
*dst_regd = regd;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return value which can be used by ignore_request() to indicate
|
||
|
* it has been determined we should intersect two regulatory domains
|
||
|
*/
|
||
|
#define REG_INTERSECT 1
|
||
|
|
||
|
/* This has the logic which determines when a new request
|
||
|
* should be ignored. */
|
||
|
static int ignore_request(struct wiphy *wiphy,
|
||
|
struct regulatory_request *pending_request)
|
||
|
{
|
||
|
struct wiphy *last_wiphy = NULL;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
/* All initial requests are respected */
|
||
|
if (!last_request)
|
||
|
return 0;
|
||
|
|
||
|
switch (pending_request->initiator) {
|
||
|
case NL80211_REGDOM_SET_BY_CORE:
|
||
|
return -EINVAL;
|
||
|
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
|
||
|
|
||
|
last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
||
|
|
||
|
if (unlikely(!is_an_alpha2(pending_request->alpha2)))
|
||
|
return -EINVAL;
|
||
|
if (last_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
||
|
if (last_wiphy != wiphy) {
|
||
|
/*
|
||
|
* Two cards with two APs claiming different
|
||
|
* Country IE alpha2s. We could
|
||
|
* intersect them, but that seems unlikely
|
||
|
* to be correct. Reject second one for now.
|
||
|
*/
|
||
|
if (regdom_changes(pending_request->alpha2))
|
||
|
return -EOPNOTSUPP;
|
||
|
return -EALREADY;
|
||
|
}
|
||
|
/*
|
||
|
* Two consecutive Country IE hints on the same wiphy.
|
||
|
* This should be picked up early by the driver/stack
|
||
|
*/
|
||
|
if (WARN_ON(regdom_changes(pending_request->alpha2)))
|
||
|
return 0;
|
||
|
return -EALREADY;
|
||
|
}
|
||
|
return REG_INTERSECT;
|
||
|
case NL80211_REGDOM_SET_BY_DRIVER:
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
|
||
|
if (is_old_static_regdom(cfg80211_regdomain))
|
||
|
return 0;
|
||
|
if (regdom_changes(pending_request->alpha2))
|
||
|
return 0;
|
||
|
return -EALREADY;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This would happen if you unplug and plug your card
|
||
|
* back in or if you add a new device for which the previously
|
||
|
* loaded card also agrees on the regulatory domain.
|
||
|
*/
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
||
|
!regdom_changes(pending_request->alpha2))
|
||
|
return -EALREADY;
|
||
|
|
||
|
return REG_INTERSECT;
|
||
|
case NL80211_REGDOM_SET_BY_USER:
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
|
||
|
return REG_INTERSECT;
|
||
|
/*
|
||
|
* If the user knows better the user should set the regdom
|
||
|
* to their country before the IE is picked up
|
||
|
*/
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
|
||
|
last_request->intersect)
|
||
|
return -EOPNOTSUPP;
|
||
|
/*
|
||
|
* Process user requests only after previous user/driver/core
|
||
|
* requests have been processed
|
||
|
*/
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
|
||
|
last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
|
||
|
last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
|
||
|
if (regdom_changes(last_request->alpha2))
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
if (!is_old_static_regdom(cfg80211_regdomain) &&
|
||
|
!regdom_changes(pending_request->alpha2))
|
||
|
return -EALREADY;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __regulatory_hint - hint to the wireless core a regulatory domain
|
||
|
* @wiphy: if the hint comes from country information from an AP, this
|
||
|
* is required to be set to the wiphy that received the information
|
||
|
* @pending_request: the regulatory request currently being processed
|
||
|
*
|
||
|
* The Wireless subsystem can use this function to hint to the wireless core
|
||
|
* what it believes should be the current regulatory domain.
|
||
|
*
|
||
|
* Returns zero if all went fine, %-EALREADY if a regulatory domain had
|
||
|
* already been set or other standard error codes.
|
||
|
*
|
||
|
* Caller must hold &cfg80211_mutex and ®_mutex
|
||
|
*/
|
||
|
static int __regulatory_hint(struct wiphy *wiphy,
|
||
|
struct regulatory_request *pending_request)
|
||
|
{
|
||
|
bool intersect = false;
|
||
|
int r = 0;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
r = ignore_request(wiphy, pending_request);
|
||
|
|
||
|
if (r == REG_INTERSECT) {
|
||
|
if (pending_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
||
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
||
|
if (r) {
|
||
|
kfree(pending_request);
|
||
|
return r;
|
||
|
}
|
||
|
}
|
||
|
intersect = true;
|
||
|
} else if (r) {
|
||
|
/*
|
||
|
* If the regulatory domain being requested by the
|
||
|
* driver has already been set just copy it to the
|
||
|
* wiphy
|
||
|
*/
|
||
|
if (r == -EALREADY &&
|
||
|
pending_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
||
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
||
|
if (r) {
|
||
|
kfree(pending_request);
|
||
|
return r;
|
||
|
}
|
||
|
r = -EALREADY;
|
||
|
goto new_request;
|
||
|
}
|
||
|
kfree(pending_request);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
new_request:
|
||
|
kfree(last_request);
|
||
|
|
||
|
last_request = pending_request;
|
||
|
last_request->intersect = intersect;
|
||
|
|
||
|
pending_request = NULL;
|
||
|
|
||
|
/* When r == REG_INTERSECT we do need to call CRDA */
|
||
|
if (r < 0) {
|
||
|
/*
|
||
|
* Since CRDA will not be called in this case as we already
|
||
|
* have applied the requested regulatory domain before we just
|
||
|
* inform userspace we have processed the request
|
||
|
*/
|
||
|
if (r == -EALREADY)
|
||
|
nl80211_send_reg_change_event(last_request);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
return call_crda(last_request->alpha2);
|
||
|
}
|
||
|
|
||
|
/* This processes *all* regulatory hints */
|
||
|
static void reg_process_hint(struct regulatory_request *reg_request)
|
||
|
{
|
||
|
int r = 0;
|
||
|
struct wiphy *wiphy = NULL;
|
||
|
|
||
|
BUG_ON(!reg_request->alpha2);
|
||
|
|
||
|
mutex_lock(&cfg80211_mutex);
|
||
|
mutex_lock(®_mutex);
|
||
|
|
||
|
if (wiphy_idx_valid(reg_request->wiphy_idx))
|
||
|
wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
|
||
|
|
||
|
if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
||
|
!wiphy) {
|
||
|
kfree(reg_request);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
r = __regulatory_hint(wiphy, reg_request);
|
||
|
/* This is required so that the orig_* parameters are saved */
|
||
|
if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
|
||
|
wiphy_update_regulatory(wiphy, reg_request->initiator);
|
||
|
out:
|
||
|
mutex_unlock(®_mutex);
|
||
|
mutex_unlock(&cfg80211_mutex);
|
||
|
}
|
||
|
|
||
|
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
|
||
|
static void reg_process_pending_hints(void)
|
||
|
{
|
||
|
struct regulatory_request *reg_request;
|
||
|
|
||
|
spin_lock(®_requests_lock);
|
||
|
while (!list_empty(®_requests_list)) {
|
||
|
reg_request = list_first_entry(®_requests_list,
|
||
|
struct regulatory_request,
|
||
|
list);
|
||
|
list_del_init(®_request->list);
|
||
|
|
||
|
spin_unlock(®_requests_lock);
|
||
|
reg_process_hint(reg_request);
|
||
|
spin_lock(®_requests_lock);
|
||
|
}
|
||
|
spin_unlock(®_requests_lock);
|
||
|
}
|
||
|
|
||
|
/* Processes beacon hints -- this has nothing to do with country IEs */
|
||
|
static void reg_process_pending_beacon_hints(void)
|
||
|
{
|
||
|
struct cfg80211_registered_device *rdev;
|
||
|
struct reg_beacon *pending_beacon, *tmp;
|
||
|
|
||
|
/*
|
||
|
* No need to hold the reg_mutex here as we just touch wiphys
|
||
|
* and do not read or access regulatory variables.
|
||
|
*/
|
||
|
mutex_lock(&cfg80211_mutex);
|
||
|
|
||
|
/* This goes through the _pending_ beacon list */
|
||
|
spin_lock_bh(®_pending_beacons_lock);
|
||
|
|
||
|
if (list_empty(®_pending_beacons)) {
|
||
|
spin_unlock_bh(®_pending_beacons_lock);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(pending_beacon, tmp,
|
||
|
®_pending_beacons, list) {
|
||
|
|
||
|
list_del_init(&pending_beacon->list);
|
||
|
|
||
|
/* Applies the beacon hint to current wiphys */
|
||
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
||
|
wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
|
||
|
|
||
|
/* Remembers the beacon hint for new wiphys or reg changes */
|
||
|
list_add_tail(&pending_beacon->list, ®_beacon_list);
|
||
|
}
|
||
|
|
||
|
spin_unlock_bh(®_pending_beacons_lock);
|
||
|
out:
|
||
|
mutex_unlock(&cfg80211_mutex);
|
||
|
}
|
||
|
|
||
|
static void reg_todo(struct work_struct *work)
|
||
|
{
|
||
|
reg_process_pending_hints();
|
||
|
reg_process_pending_beacon_hints();
|
||
|
}
|
||
|
|
||
|
static DECLARE_WORK(reg_work, reg_todo);
|
||
|
|
||
|
static void queue_regulatory_request(struct regulatory_request *request)
|
||
|
{
|
||
|
spin_lock(®_requests_lock);
|
||
|
list_add_tail(&request->list, ®_requests_list);
|
||
|
spin_unlock(®_requests_lock);
|
||
|
|
||
|
schedule_work(®_work);
|
||
|
}
|
||
|
|
||
|
/* Core regulatory hint -- happens once during cfg80211_init() */
|
||
|
static int regulatory_hint_core(const char *alpha2)
|
||
|
{
|
||
|
struct regulatory_request *request;
|
||
|
|
||
|
BUG_ON(last_request);
|
||
|
|
||
|
request = kzalloc(sizeof(struct regulatory_request),
|
||
|
GFP_KERNEL);
|
||
|
if (!request)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
request->alpha2[0] = alpha2[0];
|
||
|
request->alpha2[1] = alpha2[1];
|
||
|
request->initiator = NL80211_REGDOM_SET_BY_CORE;
|
||
|
|
||
|
queue_regulatory_request(request);
|
||
|
|
||
|
/*
|
||
|
* This ensures last_request is populated once modules
|
||
|
* come swinging in and calling regulatory hints and
|
||
|
* wiphy_apply_custom_regulatory().
|
||
|
*/
|
||
|
flush_scheduled_work();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* User hints */
|
||
|
int regulatory_hint_user(const char *alpha2)
|
||
|
{
|
||
|
struct regulatory_request *request;
|
||
|
|
||
|
BUG_ON(!alpha2);
|
||
|
|
||
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
||
|
if (!request)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
request->wiphy_idx = WIPHY_IDX_STALE;
|
||
|
request->alpha2[0] = alpha2[0];
|
||
|
request->alpha2[1] = alpha2[1];
|
||
|
request->initiator = NL80211_REGDOM_SET_BY_USER;
|
||
|
|
||
|
queue_regulatory_request(request);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Driver hints */
|
||
|
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
|
||
|
{
|
||
|
struct regulatory_request *request;
|
||
|
|
||
|
BUG_ON(!alpha2);
|
||
|
BUG_ON(!wiphy);
|
||
|
|
||
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
||
|
if (!request)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
||
|
|
||
|
/* Must have registered wiphy first */
|
||
|
BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
|
||
|
|
||
|
request->alpha2[0] = alpha2[0];
|
||
|
request->alpha2[1] = alpha2[1];
|
||
|
request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
|
||
|
|
||
|
queue_regulatory_request(request);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(regulatory_hint);
|
||
|
|
||
|
/* Caller must hold reg_mutex */
|
||
|
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
|
||
|
u32 country_ie_checksum)
|
||
|
{
|
||
|
struct wiphy *request_wiphy;
|
||
|
|
||
|
assert_reg_lock();
|
||
|
|
||
|
if (unlikely(last_request->initiator !=
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE))
|
||
|
return false;
|
||
|
|
||
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
||
|
|
||
|
if (!request_wiphy)
|
||
|
return false;
|
||
|
|
||
|
if (likely(request_wiphy != wiphy))
|
||
|
return !country_ie_integrity_changes(country_ie_checksum);
|
||
|
/*
|
||
|
* We should not have let these through at this point, they
|
||
|
* should have been picked up earlier by the first alpha2 check
|
||
|
* on the device
|
||
|
*/
|
||
|
if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
|
||
|
* therefore cannot iterate over the rdev list here.
|
||
|
*/
|
||
|
void regulatory_hint_11d(struct wiphy *wiphy,
|
||
|
u8 *country_ie,
|
||
|
u8 country_ie_len)
|
||
|
{
|
||
|
struct ieee80211_regdomain *rd = NULL;
|
||
|
char alpha2[2];
|
||
|
u32 checksum = 0;
|
||
|
enum environment_cap env = ENVIRON_ANY;
|
||
|
struct regulatory_request *request;
|
||
|
|
||
|
mutex_lock(®_mutex);
|
||
|
|
||
|
if (unlikely(!last_request))
|
||
|
goto out;
|
||
|
|
||
|
/* IE len must be evenly divisible by 2 */
|
||
|
if (country_ie_len & 0x01)
|
||
|
goto out;
|
||
|
|
||
|
if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Pending country IE processing, this can happen after we
|
||
|
* call CRDA and wait for a response if a beacon was received before
|
||
|
* we were able to process the last regulatory_hint_11d() call
|
||
|
*/
|
||
|
if (country_ie_regdomain)
|
||
|
goto out;
|
||
|
|
||
|
alpha2[0] = country_ie[0];
|
||
|
alpha2[1] = country_ie[1];
|
||
|
|
||
|
if (country_ie[2] == 'I')
|
||
|
env = ENVIRON_INDOOR;
|
||
|
else if (country_ie[2] == 'O')
|
||
|
env = ENVIRON_OUTDOOR;
|
||
|
|
||
|
/*
|
||
|
* We will run this only upon a successful connection on cfg80211.
|
||
|
* We leave conflict resolution to the workqueue, where can hold
|
||
|
* cfg80211_mutex.
|
||
|
*/
|
||
|
if (likely(last_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
||
|
wiphy_idx_valid(last_request->wiphy_idx)))
|
||
|
goto out;
|
||
|
|
||
|
rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
|
||
|
if (!rd)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* This will not happen right now but we leave it here for the
|
||
|
* the future when we want to add suspend/resume support and having
|
||
|
* the user move to another country after doing so, or having the user
|
||
|
* move to another AP. Right now we just trust the first AP.
|
||
|
*
|
||
|
* If we hit this before we add this support we want to be informed of
|
||
|
* it as it would indicate a mistake in the current design
|
||
|
*/
|
||
|
if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
|
||
|
goto free_rd_out;
|
||
|
|
||
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
||
|
if (!request)
|
||
|
goto free_rd_out;
|
||
|
|
||
|
/*
|
||
|
* We keep this around for when CRDA comes back with a response so
|
||
|
* we can intersect with that
|
||
|
*/
|
||
|
country_ie_regdomain = rd;
|
||
|
|
||
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
||
|
request->alpha2[0] = rd->alpha2[0];
|
||
|
request->alpha2[1] = rd->alpha2[1];
|
||
|
request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
|
||
|
request->country_ie_checksum = checksum;
|
||
|
request->country_ie_env = env;
|
||
|
|
||
|
mutex_unlock(®_mutex);
|
||
|
|
||
|
queue_regulatory_request(request);
|
||
|
|
||
|
return;
|
||
|
|
||
|
free_rd_out:
|
||
|
kfree(rd);
|
||
|
out:
|
||
|
mutex_unlock(®_mutex);
|
||
|
}
|
||
|
|
||
|
static bool freq_is_chan_12_13_14(u16 freq)
|
||
|
{
|
||
|
if (freq == ieee80211_channel_to_frequency(12) ||
|
||
|
freq == ieee80211_channel_to_frequency(13) ||
|
||
|
freq == ieee80211_channel_to_frequency(14))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int regulatory_hint_found_beacon(struct wiphy *wiphy,
|
||
|
struct ieee80211_channel *beacon_chan,
|
||
|
gfp_t gfp)
|
||
|
{
|
||
|
struct reg_beacon *reg_beacon;
|
||
|
|
||
|
if (likely((beacon_chan->beacon_found ||
|
||
|
(beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
|
||
|
(beacon_chan->band == IEEE80211_BAND_2GHZ &&
|
||
|
!freq_is_chan_12_13_14(beacon_chan->center_freq)))))
|
||
|
return 0;
|
||
|
|
||
|
reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
|
||
|
if (!reg_beacon)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
||
|
printk(KERN_DEBUG "cfg80211: Found new beacon on "
|
||
|
"frequency: %d MHz (Ch %d) on %s\n",
|
||
|
beacon_chan->center_freq,
|
||
|
ieee80211_frequency_to_channel(beacon_chan->center_freq),
|
||
|
wiphy_name(wiphy));
|
||
|
#endif
|
||
|
memcpy(®_beacon->chan, beacon_chan,
|
||
|
sizeof(struct ieee80211_channel));
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Since we can be called from BH or and non-BH context
|
||
|
* we must use spin_lock_bh()
|
||
|
*/
|
||
|
spin_lock_bh(®_pending_beacons_lock);
|
||
|
list_add_tail(®_beacon->list, ®_pending_beacons);
|
||
|
spin_unlock_bh(®_pending_beacons_lock);
|
||
|
|
||
|
schedule_work(®_work);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void print_rd_rules(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
||
|
const struct ieee80211_freq_range *freq_range = NULL;
|
||
|
const struct ieee80211_power_rule *power_rule = NULL;
|
||
|
|
||
|
printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
|
||
|
"(max_antenna_gain, max_eirp)\n");
|
||
|
|
||
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
||
|
reg_rule = &rd->reg_rules[i];
|
||
|
freq_range = ®_rule->freq_range;
|
||
|
power_rule = ®_rule->power_rule;
|
||
|
|
||
|
/*
|
||
|
* There may not be documentation for max antenna gain
|
||
|
* in certain regions
|
||
|
*/
|
||
|
if (power_rule->max_antenna_gain)
|
||
|
printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
|
||
|
"(%d mBi, %d mBm)\n",
|
||
|
freq_range->start_freq_khz,
|
||
|
freq_range->end_freq_khz,
|
||
|
freq_range->max_bandwidth_khz,
|
||
|
power_rule->max_antenna_gain,
|
||
|
power_rule->max_eirp);
|
||
|
else
|
||
|
printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
|
||
|
"(N/A, %d mBm)\n",
|
||
|
freq_range->start_freq_khz,
|
||
|
freq_range->end_freq_khz,
|
||
|
freq_range->max_bandwidth_khz,
|
||
|
power_rule->max_eirp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void print_regdomain(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
|
||
|
if (is_intersected_alpha2(rd->alpha2)) {
|
||
|
|
||
|
if (last_request->initiator ==
|
||
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
||
|
struct cfg80211_registered_device *rdev;
|
||
|
rdev = cfg80211_rdev_by_wiphy_idx(
|
||
|
last_request->wiphy_idx);
|
||
|
if (rdev) {
|
||
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
||
|
"domain updated by AP to: %c%c\n",
|
||
|
rdev->country_ie_alpha2[0],
|
||
|
rdev->country_ie_alpha2[1]);
|
||
|
} else
|
||
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
||
|
"domain intersected: \n");
|
||
|
} else
|
||
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
||
|
"domain intersected: \n");
|
||
|
} else if (is_world_regdom(rd->alpha2))
|
||
|
printk(KERN_INFO "cfg80211: World regulatory "
|
||
|
"domain updated:\n");
|
||
|
else {
|
||
|
if (is_unknown_alpha2(rd->alpha2))
|
||
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
||
|
"changed to driver built-in settings "
|
||
|
"(unknown country)\n");
|
||
|
else
|
||
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
||
|
"changed to country: %c%c\n",
|
||
|
rd->alpha2[0], rd->alpha2[1]);
|
||
|
}
|
||
|
print_rd_rules(rd);
|
||
|
}
|
||
|
|
||
|
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
|
||
|
rd->alpha2[0], rd->alpha2[1]);
|
||
|
print_rd_rules(rd);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
||
|
static void reg_country_ie_process_debug(
|
||
|
const struct ieee80211_regdomain *rd,
|
||
|
const struct ieee80211_regdomain *country_ie_regdomain,
|
||
|
const struct ieee80211_regdomain *intersected_rd)
|
||
|
{
|
||
|
printk(KERN_DEBUG "cfg80211: Received country IE:\n");
|
||
|
print_regdomain_info(country_ie_regdomain);
|
||
|
printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
|
||
|
print_regdomain_info(rd);
|
||
|
if (intersected_rd) {
|
||
|
printk(KERN_DEBUG "cfg80211: We intersect both of these "
|
||
|
"and get:\n");
|
||
|
print_regdomain_info(intersected_rd);
|
||
|
return;
|
||
|
}
|
||
|
printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
|
||
|
}
|
||
|
#else
|
||
|
static inline void reg_country_ie_process_debug(
|
||
|
const struct ieee80211_regdomain *rd,
|
||
|
const struct ieee80211_regdomain *country_ie_regdomain,
|
||
|
const struct ieee80211_regdomain *intersected_rd)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Takes ownership of rd only if it doesn't fail */
|
||
|
static int __set_regdom(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
const struct ieee80211_regdomain *intersected_rd = NULL;
|
||
|
struct cfg80211_registered_device *rdev = NULL;
|
||
|
struct wiphy *request_wiphy;
|
||
|
/* Some basic sanity checks first */
|
||
|
|
||
|
if (is_world_regdom(rd->alpha2)) {
|
||
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
||
|
return -EINVAL;
|
||
|
update_world_regdomain(rd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
|
||
|
!is_unknown_alpha2(rd->alpha2))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!last_request)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Lets only bother proceeding on the same alpha2 if the current
|
||
|
* rd is non static (it means CRDA was present and was used last)
|
||
|
* and the pending request came in from a country IE
|
||
|
*/
|
||
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
||
|
/*
|
||
|
* If someone else asked us to change the rd lets only bother
|
||
|
* checking if the alpha2 changes if CRDA was already called
|
||
|
*/
|
||
|
if (!is_old_static_regdom(cfg80211_regdomain) &&
|
||
|
!regdom_changes(rd->alpha2))
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now lets set the regulatory domain, update all driver channels
|
||
|
* and finally inform them of what we have done, in case they want
|
||
|
* to review or adjust their own settings based on their own
|
||
|
* internal EEPROM data
|
||
|
*/
|
||
|
|
||
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!is_valid_rd(rd)) {
|
||
|
printk(KERN_ERR "cfg80211: Invalid "
|
||
|
"regulatory domain detected:\n");
|
||
|
print_regdomain_info(rd);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
||
|
|
||
|
if (!last_request->intersect) {
|
||
|
int r;
|
||
|
|
||
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
|
||
|
reset_regdomains();
|
||
|
cfg80211_regdomain = rd;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For a driver hint, lets copy the regulatory domain the
|
||
|
* driver wanted to the wiphy to deal with conflicts
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Userspace could have sent two replies with only
|
||
|
* one kernel request.
|
||
|
*/
|
||
|
if (request_wiphy->regd)
|
||
|
return -EALREADY;
|
||
|
|
||
|
r = reg_copy_regd(&request_wiphy->regd, rd);
|
||
|
if (r)
|
||
|
return r;
|
||
|
|
||
|
reset_regdomains();
|
||
|
cfg80211_regdomain = rd;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Intersection requires a bit more work */
|
||
|
|
||
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
||
|
|
||
|
intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
|
||
|
if (!intersected_rd)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* We can trash what CRDA provided now.
|
||
|
* However if a driver requested this specific regulatory
|
||
|
* domain we keep it for its private use
|
||
|
*/
|
||
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
|
||
|
request_wiphy->regd = rd;
|
||
|
else
|
||
|
kfree(rd);
|
||
|
|
||
|
rd = NULL;
|
||
|
|
||
|
reset_regdomains();
|
||
|
cfg80211_regdomain = intersected_rd;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Country IE requests are handled a bit differently, we intersect
|
||
|
* the country IE rd with what CRDA believes that country should have
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Userspace could have sent two replies with only
|
||
|
* one kernel request. By the second reply we would have
|
||
|
* already processed and consumed the country_ie_regdomain.
|
||
|
*/
|
||
|
if (!country_ie_regdomain)
|
||
|
return -EALREADY;
|
||
|
BUG_ON(rd == country_ie_regdomain);
|
||
|
|
||
|
/*
|
||
|
* Intersect what CRDA returned and our what we
|
||
|
* had built from the Country IE received
|
||
|
*/
|
||
|
|
||
|
intersected_rd = regdom_intersect(rd, country_ie_regdomain);
|
||
|
|
||
|
reg_country_ie_process_debug(rd,
|
||
|
country_ie_regdomain,
|
||
|
intersected_rd);
|
||
|
|
||
|
kfree(country_ie_regdomain);
|
||
|
country_ie_regdomain = NULL;
|
||
|
|
||
|
if (!intersected_rd)
|
||
|
return -EINVAL;
|
||
|
|
||
|
rdev = wiphy_to_dev(request_wiphy);
|
||
|
|
||
|
rdev->country_ie_alpha2[0] = rd->alpha2[0];
|
||
|
rdev->country_ie_alpha2[1] = rd->alpha2[1];
|
||
|
rdev->env = last_request->country_ie_env;
|
||
|
|
||
|
BUG_ON(intersected_rd == rd);
|
||
|
|
||
|
kfree(rd);
|
||
|
rd = NULL;
|
||
|
|
||
|
reset_regdomains();
|
||
|
cfg80211_regdomain = intersected_rd;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Use this call to set the current regulatory domain. Conflicts with
|
||
|
* multiple drivers can be ironed out later. Caller must've already
|
||
|
* kmalloc'd the rd structure. Caller must hold cfg80211_mutex
|
||
|
*/
|
||
|
int set_regdom(const struct ieee80211_regdomain *rd)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
mutex_lock(®_mutex);
|
||
|
|
||
|
/* Note that this doesn't update the wiphys, this is done below */
|
||
|
r = __set_regdom(rd);
|
||
|
if (r) {
|
||
|
kfree(rd);
|
||
|
mutex_unlock(®_mutex);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/* This would make this whole thing pointless */
|
||
|
if (!last_request->intersect)
|
||
|
BUG_ON(rd != cfg80211_regdomain);
|
||
|
|
||
|
/* update all wiphys now with the new established regulatory domain */
|
||
|
update_all_wiphy_regulatory(last_request->initiator);
|
||
|
|
||
|
print_regdomain(cfg80211_regdomain);
|
||
|
|
||
|
nl80211_send_reg_change_event(last_request);
|
||
|
|
||
|
mutex_unlock(®_mutex);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/* Caller must hold cfg80211_mutex */
|
||
|
void reg_device_remove(struct wiphy *wiphy)
|
||
|
{
|
||
|
struct wiphy *request_wiphy = NULL;
|
||
|
|
||
|
assert_cfg80211_lock();
|
||
|
|
||
|
mutex_lock(®_mutex);
|
||
|
|
||
|
kfree(wiphy->regd);
|
||
|
|
||
|
if (last_request)
|
||
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
||
|
|
||
|
if (!request_wiphy || request_wiphy != wiphy)
|
||
|
goto out;
|
||
|
|
||
|
last_request->wiphy_idx = WIPHY_IDX_STALE;
|
||
|
last_request->country_ie_env = ENVIRON_ANY;
|
||
|
out:
|
||
|
mutex_unlock(®_mutex);
|
||
|
}
|
||
|
|
||
|
int regulatory_init(void)
|
||
|
{
|
||
|
int err = 0;
|
||
|
|
||
|
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
|
||
|
if (IS_ERR(reg_pdev))
|
||
|
return PTR_ERR(reg_pdev);
|
||
|
|
||
|
spin_lock_init(®_requests_lock);
|
||
|
spin_lock_init(®_pending_beacons_lock);
|
||
|
|
||
|
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
|
||
|
cfg80211_regdomain = static_regdom(ieee80211_regdom);
|
||
|
|
||
|
printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
|
||
|
print_regdomain_info(cfg80211_regdomain);
|
||
|
#else
|
||
|
cfg80211_regdomain = cfg80211_world_regdom;
|
||
|
|
||
|
#endif
|
||
|
/* We always try to get an update for the static regdomain */
|
||
|
err = regulatory_hint_core(cfg80211_regdomain->alpha2);
|
||
|
if (err) {
|
||
|
if (err == -ENOMEM)
|
||
|
return err;
|
||
|
/*
|
||
|
* N.B. kobject_uevent_env() can fail mainly for when we're out
|
||
|
* memory which is handled and propagated appropriately above
|
||
|
* but it can also fail during a netlink_broadcast() or during
|
||
|
* early boot for call_usermodehelper(). For now treat these
|
||
|
* errors as non-fatal.
|
||
|
*/
|
||
|
printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
|
||
|
"to call CRDA during init");
|
||
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
||
|
/* We want to find out exactly why when debugging */
|
||
|
WARN_ON(err);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finally, if the user set the module parameter treat it
|
||
|
* as a user hint.
|
||
|
*/
|
||
|
if (!is_world_regdom(ieee80211_regdom))
|
||
|
regulatory_hint_user(ieee80211_regdom);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void regulatory_exit(void)
|
||
|
{
|
||
|
struct regulatory_request *reg_request, *tmp;
|
||
|
struct reg_beacon *reg_beacon, *btmp;
|
||
|
|
||
|
cancel_work_sync(®_work);
|
||
|
|
||
|
mutex_lock(&cfg80211_mutex);
|
||
|
mutex_lock(®_mutex);
|
||
|
|
||
|
reset_regdomains();
|
||
|
|
||
|
kfree(country_ie_regdomain);
|
||
|
country_ie_regdomain = NULL;
|
||
|
|
||
|
kfree(last_request);
|
||
|
|
||
|
platform_device_unregister(reg_pdev);
|
||
|
|
||
|
spin_lock_bh(®_pending_beacons_lock);
|
||
|
if (!list_empty(®_pending_beacons)) {
|
||
|
list_for_each_entry_safe(reg_beacon, btmp,
|
||
|
®_pending_beacons, list) {
|
||
|
list_del(®_beacon->list);
|
||
|
kfree(reg_beacon);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_bh(®_pending_beacons_lock);
|
||
|
|
||
|
if (!list_empty(®_beacon_list)) {
|
||
|
list_for_each_entry_safe(reg_beacon, btmp,
|
||
|
®_beacon_list, list) {
|
||
|
list_del(®_beacon->list);
|
||
|
kfree(reg_beacon);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock(®_requests_lock);
|
||
|
if (!list_empty(®_requests_list)) {
|
||
|
list_for_each_entry_safe(reg_request, tmp,
|
||
|
®_requests_list, list) {
|
||
|
list_del(®_request->list);
|
||
|
kfree(reg_request);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(®_requests_lock);
|
||
|
|
||
|
mutex_unlock(®_mutex);
|
||
|
mutex_unlock(&cfg80211_mutex);
|
||
|
}
|