satip-axe/kernel/drivers/clocksource/tcb_clksrc.c

303 lines
8.3 KiB
C
Raw Normal View History

#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/atmel_tc.h>
/*
* We're configured to use a specific TC block, one that's not hooked
* up to external hardware, to provide a time solution:
*
* - Two channels combine to create a free-running 32 bit counter
* with a base rate of 5+ MHz, packaged as a clocksource (with
* resolution better than 200 nsec).
*
* - The third channel may be used to provide a 16-bit clockevent
* source, used in either periodic or oneshot mode. This runs
* at 32 KiHZ, and can handle delays of up to two seconds.
*
* A boot clocksource and clockevent source are also currently needed,
* unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
* this code can be used when init_timers() is called, well before most
* devices are set up. (Some low end AT91 parts, which can run uClinux,
* have only the timers in one TC block... they currently don't support
* the tclib code, because of that initialization issue.)
*
* REVISIT behavior during system suspend states... we should disable
* all clocks and save the power. Easily done for clockevent devices,
* but clocksources won't necessarily get the needed notifications.
* For deeper system sleep states, this will be mandatory...
*/
static void __iomem *tcaddr;
static cycle_t tc_get_cycles(struct clocksource *cs)
{
unsigned long flags;
u32 lower, upper;
raw_local_irq_save(flags);
do {
upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
raw_local_irq_restore(flags);
return (upper << 16) | lower;
}
static struct clocksource clksrc = {
.name = "tcb_clksrc",
.rating = 200,
.read = tc_get_cycles,
.mask = CLOCKSOURCE_MASK(32),
.shift = 18,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#ifdef CONFIG_GENERIC_CLOCKEVENTS
struct tc_clkevt_device {
struct clock_event_device clkevt;
struct clk *clk;
void __iomem *regs;
};
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
{
return container_of(clkevt, struct tc_clkevt_device, clkevt);
}
/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
* because using one of the divided clocks would usually mean the
* tick rate can never be less than several dozen Hz (vs 0.5 Hz).
*
* A divided clock could be good for high resolution timers, since
* 30.5 usec resolution can seem "low".
*/
static u32 timer_clock;
static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
{
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs;
if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
clk_disable(tcd->clk);
}
switch (m) {
/* By not making the gentime core emulate periodic mode on top
* of oneshot, we get lower overhead and improved accuracy.
*/
case CLOCK_EVT_MODE_PERIODIC:
clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and restart */
__raw_writel(timer_clock
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR));
__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
/* Enable clock and interrupts on RC compare */
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
regs + ATMEL_TC_REG(2, CCR));
break;
case CLOCK_EVT_MODE_ONESHOT:
clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and stop */
__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR));
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* set_next_event() configures and starts the timer */
break;
default:
break;
}
}
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
{
__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
/* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
tcaddr + ATMEL_TC_REG(2, CCR));
return 0;
}
static struct tc_clkevt_device clkevt = {
.clkevt = {
.name = "tc_clkevt",
.features = CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
/* Should be lower than at91rm9200's system timer */
.rating = 125,
.set_next_event = tc_next_event,
.set_mode = tc_mode,
},
};
static irqreturn_t ch2_irq(int irq, void *handle)
{
struct tc_clkevt_device *dev = handle;
unsigned int sr;
sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
if (sr & ATMEL_TC_CPCS) {
dev->clkevt.event_handler(&dev->clkevt);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static struct irqaction tc_irqaction = {
.name = "tc_clkevt",
.flags = IRQF_TIMER | IRQF_DISABLED,
.handler = ch2_irq,
};
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
{
struct clk *t2_clk = tc->clk[2];
int irq = tc->irq[2];
clkevt.regs = tc->regs;
clkevt.clk = t2_clk;
tc_irqaction.dev_id = &clkevt;
timer_clock = clk32k_divisor_idx;
clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
clkevt.clkevt.max_delta_ns
= clockevent_delta2ns(0xffff, &clkevt.clkevt);
clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
clkevt.clkevt.cpumask = cpumask_of(0);
setup_irq(irq, &tc_irqaction);
clockevents_register_device(&clkevt.clkevt);
}
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
{
/* NOTHING */
}
#endif
static int __init tcb_clksrc_init(void)
{
static char bootinfo[] __initdata
= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
struct platform_device *pdev;
struct atmel_tc *tc;
struct clk *t0_clk;
u32 rate, divided_rate = 0;
int best_divisor_idx = -1;
int clk32k_divisor_idx = -1;
int i;
tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
if (!tc) {
pr_debug("can't alloc TC for clocksource\n");
return -ENODEV;
}
tcaddr = tc->regs;
pdev = tc->pdev;
t0_clk = tc->clk[0];
clk_enable(t0_clk);
/* How fast will we be counting? Pick something over 5 MHz. */
rate = (u32) clk_get_rate(t0_clk);
for (i = 0; i < 5; i++) {
unsigned divisor = atmel_tc_divisors[i];
unsigned tmp;
/* remember 32 KiHz clock for later */
if (!divisor) {
clk32k_divisor_idx = i;
continue;
}
tmp = rate / divisor;
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
if (best_divisor_idx > 0) {
if (tmp < 5 * 1000 * 1000)
continue;
}
divided_rate = tmp;
best_divisor_idx = i;
}
clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
divided_rate / 1000000,
((divided_rate + 500000) % 1000000) / 1000);
/* tclib will give us three clocks no matter what the
* underlying platform supports.
*/
clk_enable(tc->clk[1]);
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
__raw_writel(best_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP /* free-run */
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
tcaddr + ATMEL_TC_REG(0, CMR));
__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* channel 1: waveform mode, input TIOA0 */
__raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(1, CMR));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
/* chain channel 0 to channel 1, then reset all the timers */
__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
/* and away we go! */
clocksource_register(&clksrc);
/* channel 2: periodic and oneshot timer support */
setup_clkevents(tc, clk32k_divisor_idx);
return 0;
}
arch_initcall(tcb_clksrc_init);