satip-axe/kernel/drivers/mtd/nand/sh_flctl.c

884 lines
20 KiB
C
Raw Normal View History

/*
* SuperH FLCTL nand controller
*
* Copyright © 2008 Renesas Solutions Corp.
* Copyright © 2008 Atom Create Engineering Co., Ltd.
*
* Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sh_flctl.h>
static struct nand_ecclayout flctl_4secc_oob_16 = {
.eccbytes = 10,
.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
.oobfree = {
{.offset = 12,
. length = 4} },
};
static struct nand_ecclayout flctl_4secc_oob_64 = {
.eccbytes = 10,
.eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
.oobfree = {
{.offset = 60,
. length = 4} },
};
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr flctl_4secc_smallpage = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 11,
.len = 1,
.pattern = scan_ff_pattern,
};
static struct nand_bbt_descr flctl_4secc_largepage = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 58,
.len = 2,
.pattern = scan_ff_pattern,
};
static void empty_fifo(struct sh_flctl *flctl)
{
writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */
writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */
}
static void start_translation(struct sh_flctl *flctl)
{
writeb(TRSTRT, FLTRCR(flctl));
}
static void wait_completion(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
if (readb(FLTRCR(flctl)) & TREND) {
writeb(0x0, FLTRCR(flctl));
return;
}
udelay(1);
}
printk(KERN_ERR "wait_completion(): Timeout occured \n");
writeb(0x0, FLTRCR(flctl));
}
static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t addr = 0;
if (column == -1) {
addr = page_addr; /* ERASE1 */
} else if (page_addr != -1) {
/* SEQIN, READ0, etc.. */
if (flctl->page_size) {
addr = column & 0x0FFF;
addr |= (page_addr & 0xff) << 16;
addr |= ((page_addr >> 8) & 0xff) << 24;
/* big than 128MB */
if (flctl->rw_ADRCNT == ADRCNT2_E) {
uint32_t addr2;
addr2 = (page_addr >> 16) & 0xff;
writel(addr2, FLADR2(flctl));
}
} else {
addr = column;
addr |= (page_addr & 0xff) << 8;
addr |= ((page_addr >> 8) & 0xff) << 16;
addr |= ((page_addr >> 16) & 0xff) << 24;
}
}
writel(addr, FLADR(flctl));
}
static void wait_rfifo_ready(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
uint32_t val;
/* check FIFO */
val = readl(FLDTCNTR(flctl)) >> 16;
if (val & 0xFF)
return;
udelay(1);
}
printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n");
}
static void wait_wfifo_ready(struct sh_flctl *flctl)
{
uint32_t len, timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
/* check FIFO */
len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
if (len >= 4)
return;
udelay(1);
}
printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n");
}
static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
int checked[4];
void __iomem *ecc_reg[4];
int i;
uint32_t data, size;
memset(checked, 0, sizeof(checked));
while (timeout--) {
size = readl(FLDTCNTR(flctl)) >> 24;
if (size & 0xFF)
return 0; /* success */
if (readl(FL4ECCCR(flctl)) & _4ECCFA)
return 1; /* can't correct */
udelay(1);
if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
continue;
/* start error correction */
ecc_reg[0] = FL4ECCRESULT0(flctl);
ecc_reg[1] = FL4ECCRESULT1(flctl);
ecc_reg[2] = FL4ECCRESULT2(flctl);
ecc_reg[3] = FL4ECCRESULT3(flctl);
for (i = 0; i < 3; i++) {
data = readl(ecc_reg[i]);
if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
uint8_t org;
int index;
if (flctl->page_size)
index = (512 * sector_number) +
(data >> 16);
else
index = data >> 16;
org = flctl->done_buff[index];
flctl->done_buff[index] = org ^ (data & 0xFF);
checked[i] = 1;
}
}
writel(0, FL4ECCCR(flctl));
}
printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n");
return 1; /* timeout */
}
static void wait_wecfifo_ready(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
uint32_t len;
while (timeout--) {
/* check FLECFIFO */
len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
if (len >= 4)
return;
udelay(1);
}
printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n");
}
static void read_datareg(struct sh_flctl *flctl, int offset)
{
unsigned long data;
unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
wait_completion(flctl);
data = readl(FLDATAR(flctl));
*buf = le32_to_cpu(data);
}
static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
int i, len_4align;
unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
void *fifo_addr = (void *)FLDTFIFO(flctl);
len_4align = (rlen + 3) / 4;
for (i = 0; i < len_4align; i++) {
wait_rfifo_ready(flctl);
buf[i] = readl(fifo_addr);
buf[i] = be32_to_cpu(buf[i]);
}
}
static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector)
{
int i;
unsigned long *ecc_buf = (unsigned long *)buff;
void *fifo_addr = (void *)FLECFIFO(flctl);
for (i = 0; i < 4; i++) {
if (wait_recfifo_ready(flctl , sector))
return 1;
ecc_buf[i] = readl(fifo_addr);
ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
}
return 0;
}
static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
int i, len_4align;
unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
void *fifo_addr = (void *)FLDTFIFO(flctl);
len_4align = (rlen + 3) / 4;
for (i = 0; i < len_4align; i++) {
wait_wfifo_ready(flctl);
writel(cpu_to_be32(data[i]), fifo_addr);
}
}
static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t flcmncr_val = readl(FLCMNCR(flctl));
uint32_t flcmdcr_val, addr_len_bytes = 0;
/* Set SNAND bit if page size is 2048byte */
if (flctl->page_size)
flcmncr_val |= SNAND_E;
else
flcmncr_val &= ~SNAND_E;
/* default FLCMDCR val */
flcmdcr_val = DOCMD1_E | DOADR_E;
/* Set for FLCMDCR */
switch (cmd) {
case NAND_CMD_ERASE1:
addr_len_bytes = flctl->erase_ADRCNT;
flcmdcr_val |= DOCMD2_E;
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
addr_len_bytes = flctl->rw_ADRCNT;
flcmdcr_val |= CDSRC_E;
break;
case NAND_CMD_SEQIN:
/* This case is that cmd is READ0 or READ1 or READ00 */
flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
break;
case NAND_CMD_PAGEPROG:
addr_len_bytes = flctl->rw_ADRCNT;
flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
break;
case NAND_CMD_READID:
flcmncr_val &= ~SNAND_E;
addr_len_bytes = ADRCNT_1;
break;
case NAND_CMD_STATUS:
case NAND_CMD_RESET:
flcmncr_val &= ~SNAND_E;
flcmdcr_val &= ~(DOADR_E | DOSR_E);
break;
default:
break;
}
/* Set address bytes parameter */
flcmdcr_val |= addr_len_bytes;
/* Now actually write */
writel(flcmncr_val, FLCMNCR(flctl));
writel(flcmdcr_val, FLCMDCR(flctl));
writel(flcmcdr_val, FLCMCDR(flctl));
}
static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
struct sh_flctl *flctl = mtd_to_flctl(mtd);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->read_buf(mtd, p, eccsize);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
if (flctl->hwecc_cant_correct[i])
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += 0;
}
return 0;
}
static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->write_buf(mtd, p, eccsize);
}
static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
int sector, page_sectors;
if (flctl->page_size)
page_sectors = 4;
else
page_sectors = 1;
writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
FLCMNCR(flctl));
set_cmd_regs(mtd, NAND_CMD_READ0,
(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
for (sector = 0; sector < page_sectors; sector++) {
int ret;
empty_fifo(flctl);
writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
writel(page_addr << 2 | sector, FLADR(flctl));
start_translation(flctl);
read_fiforeg(flctl, 512, 512 * sector);
ret = read_ecfiforeg(flctl,
&flctl->done_buff[mtd->writesize + 16 * sector],
sector);
if (ret)
flctl->hwecc_cant_correct[sector] = 1;
writel(0x0, FL4ECCCR(flctl));
wait_completion(flctl);
}
writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
FLCMNCR(flctl));
}
static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
set_cmd_regs(mtd, NAND_CMD_READ0,
(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
empty_fifo(flctl);
if (flctl->page_size) {
int i;
/* In case that the page size is 2k */
for (i = 0; i < 16 * 3; i++)
flctl->done_buff[i] = 0xFF;
set_addr(mtd, 3 * 528 + 512, page_addr);
writel(16, FLDTCNTR(flctl));
start_translation(flctl);
read_fiforeg(flctl, 16, 16 * 3);
wait_completion(flctl);
} else {
/* In case that the page size is 512b */
set_addr(mtd, 512, page_addr);
writel(16, FLDTCNTR(flctl));
start_translation(flctl);
read_fiforeg(flctl, 16, 0);
wait_completion(flctl);
}
}
static void execmd_write_page_sector(struct mtd_info *mtd)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
int i, page_addr = flctl->seqin_page_addr;
int sector, page_sectors;
if (flctl->page_size)
page_sectors = 4;
else
page_sectors = 1;
writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
for (sector = 0; sector < page_sectors; sector++) {
empty_fifo(flctl);
writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
writel(page_addr << 2 | sector, FLADR(flctl));
start_translation(flctl);
write_fiforeg(flctl, 512, 512 * sector);
for (i = 0; i < 4; i++) {
wait_wecfifo_ready(flctl); /* wait for write ready */
writel(0xFFFFFFFF, FLECFIFO(flctl));
}
wait_completion(flctl);
}
writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
}
static void execmd_write_oob(struct mtd_info *mtd)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
int page_addr = flctl->seqin_page_addr;
int sector, page_sectors;
if (flctl->page_size) {
sector = 3;
page_sectors = 4;
} else {
sector = 0;
page_sectors = 1;
}
set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
for (; sector < page_sectors; sector++) {
empty_fifo(flctl);
set_addr(mtd, sector * 528 + 512, page_addr);
writel(16, FLDTCNTR(flctl)); /* set read size */
start_translation(flctl);
write_fiforeg(flctl, 16, 16 * sector);
wait_completion(flctl);
}
}
static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t read_cmd = 0;
flctl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
flctl->index = 0;
switch (command) {
case NAND_CMD_READ1:
case NAND_CMD_READ0:
if (flctl->hwecc) {
/* read page with hwecc */
execmd_read_page_sector(mtd, page_addr);
break;
}
empty_fifo(flctl);
if (flctl->page_size)
set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
| command);
else
set_cmd_regs(mtd, command, command);
set_addr(mtd, 0, page_addr);
flctl->read_bytes = mtd->writesize + mtd->oobsize;
flctl->index += column;
goto read_normal_exit;
case NAND_CMD_READOOB:
if (flctl->hwecc) {
/* read page with hwecc */
execmd_read_oob(mtd, page_addr);
break;
}
empty_fifo(flctl);
if (flctl->page_size) {
set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
| NAND_CMD_READ0);
set_addr(mtd, mtd->writesize, page_addr);
} else {
set_cmd_regs(mtd, command, command);
set_addr(mtd, 0, page_addr);
}
flctl->read_bytes = mtd->oobsize;
goto read_normal_exit;
case NAND_CMD_READID:
empty_fifo(flctl);
set_cmd_regs(mtd, command, command);
set_addr(mtd, 0, 0);
flctl->read_bytes = 4;
writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
start_translation(flctl);
read_datareg(flctl, 0); /* read and end */
break;
case NAND_CMD_ERASE1:
flctl->erase1_page_addr = page_addr;
break;
case NAND_CMD_ERASE2:
set_cmd_regs(mtd, NAND_CMD_ERASE1,
(command << 8) | NAND_CMD_ERASE1);
set_addr(mtd, -1, flctl->erase1_page_addr);
start_translation(flctl);
wait_completion(flctl);
break;
case NAND_CMD_SEQIN:
if (!flctl->page_size) {
/* output read command */
if (column >= mtd->writesize) {
column -= mtd->writesize;
read_cmd = NAND_CMD_READOOB;
} else if (column < 256) {
read_cmd = NAND_CMD_READ0;
} else {
column -= 256;
read_cmd = NAND_CMD_READ1;
}
}
flctl->seqin_column = column;
flctl->seqin_page_addr = page_addr;
flctl->seqin_read_cmd = read_cmd;
break;
case NAND_CMD_PAGEPROG:
empty_fifo(flctl);
if (!flctl->page_size) {
set_cmd_regs(mtd, NAND_CMD_SEQIN,
flctl->seqin_read_cmd);
set_addr(mtd, -1, -1);
writel(0, FLDTCNTR(flctl)); /* set 0 size */
start_translation(flctl);
wait_completion(flctl);
}
if (flctl->hwecc) {
/* write page with hwecc */
if (flctl->seqin_column == mtd->writesize)
execmd_write_oob(mtd);
else if (!flctl->seqin_column)
execmd_write_page_sector(mtd);
else
printk(KERN_ERR "Invalid address !?\n");
break;
}
set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
start_translation(flctl);
write_fiforeg(flctl, flctl->index, 0);
wait_completion(flctl);
break;
case NAND_CMD_STATUS:
set_cmd_regs(mtd, command, command);
set_addr(mtd, -1, -1);
flctl->read_bytes = 1;
writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
start_translation(flctl);
read_datareg(flctl, 0); /* read and end */
break;
case NAND_CMD_RESET:
set_cmd_regs(mtd, command, command);
set_addr(mtd, -1, -1);
writel(0, FLDTCNTR(flctl)); /* set 0 size */
start_translation(flctl);
wait_completion(flctl);
break;
default:
break;
}
return;
read_normal_exit:
writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
start_translation(flctl);
read_fiforeg(flctl, flctl->read_bytes, 0);
wait_completion(flctl);
return;
}
static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t flcmncr_val = readl(FLCMNCR(flctl));
switch (chipnr) {
case -1:
flcmncr_val &= ~CE0_ENABLE;
writel(flcmncr_val, FLCMNCR(flctl));
break;
case 0:
flcmncr_val |= CE0_ENABLE;
writel(flcmncr_val, FLCMNCR(flctl));
break;
default:
BUG();
}
}
static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
int i, index = flctl->index;
for (i = 0; i < len; i++)
flctl->done_buff[index + i] = buf[i];
flctl->index += len;
}
static uint8_t flctl_read_byte(struct mtd_info *mtd)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
int index = flctl->index;
uint8_t data;
data = flctl->done_buff[index];
flctl->index++;
return data;
}
static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = flctl_read_byte(mtd);
}
static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++)
if (buf[i] != flctl_read_byte(mtd))
return -EFAULT;
return 0;
}
static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
{
writel(val, FLCMNCR(flctl));
}
static int flctl_chip_init_tail(struct mtd_info *mtd)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
struct nand_chip *chip = &flctl->chip;
if (mtd->writesize == 512) {
flctl->page_size = 0;
if (chip->chipsize > (32 << 20)) {
/* big than 32MB */
flctl->rw_ADRCNT = ADRCNT_4;
flctl->erase_ADRCNT = ADRCNT_3;
} else if (chip->chipsize > (2 << 16)) {
/* big than 128KB */
flctl->rw_ADRCNT = ADRCNT_3;
flctl->erase_ADRCNT = ADRCNT_2;
} else {
flctl->rw_ADRCNT = ADRCNT_2;
flctl->erase_ADRCNT = ADRCNT_1;
}
} else {
flctl->page_size = 1;
if (chip->chipsize > (128 << 20)) {
/* big than 128MB */
flctl->rw_ADRCNT = ADRCNT2_E;
flctl->erase_ADRCNT = ADRCNT_3;
} else if (chip->chipsize > (8 << 16)) {
/* big than 512KB */
flctl->rw_ADRCNT = ADRCNT_4;
flctl->erase_ADRCNT = ADRCNT_2;
} else {
flctl->rw_ADRCNT = ADRCNT_3;
flctl->erase_ADRCNT = ADRCNT_1;
}
}
if (flctl->hwecc) {
if (mtd->writesize == 512) {
chip->ecc.layout = &flctl_4secc_oob_16;
chip->badblock_pattern = &flctl_4secc_smallpage;
} else {
chip->ecc.layout = &flctl_4secc_oob_64;
chip->badblock_pattern = &flctl_4secc_largepage;
}
chip->ecc.size = 512;
chip->ecc.bytes = 10;
chip->ecc.read_page = flctl_read_page_hwecc;
chip->ecc.write_page = flctl_write_page_hwecc;
chip->ecc.mode = NAND_ECC_HW;
/* 4 symbols ECC enabled */
writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02,
FLCMNCR(flctl));
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
return 0;
}
static int __init flctl_probe(struct platform_device *pdev)
{
struct resource *res;
struct sh_flctl *flctl;
struct mtd_info *flctl_mtd;
struct nand_chip *nand;
struct sh_flctl_platform_data *pdata;
int ret;
pdata = pdev->dev.platform_data;
if (pdata == NULL) {
printk(KERN_ERR "sh_flctl platform_data not found.\n");
return -ENODEV;
}
flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
if (!flctl) {
printk(KERN_ERR "Unable to allocate NAND MTD dev structure.\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
printk(KERN_ERR "%s: resource not found.\n", __func__);
ret = -ENODEV;
goto err;
}
flctl->reg = ioremap(res->start, res->end - res->start + 1);
if (flctl->reg == NULL) {
printk(KERN_ERR "%s: ioremap error.\n", __func__);
ret = -ENOMEM;
goto err;
}
platform_set_drvdata(pdev, flctl);
flctl_mtd = &flctl->mtd;
nand = &flctl->chip;
flctl_mtd->priv = nand;
flctl->hwecc = pdata->has_hwecc;
flctl_register_init(flctl, pdata->flcmncr_val);
nand->options = NAND_NO_AUTOINCR;
/* Set address of hardware control function */
/* 20 us command delay time */
nand->chip_delay = 20;
nand->read_byte = flctl_read_byte;
nand->write_buf = flctl_write_buf;
nand->read_buf = flctl_read_buf;
nand->verify_buf = flctl_verify_buf;
nand->select_chip = flctl_select_chip;
nand->cmdfunc = flctl_cmdfunc;
ret = nand_scan_ident(flctl_mtd, 1);
if (ret)
goto err;
ret = flctl_chip_init_tail(flctl_mtd);
if (ret)
goto err;
ret = nand_scan_tail(flctl_mtd);
if (ret)
goto err;
add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts);
return 0;
err:
kfree(flctl);
return ret;
}
static int __exit flctl_remove(struct platform_device *pdev)
{
struct sh_flctl *flctl = platform_get_drvdata(pdev);
nand_release(&flctl->mtd);
kfree(flctl);
return 0;
}
static struct platform_driver flctl_driver = {
.remove = flctl_remove,
.driver = {
.name = "sh_flctl",
.owner = THIS_MODULE,
},
};
static int __init flctl_nand_init(void)
{
return platform_driver_probe(&flctl_driver, flctl_probe);
}
static void __exit flctl_nand_cleanup(void)
{
platform_driver_unregister(&flctl_driver);
}
module_init(flctl_nand_init);
module_exit(flctl_nand_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_DESCRIPTION("SuperH FLCTL driver");
MODULE_ALIAS("platform:sh_flctl");