satip-axe/kernel/drivers/net/smsc911x.c

2201 lines
58 KiB
C
Raw Normal View History

/***************************************************************************
*
* Copyright (C) 2004-2008 SMSC
* Copyright (C) 2005-2008 ARM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
***************************************************************************
* Rewritten, heavily based on smsc911x simple driver by SMSC.
* Partly uses io macros from smc91x.c by Nicolas Pitre
*
* Supported devices:
* LAN9115, LAN9116, LAN9117, LAN9118
* LAN9215, LAN9216, LAN9217, LAN9218
* LAN9210, LAN9211
* LAN9220, LAN9221
*
*/
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/bug.h>
#include <linux/bitops.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/swab.h>
#include <linux/phy.h>
#include <linux/smsc911x.h>
#include <linux/device.h>
#include "smsc911x.h"
#define SMSC_CHIPNAME "smsc911x"
#define SMSC_MDIONAME "smsc911x-mdio"
#define SMSC_DRV_VERSION "2008-10-21"
MODULE_LICENSE("GPL");
MODULE_VERSION(SMSC_DRV_VERSION);
#if USE_DEBUG > 0
static int debug = 16;
#else
static int debug = 3;
#endif
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct smsc911x_data {
void __iomem *ioaddr;
unsigned int idrev;
/* used to decide which workarounds apply */
unsigned int generation;
/* device configuration (copied from platform_data during probe) */
struct smsc911x_platform_config config;
/* This needs to be acquired before calling any of below:
* smsc911x_mac_read(), smsc911x_mac_write()
*/
spinlock_t mac_lock;
/* spinlock to ensure register accesses are serialised */
spinlock_t dev_lock;
struct phy_device *phy_dev;
struct mii_bus *mii_bus;
int phy_irq[PHY_MAX_ADDR];
unsigned int using_extphy;
int last_duplex;
int last_carrier;
u32 msg_enable;
unsigned int gpio_setting;
unsigned int gpio_orig_setting;
struct net_device *dev;
struct napi_struct napi;
unsigned int software_irq_signal;
#ifdef USE_PHY_WORK_AROUND
#define MIN_PACKET_SIZE (64)
char loopback_tx_pkt[MIN_PACKET_SIZE];
char loopback_rx_pkt[MIN_PACKET_SIZE];
unsigned int resetcount;
#endif
/* Members for Multicast filter workaround */
unsigned int multicast_update_pending;
unsigned int set_bits_mask;
unsigned int clear_bits_mask;
unsigned int hashhi;
unsigned int hashlo;
};
static inline u32 __smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg)
{
if (pdata->config.flags & SMSC911X_USE_32BIT)
return readl(pdata->ioaddr + reg);
if (pdata->config.flags & SMSC911X_USE_16BIT)
return ((readw(pdata->ioaddr + reg) & 0xFFFF) |
((readw(pdata->ioaddr + reg + 2) & 0xFFFF) << 16));
BUG();
return 0;
}
static inline u32 smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg)
{
u32 data;
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
data = __smsc911x_reg_read(pdata, reg);
spin_unlock_irqrestore(&pdata->dev_lock, flags);
return data;
}
static inline void __smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg,
u32 val)
{
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writel(val, pdata->ioaddr + reg);
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
writew(val & 0xFFFF, pdata->ioaddr + reg);
writew((val >> 16) & 0xFFFF, pdata->ioaddr + reg + 2);
return;
}
BUG();
}
static inline void smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg,
u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
__smsc911x_reg_write(pdata, reg, val);
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Writes a packet to the TX_DATA_FIFO */
static inline void
smsc911x_tx_writefifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
__smsc911x_reg_write(pdata, TX_DATA_FIFO,
swab32(*buf++));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writesl(pdata->ioaddr + TX_DATA_FIFO, buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
__smsc911x_reg_write(pdata, TX_DATA_FIFO, *buf++);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Reads a packet out of the RX_DATA_FIFO */
static inline void
smsc911x_rx_readfifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
*buf++ = swab32(__smsc911x_reg_read(pdata,
RX_DATA_FIFO));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
readsl(pdata->ioaddr + RX_DATA_FIFO, buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
*buf++ = __smsc911x_reg_read(pdata, RX_DATA_FIFO);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* waits for MAC not busy, with timeout. Only called by smsc911x_mac_read
* and smsc911x_mac_write, so assumes mac_lock is held */
static int smsc911x_mac_complete(struct smsc911x_data *pdata)
{
int i;
u32 val;
SMSC_ASSERT_MAC_LOCK(pdata);
for (i = 0; i < 40; i++) {
val = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (!(val & MAC_CSR_CMD_CSR_BUSY_))
return 0;
}
SMSC_WARNING(HW, "Timed out waiting for MAC not BUSY. "
"MAC_CSR_CMD: 0x%08X", val);
return -EIO;
}
/* Fetches a MAC register value. Assumes mac_lock is acquired */
static u32 smsc911x_mac_read(struct smsc911x_data *pdata, unsigned int offset)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARNING(HW, "MAC busy at entry");
return 0xFFFFFFFF;
}
/* Send the MAC cmd */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_ | MAC_CSR_CMD_R_NOT_W_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the read to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return smsc911x_reg_read(pdata, MAC_CSR_DATA);
SMSC_WARNING(HW, "MAC busy after read");
return 0xFFFFFFFF;
}
/* Set a mac register, mac_lock must be acquired before calling */
static void smsc911x_mac_write(struct smsc911x_data *pdata,
unsigned int offset, u32 val)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARNING(HW,
"smsc911x_mac_write failed, MAC busy at entry");
return;
}
/* Send data to write */
smsc911x_reg_write(pdata, MAC_CSR_DATA, val);
/* Write the actual data */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the write to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return;
SMSC_WARNING(HW,
"smsc911x_mac_write failed, MAC busy after write");
}
/* Get a phy register */
static int smsc911x_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARNING(HW,
"MII is busy in smsc911x_mii_read???");
reg = -EIO;
goto out;
}
/* Set the address, index & direction (read from PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6);
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for read to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = smsc911x_mac_read(pdata, MII_DATA);
goto out;
}
SMSC_WARNING(HW, "Timed out waiting for MII read to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Set a phy register */
static int smsc911x_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 val)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARNING(HW,
"MII is busy in smsc911x_mii_write???");
reg = -EIO;
goto out;
}
/* Put the data to write in the MAC */
smsc911x_mac_write(pdata, MII_DATA, val);
/* Set the address, index & direction (write to PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
MII_ACC_MII_WRITE_;
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for write to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = 0;
goto out;
}
SMSC_WARNING(HW, "Timed out waiting for MII write to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Switch to external phy. Assumes tx and rx are stopped. */
static void smsc911x_phy_enable_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
/* Disable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to stop */
/* Switch to external phy */
hwcfg |= HW_CFG_EXT_PHY_EN_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
/* Enable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to restart */
hwcfg |= HW_CFG_SMI_SEL_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
}
/* Autodetects and enables external phy if present on supported chips.
* autodetection can be overridden by specifying SMSC911X_FORCE_INTERNAL_PHY
* or SMSC911X_FORCE_EXTERNAL_PHY in the platform_data flags. */
static void smsc911x_phy_initialise_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
if (pdata->config.flags & SMSC911X_FORCE_INTERNAL_PHY) {
SMSC_TRACE(HW, "Forcing internal PHY");
pdata->using_extphy = 0;
} else if (pdata->config.flags & SMSC911X_FORCE_EXTERNAL_PHY) {
SMSC_TRACE(HW, "Forcing external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else if (hwcfg & HW_CFG_EXT_PHY_DET_) {
SMSC_TRACE(HW, "HW_CFG EXT_PHY_DET set, using external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else {
SMSC_TRACE(HW, "HW_CFG EXT_PHY_DET clear, using internal PHY");
pdata->using_extphy = 0;
}
}
/* Fetches a tx status out of the status fifo */
static unsigned int smsc911x_tx_get_txstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, TX_STATUS_FIFO);
return result;
}
/* Fetches the next rx status */
static unsigned int smsc911x_rx_get_rxstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, RX_STATUS_FIFO);
return result;
}
#ifdef USE_PHY_WORK_AROUND
static int smsc911x_phy_check_loopbackpkt(struct smsc911x_data *pdata)
{
unsigned int tries;
u32 wrsz;
u32 rdsz;
ulong bufp;
for (tries = 0; tries < 10; tries++) {
unsigned int txcmd_a;
unsigned int txcmd_b;
unsigned int status;
unsigned int pktlength;
unsigned int i;
/* Zero-out rx packet memory */
memset(pdata->loopback_rx_pkt, 0, MIN_PACKET_SIZE);
/* Write tx packet to 118 */
txcmd_a = (u32)((ulong)pdata->loopback_tx_pkt & 0x03) << 16;
txcmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
txcmd_a |= MIN_PACKET_SIZE;
txcmd_b = MIN_PACKET_SIZE << 16 | MIN_PACKET_SIZE;
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_b);
bufp = (ulong)pdata->loopback_tx_pkt & (~0x3);
wrsz = MIN_PACKET_SIZE + 3;
wrsz += (u32)((ulong)pdata->loopback_tx_pkt & 0x3);
wrsz >>= 2;
smsc911x_tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
/* Wait till transmit is done */
i = 60;
do {
udelay(5);
status = smsc911x_tx_get_txstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARNING(HW, "Failed to transmit "
"during loopback test");
continue;
}
if (status & TX_STS_ES_) {
SMSC_WARNING(HW, "Transmit encountered "
"errors during loopback test");
continue;
}
/* Wait till receive is done */
i = 60;
do {
udelay(5);
status = smsc911x_rx_get_rxstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARNING(HW,
"Failed to receive during loopback test");
continue;
}
if (status & RX_STS_ES_) {
SMSC_WARNING(HW, "Receive encountered "
"errors during loopback test");
continue;
}
pktlength = ((status & 0x3FFF0000UL) >> 16);
bufp = (ulong)pdata->loopback_rx_pkt;
rdsz = pktlength + 3;
rdsz += (u32)((ulong)pdata->loopback_rx_pkt & 0x3);
rdsz >>= 2;
smsc911x_rx_readfifo(pdata, (unsigned int *)bufp, rdsz);
if (pktlength != (MIN_PACKET_SIZE + 4)) {
SMSC_WARNING(HW, "Unexpected packet size "
"during loop back test, size=%d, will retry",
pktlength);
} else {
unsigned int j;
int mismatch = 0;
for (j = 0; j < MIN_PACKET_SIZE; j++) {
if (pdata->loopback_tx_pkt[j]
!= pdata->loopback_rx_pkt[j]) {
mismatch = 1;
break;
}
}
if (!mismatch) {
SMSC_TRACE(HW, "Successfully verified "
"loopback packet");
return 0;
} else {
SMSC_WARNING(HW, "Data mismatch "
"during loop back test, will retry");
}
}
}
return -EIO;
}
static int smsc911x_phy_reset(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
unsigned int temp;
unsigned int i = 100000;
BUG_ON(!phy_dev);
BUG_ON(!phy_dev->bus);
SMSC_TRACE(HW, "Performing PHY BCR Reset");
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, BMCR_RESET);
do {
msleep(1);
temp = smsc911x_mii_read(phy_dev->bus, phy_dev->addr,
MII_BMCR);
} while ((i--) && (temp & BMCR_RESET));
if (temp & BMCR_RESET) {
SMSC_WARNING(HW, "PHY reset failed to complete.");
return -EIO;
}
/* Extra delay required because the phy may not be completed with
* its reset when BMCR_RESET is cleared. Specs say 256 uS is
* enough delay but using 1ms here to be safe */
msleep(1);
return 0;
}
static int smsc911x_phy_loopbacktest(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
int result = -EIO;
unsigned int i, val;
unsigned long flags;
/* Initialise tx packet using broadcast destination address */
memset(pdata->loopback_tx_pkt, 0xff, ETH_ALEN);
/* Use incrementing source address */
for (i = 6; i < 12; i++)
pdata->loopback_tx_pkt[i] = (char)i;
/* Set length type field */
pdata->loopback_tx_pkt[12] = 0x00;
pdata->loopback_tx_pkt[13] = 0x00;
for (i = 14; i < MIN_PACKET_SIZE; i++)
pdata->loopback_tx_pkt[i] = (char)i;
val = smsc911x_reg_read(pdata, HW_CFG);
val &= HW_CFG_TX_FIF_SZ_;
val |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, val);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
smsc911x_reg_write(pdata, RX_CFG,
(u32)((ulong)pdata->loopback_rx_pkt & 0x03) << 8);
for (i = 0; i < 10; i++) {
/* Set PHY to 10/FD, no ANEG, and loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR,
BMCR_LOOPBACK | BMCR_FULLDPLX);
/* Enable MAC tx/rx, FD */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, MAC_CR_FDPX_
| MAC_CR_TXEN_ | MAC_CR_RXEN_);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
if (smsc911x_phy_check_loopbackpkt(pdata) == 0) {
result = 0;
break;
}
pdata->resetcount++;
/* Disable MAC rx */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_reset(pdata);
}
/* Disable MAC */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
/* Cancel PHY loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, 0);
smsc911x_reg_write(pdata, TX_CFG, 0);
smsc911x_reg_write(pdata, RX_CFG, 0);
return result;
}
#endif /* USE_PHY_WORK_AROUND */
static void smsc911x_phy_update_flowcontrol(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
u32 afc = smsc911x_reg_read(pdata, AFC_CFG);
u32 flow;
unsigned long flags;
if (phy_dev->duplex == DUPLEX_FULL) {
u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
u16 rmtadv = phy_read(phy_dev, MII_LPA);
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
flow = 0xFFFF0002;
else
flow = 0;
if (cap & FLOW_CTRL_TX)
afc |= 0xF;
else
afc &= ~0xF;
SMSC_TRACE(HW, "rx pause %s, tx pause %s",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
SMSC_TRACE(HW, "half duplex");
flow = 0;
afc |= 0xF;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, FLOW, flow);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_reg_write(pdata, AFC_CFG, afc);
}
/* Update link mode if anything has changed. Called periodically when the
* PHY is in polling mode, even if nothing has changed. */
static void smsc911x_phy_adjust_link(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
int carrier;
if (phy_dev->duplex != pdata->last_duplex) {
unsigned int mac_cr;
SMSC_TRACE(HW, "duplex state has changed");
spin_lock_irqsave(&pdata->mac_lock, flags);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
if (phy_dev->duplex) {
SMSC_TRACE(HW,
"configuring for full duplex mode");
mac_cr |= MAC_CR_FDPX_;
} else {
SMSC_TRACE(HW,
"configuring for half duplex mode");
mac_cr &= ~MAC_CR_FDPX_;
}
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_update_flowcontrol(pdata);
pdata->last_duplex = phy_dev->duplex;
}
carrier = netif_carrier_ok(dev);
if (carrier != pdata->last_carrier) {
SMSC_TRACE(HW, "carrier state has changed");
if (carrier) {
SMSC_TRACE(HW, "configuring for carrier OK");
if ((pdata->gpio_orig_setting & GPIO_CFG_LED1_EN_) &&
(!pdata->using_extphy)) {
/* Restore orginal GPIO configuration */
pdata->gpio_setting = pdata->gpio_orig_setting;
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
} else {
SMSC_TRACE(HW, "configuring for no carrier");
/* Check global setting that LED1
* usage is 10/100 indicator */
pdata->gpio_setting = smsc911x_reg_read(pdata,
GPIO_CFG);
if ((pdata->gpio_setting & GPIO_CFG_LED1_EN_)
&& (!pdata->using_extphy)) {
/* Force 10/100 LED off, after saving
* orginal GPIO configuration */
pdata->gpio_orig_setting = pdata->gpio_setting;
pdata->gpio_setting &= ~GPIO_CFG_LED1_EN_;
pdata->gpio_setting |= (GPIO_CFG_GPIOBUF0_
| GPIO_CFG_GPIODIR0_
| GPIO_CFG_GPIOD0_);
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
}
pdata->last_carrier = carrier;
}
}
static int smsc911x_mii_probe(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phydev = NULL;
int phy_addr;
/* find the first phy */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (pdata->mii_bus->phy_map[phy_addr]) {
phydev = pdata->mii_bus->phy_map[phy_addr];
SMSC_TRACE(PROBE, "PHY %d: addr %d, phy_id 0x%08X",
phy_addr, phydev->addr, phydev->phy_id);
break;
}
}
if (!phydev) {
pr_err("%s: no PHY found\n", dev->name);
return -ENODEV;
}
phydev = phy_connect(dev, dev_name(&phydev->dev),
&smsc911x_phy_adjust_link, 0, pdata->config.phy_interface);
if (IS_ERR(phydev)) {
pr_err("%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name,
dev_name(&phydev->dev), phydev->irq);
/* mask with MAC supported features */
phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
phydev->advertising = phydev->supported;
pdata->phy_dev = phydev;
pdata->last_duplex = -1;
pdata->last_carrier = -1;
#ifdef USE_PHY_WORK_AROUND
if (smsc911x_phy_loopbacktest(dev) < 0) {
SMSC_WARNING(HW, "Failed Loop Back Test");
return -ENODEV;
}
SMSC_TRACE(HW, "Passed Loop Back Test");
#endif /* USE_PHY_WORK_AROUND */
SMSC_TRACE(HW, "phy initialised succesfully");
return 0;
}
static int __devinit smsc911x_mii_init(struct platform_device *pdev,
struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
int err = -ENXIO, i;
pdata->mii_bus = mdiobus_alloc();
if (!pdata->mii_bus) {
err = -ENOMEM;
goto err_out_1;
}
pdata->mii_bus->name = SMSC_MDIONAME;
snprintf(pdata->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
pdata->mii_bus->priv = pdata;
pdata->mii_bus->read = smsc911x_mii_read;
pdata->mii_bus->write = smsc911x_mii_write;
pdata->mii_bus->irq = pdata->phy_irq;
for (i = 0; i < PHY_MAX_ADDR; ++i)
pdata->mii_bus->irq[i] = PHY_POLL;
pdata->mii_bus->parent = &pdev->dev;
switch (pdata->idrev & 0xFFFF0000) {
case 0x01170000:
case 0x01150000:
case 0x117A0000:
case 0x115A0000:
/* External PHY supported, try to autodetect */
smsc911x_phy_initialise_external(pdata);
break;
default:
SMSC_TRACE(HW, "External PHY is not supported, "
"using internal PHY");
pdata->using_extphy = 0;
break;
}
if (!pdata->using_extphy) {
/* Mask all PHYs except ID 1 (internal) */
pdata->mii_bus->phy_mask = ~(1 << 1);
}
if (mdiobus_register(pdata->mii_bus)) {
SMSC_WARNING(PROBE, "Error registering mii bus");
goto err_out_free_bus_2;
}
if (smsc911x_mii_probe(dev) < 0) {
SMSC_WARNING(PROBE, "Error registering mii bus");
goto err_out_unregister_bus_3;
}
return 0;
err_out_unregister_bus_3:
mdiobus_unregister(pdata->mii_bus);
err_out_free_bus_2:
mdiobus_free(pdata->mii_bus);
err_out_1:
return err;
}
/* Gets the number of tx statuses in the fifo */
static unsigned int smsc911x_tx_get_txstatcount(struct smsc911x_data *pdata)
{
return (smsc911x_reg_read(pdata, TX_FIFO_INF)
& TX_FIFO_INF_TSUSED_) >> 16;
}
/* Reads tx statuses and increments counters where necessary */
static void smsc911x_tx_update_txcounters(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int tx_stat;
while ((tx_stat = smsc911x_tx_get_txstatus(pdata)) != 0) {
if (unlikely(tx_stat & 0x80000000)) {
/* In this driver the packet tag is used as the packet
* length. Since a packet length can never reach the
* size of 0x8000, this bit is reserved. It is worth
* noting that the "reserved bit" in the warning above
* does not reference a hardware defined reserved bit
* but rather a driver defined one.
*/
SMSC_WARNING(HW,
"Packet tag reserved bit is high");
} else {
if (unlikely(tx_stat & TX_STS_ES_)) {
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += (tx_stat >> 16);
}
if (unlikely(tx_stat & TX_STS_EXCESS_COL_)) {
dev->stats.collisions += 16;
dev->stats.tx_aborted_errors += 1;
} else {
dev->stats.collisions +=
((tx_stat >> 3) & 0xF);
}
if (unlikely(tx_stat & TX_STS_LOST_CARRIER_))
dev->stats.tx_carrier_errors += 1;
if (unlikely(tx_stat & TX_STS_LATE_COL_)) {
dev->stats.collisions++;
dev->stats.tx_aborted_errors++;
}
}
}
}
/* Increments the Rx error counters */
static void
smsc911x_rx_counterrors(struct net_device *dev, unsigned int rxstat)
{
int crc_err = 0;
if (unlikely(rxstat & RX_STS_ES_)) {
dev->stats.rx_errors++;
if (unlikely(rxstat & RX_STS_CRC_ERR_)) {
dev->stats.rx_crc_errors++;
crc_err = 1;
}
}
if (likely(!crc_err)) {
if (unlikely((rxstat & RX_STS_FRAME_TYPE_) &&
(rxstat & RX_STS_LENGTH_ERR_)))
dev->stats.rx_length_errors++;
if (rxstat & RX_STS_MCAST_)
dev->stats.multicast++;
}
}
/* Quickly dumps bad packets */
static void
smsc911x_rx_fastforward(struct smsc911x_data *pdata, unsigned int pktbytes)
{
unsigned int pktwords = (pktbytes + NET_IP_ALIGN + 3) >> 2;
if (likely(pktwords >= 4)) {
unsigned int timeout = 500;
unsigned int val;
smsc911x_reg_write(pdata, RX_DP_CTRL, RX_DP_CTRL_RX_FFWD_);
do {
udelay(1);
val = smsc911x_reg_read(pdata, RX_DP_CTRL);
} while ((val & RX_DP_CTRL_RX_FFWD_) && --timeout);
if (unlikely(timeout == 0))
SMSC_WARNING(HW, "Timed out waiting for "
"RX FFWD to finish, RX_DP_CTRL: 0x%08X", val);
} else {
unsigned int temp;
while (pktwords--)
temp = smsc911x_reg_read(pdata, RX_DATA_FIFO);
}
}
/* NAPI poll function */
static int smsc911x_poll(struct napi_struct *napi, int budget)
{
struct smsc911x_data *pdata =
container_of(napi, struct smsc911x_data, napi);
struct net_device *dev = pdata->dev;
int npackets = 0;
while (npackets < budget) {
unsigned int pktlength;
unsigned int pktwords;
struct sk_buff *skb;
unsigned int rxstat = smsc911x_rx_get_rxstatus(pdata);
if (!rxstat) {
unsigned int temp;
/* We processed all packets available. Tell NAPI it can
* stop polling then re-enable rx interrupts */
smsc911x_reg_write(pdata, INT_STS, INT_STS_RSFL_);
napi_complete(napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_RSFL_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
break;
}
/* Count packet for NAPI scheduling, even if it has an error.
* Error packets still require cycles to discard */
npackets++;
pktlength = ((rxstat & 0x3FFF0000) >> 16);
pktwords = (pktlength + NET_IP_ALIGN + 3) >> 2;
smsc911x_rx_counterrors(dev, rxstat);
if (unlikely(rxstat & RX_STS_ES_)) {
SMSC_WARNING(RX_ERR,
"Discarding packet with error bit set");
/* Packet has an error, discard it and continue with
* the next */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
continue;
}
skb = netdev_alloc_skb(dev, pktlength + NET_IP_ALIGN);
if (unlikely(!skb)) {
SMSC_WARNING(RX_ERR,
"Unable to allocate skb for rx packet");
/* Drop the packet and stop this polling iteration */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
break;
}
skb->data = skb->head;
skb_reset_tail_pointer(skb);
/* Align IP on 16B boundary */
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pktlength - 4);
smsc911x_rx_readfifo(pdata, (unsigned int *)skb->head,
pktwords);
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_NONE;
netif_receive_skb(skb);
/* Update counters */
dev->stats.rx_packets++;
dev->stats.rx_bytes += (pktlength - 4);
}
/* Return total received packets */
return npackets;
}
/* Returns hash bit number for given MAC address
* Example:
* 01 00 5E 00 00 01 -> returns bit number 31 */
static unsigned int smsc911x_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
}
static void smsc911x_rx_multicast_update(struct smsc911x_data *pdata)
{
/* Performs the multicast & mac_cr update. This is called when
* safe on the current hardware, and with the mac_lock held */
unsigned int mac_cr;
SMSC_ASSERT_MAC_LOCK(pdata);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= pdata->set_bits_mask;
mac_cr &= ~(pdata->clear_bits_mask);
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
smsc911x_mac_write(pdata, HASHH, pdata->hashhi);
smsc911x_mac_write(pdata, HASHL, pdata->hashlo);
SMSC_TRACE(HW, "maccr 0x%08X, HASHH 0x%08X, HASHL 0x%08X",
mac_cr, pdata->hashhi, pdata->hashlo);
}
static void smsc911x_rx_multicast_update_workaround(struct smsc911x_data *pdata)
{
unsigned int mac_cr;
/* This function is only called for older LAN911x devices
* (revA or revB), where MAC_CR, HASHH and HASHL should not
* be modified during Rx - newer devices immediately update the
* registers.
*
* This is called from interrupt context */
spin_lock(&pdata->mac_lock);
/* Check Rx has stopped */
if (smsc911x_mac_read(pdata, MAC_CR) & MAC_CR_RXEN_)
SMSC_WARNING(DRV, "Rx not stopped");
/* Perform the update - safe to do now Rx has stopped */
smsc911x_rx_multicast_update(pdata);
/* Re-enable Rx */
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= MAC_CR_RXEN_;
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
pdata->multicast_update_pending = 0;
spin_unlock(&pdata->mac_lock);
}
static int smsc911x_soft_reset(struct smsc911x_data *pdata)
{
unsigned int timeout;
unsigned int temp;
/* Reset the LAN911x */
smsc911x_reg_write(pdata, HW_CFG, HW_CFG_SRST_);
timeout = 10;
do {
udelay(10);
temp = smsc911x_reg_read(pdata, HW_CFG);
} while ((--timeout) && (temp & HW_CFG_SRST_));
if (unlikely(temp & HW_CFG_SRST_)) {
SMSC_WARNING(DRV, "Failed to complete reset");
return -EIO;
}
return 0;
}
/* Sets the device MAC address to dev_addr, called with mac_lock held */
static void
smsc911x_set_hw_mac_address(struct smsc911x_data *pdata, u8 dev_addr[6])
{
u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
(dev_addr[1] << 8) | dev_addr[0];
SMSC_ASSERT_MAC_LOCK(pdata);
smsc911x_mac_write(pdata, ADDRH, mac_high16);
smsc911x_mac_write(pdata, ADDRL, mac_low32);
}
static int smsc911x_open(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int timeout;
unsigned int temp;
unsigned int intcfg;
/* if the phy is not yet registered, retry later*/
if (!pdata->phy_dev) {
SMSC_WARNING(HW, "phy_dev is NULL");
return -EAGAIN;
}
if (!is_valid_ether_addr(dev->dev_addr)) {
SMSC_WARNING(HW, "dev_addr is not a valid MAC address");
return -EADDRNOTAVAIL;
}
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata)) {
SMSC_WARNING(HW, "soft reset failed");
return -EIO;
}
smsc911x_reg_write(pdata, HW_CFG, 0x00050000);
smsc911x_reg_write(pdata, AFC_CFG, 0x006E3740);
/* Make sure EEPROM has finished loading before setting GPIO_CFG */
timeout = 50;
while ((smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) &&
--timeout) {
udelay(10);
}
if (unlikely(timeout == 0))
SMSC_WARNING(IFUP,
"Timed out waiting for EEPROM busy bit to clear");
smsc911x_reg_write(pdata, GPIO_CFG, 0x70070000);
/* The soft reset above cleared the device's MAC address,
* restore it from local copy (set in probe) */
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
/* Initialise irqs, but leave all sources disabled */
smsc911x_reg_write(pdata, INT_EN, 0);
smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF);
/* Set interrupt deassertion to 100uS */
intcfg = ((10 << 24) | INT_CFG_IRQ_EN_);
if (pdata->config.irq_polarity) {
SMSC_TRACE(IFUP, "irq polarity: active high");
intcfg |= INT_CFG_IRQ_POL_;
} else {
SMSC_TRACE(IFUP, "irq polarity: active low");
}
if (pdata->config.irq_type) {
SMSC_TRACE(IFUP, "irq type: push-pull");
intcfg |= INT_CFG_IRQ_TYPE_;
} else {
SMSC_TRACE(IFUP, "irq type: open drain");
}
smsc911x_reg_write(pdata, INT_CFG, intcfg);
SMSC_TRACE(IFUP, "Testing irq handler using IRQ %d", dev->irq);
pdata->software_irq_signal = 0;
smp_wmb();
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_SW_INT_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
timeout = 1000;
while (timeout--) {
if (pdata->software_irq_signal)
break;
msleep(1);
}
if (!pdata->software_irq_signal) {
dev_warn(&dev->dev, "ISR failed signaling test (IRQ %d)\n",
dev->irq);
return -ENODEV;
}
SMSC_TRACE(IFUP, "IRQ handler passed test using IRQ %d", dev->irq);
dev_info(&dev->dev, "SMSC911x/921x identified at %#08lx, IRQ: %d\n",
(unsigned long)pdata->ioaddr, dev->irq);
/* Reset the last known duplex and carrier */
pdata->last_duplex = -1;
pdata->last_carrier = -1;
/* Bring the PHY up */
phy_start(pdata->phy_dev);
temp = smsc911x_reg_read(pdata, HW_CFG);
/* Preserve TX FIFO size and external PHY configuration */
temp &= (HW_CFG_TX_FIF_SZ_|0x00000FFF);
temp |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, temp);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
temp &= ~(FIFO_INT_RX_STS_LEVEL_);
smsc911x_reg_write(pdata, FIFO_INT, temp);
/* set RX Data offset to 2 bytes for alignment */
smsc911x_reg_write(pdata, RX_CFG, (2 << 8));
/* enable NAPI polling before enabling RX interrupts */
napi_enable(&pdata->napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= (INT_EN_TDFA_EN_ | INT_EN_RSFL_EN_ | INT_EN_RXSTOP_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
spin_lock_irq(&pdata->mac_lock);
temp = smsc911x_mac_read(pdata, MAC_CR);
temp |= (MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
smsc911x_mac_write(pdata, MAC_CR, temp);
spin_unlock_irq(&pdata->mac_lock);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
netif_start_queue(dev);
return 0;
}
/* Entry point for stopping the interface */
static int smsc911x_stop(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int temp;
/* Disable all device interrupts */
temp = smsc911x_reg_read(pdata, INT_CFG);
temp &= ~INT_CFG_IRQ_EN_;
smsc911x_reg_write(pdata, INT_CFG, temp);
/* Stop Tx and Rx polling */
netif_stop_queue(dev);
napi_disable(&pdata->napi);
/* At this point all Rx and Tx activity is stopped */
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
smsc911x_tx_update_txcounters(dev);
/* Bring the PHY down */
if (pdata->phy_dev)
phy_stop(pdata->phy_dev);
SMSC_TRACE(IFDOWN, "Interface stopped");
return 0;
}
/* Entry point for transmitting a packet */
static int smsc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int freespace;
unsigned int tx_cmd_a;
unsigned int tx_cmd_b;
unsigned int temp;
u32 wrsz;
ulong bufp;
freespace = smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TDFREE_;
if (unlikely(freespace < TX_FIFO_LOW_THRESHOLD))
SMSC_WARNING(TX_ERR,
"Tx data fifo low, space available: %d", freespace);
/* Word alignment adjustment */
tx_cmd_a = (u32)((ulong)skb->data & 0x03) << 16;
tx_cmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
tx_cmd_a |= (unsigned int)skb->len;
tx_cmd_b = ((unsigned int)skb->len) << 16;
tx_cmd_b |= (unsigned int)skb->len;
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_b);
bufp = (ulong)skb->data & (~0x3);
wrsz = (u32)skb->len + 3;
wrsz += (u32)((ulong)skb->data & 0x3);
wrsz >>= 2;
smsc911x_tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
freespace -= (skb->len + 32);
dev_kfree_skb(skb);
dev->trans_start = jiffies;
if (unlikely(smsc911x_tx_get_txstatcount(pdata) >= 30))
smsc911x_tx_update_txcounters(dev);
if (freespace < TX_FIFO_LOW_THRESHOLD) {
netif_stop_queue(dev);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp &= 0x00FFFFFF;
temp |= 0x32000000;
smsc911x_reg_write(pdata, FIFO_INT, temp);
}
return NETDEV_TX_OK;
}
/* Entry point for getting status counters */
static struct net_device_stats *smsc911x_get_stats(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_tx_update_txcounters(dev);
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
return &dev->stats;
}
/* Entry point for setting addressing modes */
static void smsc911x_set_multicast_list(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned long flags;
if (dev->flags & IFF_PROMISC) {
/* Enabling promiscuous mode */
pdata->set_bits_mask = MAC_CR_PRMS_;
pdata->clear_bits_mask = (MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (dev->flags & IFF_ALLMULTI) {
/* Enabling all multicast mode */
pdata->set_bits_mask = MAC_CR_MCPAS_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (dev->mc_count > 0) {
/* Enabling specific multicast addresses */
unsigned int hash_high = 0;
unsigned int hash_low = 0;
unsigned int count = 0;
struct dev_mc_list *mc_list = dev->mc_list;
pdata->set_bits_mask = MAC_CR_HPFILT_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_MCPAS_);
while (mc_list) {
count++;
if ((mc_list->dmi_addrlen) == ETH_ALEN) {
unsigned int bitnum =
smsc911x_hash(mc_list->dmi_addr);
unsigned int mask = 0x01 << (bitnum & 0x1F);
if (bitnum & 0x20)
hash_high |= mask;
else
hash_low |= mask;
} else {
SMSC_WARNING(DRV, "dmi_addrlen != 6");
}
mc_list = mc_list->next;
}
if (count != (unsigned int)dev->mc_count)
SMSC_WARNING(DRV, "mc_count != dev->mc_count");
pdata->hashhi = hash_high;
pdata->hashlo = hash_low;
} else {
/* Enabling local MAC address only */
pdata->set_bits_mask = 0;
pdata->clear_bits_mask =
(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
if (pdata->generation <= 1) {
/* Older hardware revision - cannot change these flags while
* receiving data */
if (!pdata->multicast_update_pending) {
unsigned int temp;
SMSC_TRACE(HW, "scheduling mcast update");
pdata->multicast_update_pending = 1;
/* Request the hardware to stop, then perform the
* update when we get an RX_STOP interrupt */
temp = smsc911x_mac_read(pdata, MAC_CR);
temp &= ~(MAC_CR_RXEN_);
smsc911x_mac_write(pdata, MAC_CR, temp);
} else {
/* There is another update pending, this should now
* use the newer values */
}
} else {
/* Newer hardware revision - can write immediately */
smsc911x_rx_multicast_update(pdata);
}
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
static irqreturn_t smsc911x_irqhandler(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct smsc911x_data *pdata = netdev_priv(dev);
u32 intsts = smsc911x_reg_read(pdata, INT_STS);
u32 inten = smsc911x_reg_read(pdata, INT_EN);
int serviced = IRQ_NONE;
u32 temp;
if (unlikely(intsts & inten & INT_STS_SW_INT_)) {
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_SW_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_SW_INT_);
pdata->software_irq_signal = 1;
smp_wmb();
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXSTOP_INT_)) {
/* Called when there is a multicast update scheduled and
* it is now safe to complete the update */
SMSC_TRACE(INTR, "RX Stop interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXSTOP_INT_);
if (pdata->multicast_update_pending)
smsc911x_rx_multicast_update_workaround(pdata);
serviced = IRQ_HANDLED;
}
if (intsts & inten & INT_STS_TDFA_) {
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
smsc911x_reg_write(pdata, FIFO_INT, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_TDFA_);
netif_wake_queue(dev);
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXE_)) {
SMSC_TRACE(INTR, "RX Error interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXE_);
serviced = IRQ_HANDLED;
}
if (likely(intsts & inten & INT_STS_RSFL_)) {
if (likely(napi_schedule_prep(&pdata->napi))) {
/* Disable Rx interrupts */
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_RSFL_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
/* Schedule a NAPI poll */
__napi_schedule(&pdata->napi);
} else {
SMSC_WARNING(RX_ERR,
"napi_schedule_prep failed");
}
serviced = IRQ_HANDLED;
}
return serviced;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void smsc911x_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smsc911x_irqhandler(0, dev);
enable_irq(dev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int smsc911x_set_mac_address(struct net_device *dev, void *p)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct sockaddr *addr = p;
/* On older hardware revisions we cannot change the mac address
* registers while receiving data. Newer devices can safely change
* this at any time. */
if (pdata->generation <= 1 && netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
}
/* Standard ioctls for mii-tool */
static int smsc911x_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
if (!netif_running(dev) || !pdata->phy_dev)
return -EINVAL;
return phy_mii_ioctl(pdata->phy_dev, if_mii(ifr), cmd);
}
static int
smsc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
return phy_ethtool_gset(pdata->phy_dev, cmd);
}
static int
smsc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_ethtool_sset(pdata->phy_dev, cmd);
}
static void smsc911x_ethtool_getdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, SMSC_CHIPNAME, sizeof(info->driver));
strlcpy(info->version, SMSC_DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(dev->dev.parent),
sizeof(info->bus_info));
}
static int smsc911x_ethtool_nwayreset(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_start_aneg(pdata->phy_dev);
}
static u32 smsc911x_ethtool_getmsglevel(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return pdata->msg_enable;
}
static void smsc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smsc911x_data *pdata = netdev_priv(dev);
pdata->msg_enable = level;
}
static int smsc911x_ethtool_getregslen(struct net_device *dev)
{
return (((E2P_DATA - ID_REV) / 4 + 1) + (WUCSR - MAC_CR) + 1 + 32) *
sizeof(u32);
}
static void
smsc911x_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
unsigned int i;
unsigned int j = 0;
u32 *data = buf;
regs->version = pdata->idrev;
for (i = ID_REV; i <= E2P_DATA; i += (sizeof(u32)))
data[j++] = smsc911x_reg_read(pdata, i);
for (i = MAC_CR; i <= WUCSR; i++) {
spin_lock_irqsave(&pdata->mac_lock, flags);
data[j++] = smsc911x_mac_read(pdata, i);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
for (i = 0; i <= 31; i++)
data[j++] = smsc911x_mii_read(phy_dev->bus, phy_dev->addr, i);
}
static void smsc911x_eeprom_enable_access(struct smsc911x_data *pdata)
{
unsigned int temp = smsc911x_reg_read(pdata, GPIO_CFG);
temp &= ~GPIO_CFG_EEPR_EN_;
smsc911x_reg_write(pdata, GPIO_CFG, temp);
msleep(1);
}
static int smsc911x_eeprom_send_cmd(struct smsc911x_data *pdata, u32 op)
{
int timeout = 100;
u32 e2cmd;
SMSC_TRACE(DRV, "op 0x%08x", op);
if (smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
SMSC_WARNING(DRV, "Busy at start");
return -EBUSY;
}
e2cmd = op | E2P_CMD_EPC_BUSY_;
smsc911x_reg_write(pdata, E2P_CMD, e2cmd);
do {
msleep(1);
e2cmd = smsc911x_reg_read(pdata, E2P_CMD);
} while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
if (!timeout) {
SMSC_TRACE(DRV, "TIMED OUT");
return -EAGAIN;
}
if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
SMSC_TRACE(DRV, "Error occured during eeprom operation");
return -EINVAL;
}
return 0;
}
static int smsc911x_eeprom_read_location(struct smsc911x_data *pdata,
u8 address, u8 *data)
{
u32 op = E2P_CMD_EPC_CMD_READ_ | address;
int ret;
SMSC_TRACE(DRV, "address 0x%x", address);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret)
data[address] = smsc911x_reg_read(pdata, E2P_DATA);
return ret;
}
static int smsc911x_eeprom_write_location(struct smsc911x_data *pdata,
u8 address, u8 data)
{
u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
u32 temp;
int ret;
SMSC_TRACE(DRV, "address 0x%x, data 0x%x", address, data);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret) {
op = E2P_CMD_EPC_CMD_WRITE_ | address;
smsc911x_reg_write(pdata, E2P_DATA, (u32)data);
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
ret = smsc911x_eeprom_send_cmd(pdata, op);
}
return ret;
}
static int smsc911x_ethtool_get_eeprom_len(struct net_device *dev)
{
return SMSC911X_EEPROM_SIZE;
}
static int smsc911x_ethtool_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u8 eeprom_data[SMSC911X_EEPROM_SIZE];
int len;
int i;
smsc911x_eeprom_enable_access(pdata);
len = min(eeprom->len, SMSC911X_EEPROM_SIZE);
for (i = 0; i < len; i++) {
int ret = smsc911x_eeprom_read_location(pdata, i, eeprom_data);
if (ret < 0) {
eeprom->len = 0;
return ret;
}
}
memcpy(data, &eeprom_data[eeprom->offset], len);
eeprom->len = len;
return 0;
}
static int smsc911x_ethtool_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int ret;
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_eeprom_enable_access(pdata);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWEN_);
ret = smsc911x_eeprom_write_location(pdata, eeprom->offset, *data);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWDS_);
/* Single byte write, according to man page */
eeprom->len = 1;
return ret;
}
static const struct ethtool_ops smsc911x_ethtool_ops = {
.get_settings = smsc911x_ethtool_getsettings,
.set_settings = smsc911x_ethtool_setsettings,
.get_link = ethtool_op_get_link,
.get_drvinfo = smsc911x_ethtool_getdrvinfo,
.nway_reset = smsc911x_ethtool_nwayreset,
.get_msglevel = smsc911x_ethtool_getmsglevel,
.set_msglevel = smsc911x_ethtool_setmsglevel,
.get_regs_len = smsc911x_ethtool_getregslen,
.get_regs = smsc911x_ethtool_getregs,
.get_eeprom_len = smsc911x_ethtool_get_eeprom_len,
.get_eeprom = smsc911x_ethtool_get_eeprom,
.set_eeprom = smsc911x_ethtool_set_eeprom,
};
static const struct net_device_ops smsc911x_netdev_ops = {
.ndo_open = smsc911x_open,
.ndo_stop = smsc911x_stop,
.ndo_start_xmit = smsc911x_hard_start_xmit,
.ndo_get_stats = smsc911x_get_stats,
.ndo_set_multicast_list = smsc911x_set_multicast_list,
.ndo_do_ioctl = smsc911x_do_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = smsc911x_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = smsc911x_poll_controller,
#endif
};
/* copies the current mac address from hardware to dev->dev_addr */
static void __devinit smsc911x_read_mac_address(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u32 mac_high16 = smsc911x_mac_read(pdata, ADDRH);
u32 mac_low32 = smsc911x_mac_read(pdata, ADDRL);
dev->dev_addr[0] = (u8)(mac_low32);
dev->dev_addr[1] = (u8)(mac_low32 >> 8);
dev->dev_addr[2] = (u8)(mac_low32 >> 16);
dev->dev_addr[3] = (u8)(mac_low32 >> 24);
dev->dev_addr[4] = (u8)(mac_high16);
dev->dev_addr[5] = (u8)(mac_high16 >> 8);
}
/* Initializing private device structures, only called from probe */
static int __devinit smsc911x_init(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int byte_test;
SMSC_TRACE(PROBE, "Driver Parameters:");
SMSC_TRACE(PROBE, "LAN base: 0x%08lX",
(unsigned long)pdata->ioaddr);
SMSC_TRACE(PROBE, "IRQ: %d", dev->irq);
SMSC_TRACE(PROBE, "PHY will be autodetected.");
spin_lock_init(&pdata->dev_lock);
if (pdata->ioaddr == 0) {
SMSC_WARNING(PROBE, "pdata->ioaddr: 0x00000000");
return -ENODEV;
}
/* Check byte ordering */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
SMSC_TRACE(PROBE, "BYTE_TEST: 0x%08X", byte_test);
if (byte_test == 0x43218765) {
SMSC_TRACE(PROBE, "BYTE_TEST looks swapped, "
"applying WORD_SWAP");
smsc911x_reg_write(pdata, WORD_SWAP, 0xffffffff);
/* 1 dummy read of BYTE_TEST is needed after a write to
* WORD_SWAP before its contents are valid */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
}
if (byte_test != 0x87654321) {
SMSC_WARNING(DRV, "BYTE_TEST: 0x%08X", byte_test);
if (((byte_test >> 16) & 0xFFFF) == (byte_test & 0xFFFF)) {
SMSC_WARNING(PROBE,
"top 16 bits equal to bottom 16 bits");
SMSC_TRACE(PROBE, "This may mean the chip is set "
"for 32 bit while the bus is reading 16 bit");
}
return -ENODEV;
}
/* Default generation to zero (all workarounds apply) */
pdata->generation = 0;
pdata->idrev = smsc911x_reg_read(pdata, ID_REV);
switch (pdata->idrev & 0xFFFF0000) {
case 0x01180000:
case 0x01170000:
case 0x01160000:
case 0x01150000:
/* LAN911[5678] family */
pdata->generation = pdata->idrev & 0x0000FFFF;
break;
case 0x118A0000:
case 0x117A0000:
case 0x116A0000:
case 0x115A0000:
/* LAN921[5678] family */
pdata->generation = 3;
break;
case 0x92100000:
case 0x92110000:
case 0x92200000:
case 0x92210000:
/* LAN9210/LAN9211/LAN9220/LAN9221 */
pdata->generation = 4;
break;
default:
SMSC_WARNING(PROBE, "LAN911x not identified, idrev: 0x%08X",
pdata->idrev);
return -ENODEV;
}
SMSC_TRACE(PROBE, "LAN911x identified, idrev: 0x%08X, generation: %d",
pdata->idrev, pdata->generation);
if (pdata->generation == 0)
SMSC_WARNING(PROBE,
"This driver is not intended for this chip revision");
/* workaround for platforms without an eeprom, where the mac address
* is stored elsewhere and set by the bootloader. This saves the
* mac address before resetting the device */
if (pdata->config.flags & SMSC911X_SAVE_MAC_ADDRESS)
smsc911x_read_mac_address(dev);
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata))
return -ENODEV;
/* Disable all interrupt sources until we bring the device up */
smsc911x_reg_write(pdata, INT_EN, 0);
ether_setup(dev);
dev->flags |= IFF_MULTICAST;
netif_napi_add(dev, &pdata->napi, smsc911x_poll, SMSC_NAPI_WEIGHT);
dev->netdev_ops = &smsc911x_netdev_ops;
dev->ethtool_ops = &smsc911x_ethtool_ops;
return 0;
}
static int __devexit smsc911x_drv_remove(struct platform_device *pdev)
{
struct net_device *dev;
struct smsc911x_data *pdata;
struct resource *res;
dev = platform_get_drvdata(pdev);
BUG_ON(!dev);
pdata = netdev_priv(dev);
BUG_ON(!pdata);
BUG_ON(!pdata->ioaddr);
BUG_ON(!pdata->phy_dev);
SMSC_TRACE(IFDOWN, "Stopping driver.");
phy_disconnect(pdata->phy_dev);
pdata->phy_dev = NULL;
mdiobus_unregister(pdata->mii_bus);
mdiobus_free(pdata->mii_bus);
platform_set_drvdata(pdev, NULL);
unregister_netdev(dev);
free_irq(dev->irq, dev);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
iounmap(pdata->ioaddr);
free_netdev(dev);
return 0;
}
static int __devinit smsc911x_drv_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct smsc911x_data *pdata;
struct smsc911x_platform_config *config = pdev->dev.platform_data;
struct resource *res, *irq_res;
unsigned int intcfg = 0;
int res_size, irq_flags;
int retval;
pr_info("%s: Driver version %s.\n", SMSC_CHIPNAME, SMSC_DRV_VERSION);
/* platform data specifies irq & dynamic bus configuration */
if (!pdev->dev.platform_data) {
pr_warning("%s: platform_data not provided\n", SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
pr_warning("%s: Could not allocate resource.\n",
SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
res_size = resource_size(res);
irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq_res) {
pr_warning("%s: Could not allocate irq resource.\n",
SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
if (!request_mem_region(res->start, res_size, SMSC_CHIPNAME)) {
retval = -EBUSY;
goto out_0;
}
dev = alloc_etherdev(sizeof(struct smsc911x_data));
if (!dev) {
pr_warning("%s: Could not allocate device.\n", SMSC_CHIPNAME);
retval = -ENOMEM;
goto out_release_io_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pdata = netdev_priv(dev);
dev->irq = irq_res->start;
irq_flags = irq_res->flags & IRQF_TRIGGER_MASK;
pdata->ioaddr = ioremap_nocache(res->start, res_size);
/* copy config parameters across to pdata */
memcpy(&pdata->config, config, sizeof(pdata->config));
pdata->dev = dev;
pdata->msg_enable = ((1 << debug) - 1);
if (pdata->ioaddr == NULL) {
SMSC_WARNING(PROBE,
"Error smsc911x base address invalid");
retval = -ENOMEM;
goto out_free_netdev_2;
}
retval = smsc911x_init(dev);
if (retval < 0)
goto out_unmap_io_3;
/* configure irq polarity and type before connecting isr */
if (pdata->config.irq_polarity == SMSC911X_IRQ_POLARITY_ACTIVE_HIGH)
intcfg |= INT_CFG_IRQ_POL_;
if (pdata->config.irq_type == SMSC911X_IRQ_TYPE_PUSH_PULL)
intcfg |= INT_CFG_IRQ_TYPE_;
smsc911x_reg_write(pdata, INT_CFG, intcfg);
/* Ensure interrupts are globally disabled before connecting ISR */
smsc911x_reg_write(pdata, INT_EN, 0);
smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF);
retval = request_irq(dev->irq, smsc911x_irqhandler,
irq_flags | IRQF_SHARED, dev->name, dev);
if (retval) {
SMSC_WARNING(PROBE,
"Unable to claim requested irq: %d", dev->irq);
goto out_unmap_io_3;
}
platform_set_drvdata(pdev, dev);
retval = register_netdev(dev);
if (retval) {
SMSC_WARNING(PROBE,
"Error %i registering device", retval);
goto out_unset_drvdata_4;
} else {
SMSC_TRACE(PROBE, "Network interface: \"%s\"", dev->name);
}
spin_lock_init(&pdata->mac_lock);
retval = smsc911x_mii_init(pdev, dev);
if (retval) {
SMSC_WARNING(PROBE,
"Error %i initialising mii", retval);
goto out_unregister_netdev_5;
}
spin_lock_irq(&pdata->mac_lock);
/* Check if mac address has been specified when bringing interface up */
if (is_valid_ether_addr(dev->dev_addr)) {
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(PROBE, "MAC Address is specified by configuration");
} else {
/* Try reading mac address from device. if EEPROM is present
* it will already have been set */
smsc911x_read_mac_address(dev);
if (is_valid_ether_addr(dev->dev_addr)) {
/* eeprom values are valid so use them */
SMSC_TRACE(PROBE,
"Mac Address is read from LAN911x EEPROM");
} else {
/* eeprom values are invalid, generate random MAC */
random_ether_addr(dev->dev_addr);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(PROBE,
"MAC Address is set to random_ether_addr");
}
}
spin_unlock_irq(&pdata->mac_lock);
dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
out_unregister_netdev_5:
unregister_netdev(dev);
out_unset_drvdata_4:
platform_set_drvdata(pdev, NULL);
free_irq(dev->irq, dev);
out_unmap_io_3:
iounmap(pdata->ioaddr);
out_free_netdev_2:
free_netdev(dev);
out_release_io_1:
release_mem_region(res->start, resource_size(res));
out_0:
return retval;
}
#ifdef CONFIG_PM
/* This implementation assumes the devices remains powered on its VDDVARIO
* pins during suspend. */
/* TODO: implement freeze/thaw callbacks for hibernation.*/
static int smsc911x_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
/* enable wake on LAN, energy detection and the external PME
* signal. */
smsc911x_reg_write(pdata, PMT_CTRL,
PMT_CTRL_PM_MODE_D1_ | PMT_CTRL_WOL_EN_ |
PMT_CTRL_ED_EN_ | PMT_CTRL_PME_EN_);
return 0;
}
static int smsc911x_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
unsigned int to = 100;
/* Note 3.11 from the datasheet:
* "When the LAN9220 is in a power saving state, a write of any
* data to the BYTE_TEST register will wake-up the device."
*/
smsc911x_reg_write(pdata, BYTE_TEST, 0);
/* poll the READY bit in PMT_CTRL. Any other access to the device is
* forbidden while this bit isn't set. Try for 100ms and return -EIO
* if it failed. */
while (!(smsc911x_reg_read(pdata, PMT_CTRL) & PMT_CTRL_READY_) && --to)
udelay(1000);
return (to == 0) ? -EIO : 0;
}
static struct dev_pm_ops smsc911x_pm_ops = {
.suspend = smsc911x_suspend,
.resume = smsc911x_resume,
};
#define SMSC911X_PM_OPS (&smsc911x_pm_ops)
#else
#define SMSC911X_PM_OPS NULL
#endif
static struct platform_driver smsc911x_driver = {
.probe = smsc911x_drv_probe,
.remove = __devexit_p(smsc911x_drv_remove),
.driver = {
.name = SMSC_CHIPNAME,
.owner = THIS_MODULE,
.pm = SMSC911X_PM_OPS,
},
};
/* Entry point for loading the module */
static int __init smsc911x_init_module(void)
{
return platform_driver_register(&smsc911x_driver);
}
/* entry point for unloading the module */
static void __exit smsc911x_cleanup_module(void)
{
platform_driver_unregister(&smsc911x_driver);
}
module_init(smsc911x_init_module);
module_exit(smsc911x_cleanup_module);