1315 lines
31 KiB
C
1315 lines
31 KiB
C
|
/*
|
||
|
* Copyright (C) 2001 Troy D. Armstrong IBM Corporation
|
||
|
* Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
|
||
|
*
|
||
|
* This modules exists as an interface between a Linux secondary partition
|
||
|
* running on an iSeries and the primary partition's Virtual Service
|
||
|
* Processor (VSP) object. The VSP has final authority over powering on/off
|
||
|
* all partitions in the iSeries. It also provides miscellaneous low-level
|
||
|
* machine facility type operations.
|
||
|
*
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/bcd.h>
|
||
|
#include <linux/rtc.h>
|
||
|
|
||
|
#include <asm/time.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/paca.h>
|
||
|
#include <asm/abs_addr.h>
|
||
|
#include <asm/firmware.h>
|
||
|
#include <asm/iseries/mf.h>
|
||
|
#include <asm/iseries/hv_lp_config.h>
|
||
|
#include <asm/iseries/hv_lp_event.h>
|
||
|
#include <asm/iseries/it_lp_queue.h>
|
||
|
|
||
|
#include "setup.h"
|
||
|
|
||
|
static int mf_initialized;
|
||
|
|
||
|
/*
|
||
|
* This is the structure layout for the Machine Facilites LPAR event
|
||
|
* flows.
|
||
|
*/
|
||
|
struct vsp_cmd_data {
|
||
|
u64 token;
|
||
|
u16 cmd;
|
||
|
HvLpIndex lp_index;
|
||
|
u8 result_code;
|
||
|
u32 reserved;
|
||
|
union {
|
||
|
u64 state; /* GetStateOut */
|
||
|
u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
|
||
|
u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
|
||
|
u64 page[4]; /* GetSrcHistoryIn */
|
||
|
u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
|
||
|
SetAutoIplWhenPrimaryIplsIn,
|
||
|
WhiteButtonPowerOffIn,
|
||
|
Function08FastPowerOffIn,
|
||
|
IsSpcnRackPowerIncompleteOut */
|
||
|
struct {
|
||
|
u64 token;
|
||
|
u64 address_type;
|
||
|
u64 side;
|
||
|
u32 length;
|
||
|
u32 offset;
|
||
|
} kern; /* SetKernelImageIn, GetKernelImageIn,
|
||
|
SetKernelCmdLineIn, GetKernelCmdLineIn */
|
||
|
u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
|
||
|
u8 reserved[80];
|
||
|
} sub_data;
|
||
|
};
|
||
|
|
||
|
struct vsp_rsp_data {
|
||
|
struct completion com;
|
||
|
struct vsp_cmd_data *response;
|
||
|
};
|
||
|
|
||
|
struct alloc_data {
|
||
|
u16 size;
|
||
|
u16 type;
|
||
|
u32 count;
|
||
|
u16 reserved1;
|
||
|
u8 reserved2;
|
||
|
HvLpIndex target_lp;
|
||
|
};
|
||
|
|
||
|
struct ce_msg_data;
|
||
|
|
||
|
typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
|
||
|
|
||
|
struct ce_msg_comp_data {
|
||
|
ce_msg_comp_hdlr handler;
|
||
|
void *token;
|
||
|
};
|
||
|
|
||
|
struct ce_msg_data {
|
||
|
u8 ce_msg[12];
|
||
|
char reserved[4];
|
||
|
struct ce_msg_comp_data *completion;
|
||
|
};
|
||
|
|
||
|
struct io_mf_lp_event {
|
||
|
struct HvLpEvent hp_lp_event;
|
||
|
u16 subtype_result_code;
|
||
|
u16 reserved1;
|
||
|
u32 reserved2;
|
||
|
union {
|
||
|
struct alloc_data alloc;
|
||
|
struct ce_msg_data ce_msg;
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
} data;
|
||
|
};
|
||
|
|
||
|
#define subtype_data(a, b, c, d) \
|
||
|
(((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
|
||
|
|
||
|
/*
|
||
|
* All outgoing event traffic is kept on a FIFO queue. The first
|
||
|
* pointer points to the one that is outstanding, and all new
|
||
|
* requests get stuck on the end. Also, we keep a certain number of
|
||
|
* preallocated pending events so that we can operate very early in
|
||
|
* the boot up sequence (before kmalloc is ready).
|
||
|
*/
|
||
|
struct pending_event {
|
||
|
struct pending_event *next;
|
||
|
struct io_mf_lp_event event;
|
||
|
MFCompleteHandler hdlr;
|
||
|
char dma_data[72];
|
||
|
unsigned dma_data_length;
|
||
|
unsigned remote_address;
|
||
|
};
|
||
|
static spinlock_t pending_event_spinlock;
|
||
|
static struct pending_event *pending_event_head;
|
||
|
static struct pending_event *pending_event_tail;
|
||
|
static struct pending_event *pending_event_avail;
|
||
|
#define PENDING_EVENT_PREALLOC_LEN 16
|
||
|
static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
|
||
|
|
||
|
/*
|
||
|
* Put a pending event onto the available queue, so it can get reused.
|
||
|
* Attention! You must have the pending_event_spinlock before calling!
|
||
|
*/
|
||
|
static void free_pending_event(struct pending_event *ev)
|
||
|
{
|
||
|
if (ev != NULL) {
|
||
|
ev->next = pending_event_avail;
|
||
|
pending_event_avail = ev;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enqueue the outbound event onto the stack. If the queue was
|
||
|
* empty to begin with, we must also issue it via the Hypervisor
|
||
|
* interface. There is a section of code below that will touch
|
||
|
* the first stack pointer without the protection of the pending_event_spinlock.
|
||
|
* This is OK, because we know that nobody else will be modifying
|
||
|
* the first pointer when we do this.
|
||
|
*/
|
||
|
static int signal_event(struct pending_event *ev)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
unsigned long flags;
|
||
|
int go = 1;
|
||
|
struct pending_event *ev1;
|
||
|
HvLpEvent_Rc hv_rc;
|
||
|
|
||
|
/* enqueue the event */
|
||
|
if (ev != NULL) {
|
||
|
ev->next = NULL;
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
if (pending_event_head == NULL)
|
||
|
pending_event_head = ev;
|
||
|
else {
|
||
|
go = 0;
|
||
|
pending_event_tail->next = ev;
|
||
|
}
|
||
|
pending_event_tail = ev;
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
}
|
||
|
|
||
|
/* send the event */
|
||
|
while (go) {
|
||
|
go = 0;
|
||
|
|
||
|
/* any DMA data to send beforehand? */
|
||
|
if (pending_event_head->dma_data_length > 0)
|
||
|
HvCallEvent_dmaToSp(pending_event_head->dma_data,
|
||
|
pending_event_head->remote_address,
|
||
|
pending_event_head->dma_data_length,
|
||
|
HvLpDma_Direction_LocalToRemote);
|
||
|
|
||
|
hv_rc = HvCallEvent_signalLpEvent(
|
||
|
&pending_event_head->event.hp_lp_event);
|
||
|
if (hv_rc != HvLpEvent_Rc_Good) {
|
||
|
printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
|
||
|
"failed with %d\n", (int)hv_rc);
|
||
|
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
ev1 = pending_event_head;
|
||
|
pending_event_head = pending_event_head->next;
|
||
|
if (pending_event_head != NULL)
|
||
|
go = 1;
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
|
||
|
if (ev1 == ev)
|
||
|
rc = -EIO;
|
||
|
else if (ev1->hdlr != NULL)
|
||
|
(*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
|
||
|
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
free_pending_event(ev1);
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a new pending_event structure, and initialize it.
|
||
|
*/
|
||
|
static struct pending_event *new_pending_event(void)
|
||
|
{
|
||
|
struct pending_event *ev = NULL;
|
||
|
HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
|
||
|
unsigned long flags;
|
||
|
struct HvLpEvent *hev;
|
||
|
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
if (pending_event_avail != NULL) {
|
||
|
ev = pending_event_avail;
|
||
|
pending_event_avail = pending_event_avail->next;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
if (ev == NULL) {
|
||
|
ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
|
||
|
if (ev == NULL) {
|
||
|
printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
|
||
|
sizeof(struct pending_event));
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
memset(ev, 0, sizeof(struct pending_event));
|
||
|
hev = &ev->event.hp_lp_event;
|
||
|
hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
|
||
|
hev->xType = HvLpEvent_Type_MachineFac;
|
||
|
hev->xSourceLp = HvLpConfig_getLpIndex();
|
||
|
hev->xTargetLp = primary_lp;
|
||
|
hev->xSizeMinus1 = sizeof(ev->event) - 1;
|
||
|
hev->xRc = HvLpEvent_Rc_Good;
|
||
|
hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
|
||
|
HvLpEvent_Type_MachineFac);
|
||
|
hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
|
||
|
HvLpEvent_Type_MachineFac);
|
||
|
|
||
|
return ev;
|
||
|
}
|
||
|
|
||
|
static int __maybe_unused
|
||
|
signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
|
||
|
{
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
int rc;
|
||
|
struct vsp_rsp_data response;
|
||
|
|
||
|
if (ev == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
init_completion(&response.com);
|
||
|
response.response = vsp_cmd;
|
||
|
ev->event.hp_lp_event.xSubtype = 6;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'V', 'I');
|
||
|
ev->event.data.vsp_cmd.token = (u64)&response;
|
||
|
ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
|
||
|
ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
|
||
|
ev->event.data.vsp_cmd.result_code = 0xFF;
|
||
|
ev->event.data.vsp_cmd.reserved = 0;
|
||
|
memcpy(&(ev->event.data.vsp_cmd.sub_data),
|
||
|
&(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
|
||
|
mb();
|
||
|
|
||
|
rc = signal_event(ev);
|
||
|
if (rc == 0)
|
||
|
wait_for_completion(&response.com);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Send a 12-byte CE message to the primary partition VSP object
|
||
|
*/
|
||
|
static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
|
||
|
{
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
|
||
|
if (ev == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ev->event.hp_lp_event.xSubtype = 0;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'C', 'E');
|
||
|
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
|
||
|
ev->event.data.ce_msg.completion = completion;
|
||
|
return signal_event(ev);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send a 12-byte CE message (with no data) to the primary partition VSP object
|
||
|
*/
|
||
|
static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
|
||
|
{
|
||
|
u8 ce_msg[12];
|
||
|
|
||
|
memset(ce_msg, 0, sizeof(ce_msg));
|
||
|
ce_msg[3] = ce_op;
|
||
|
return signal_ce_msg(ce_msg, completion);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send a 12-byte CE message and DMA data to the primary partition VSP object
|
||
|
*/
|
||
|
static int dma_and_signal_ce_msg(char *ce_msg,
|
||
|
struct ce_msg_comp_data *completion, void *dma_data,
|
||
|
unsigned dma_data_length, unsigned remote_address)
|
||
|
{
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
|
||
|
if (ev == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ev->event.hp_lp_event.xSubtype = 0;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'C', 'E');
|
||
|
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
|
||
|
ev->event.data.ce_msg.completion = completion;
|
||
|
memcpy(ev->dma_data, dma_data, dma_data_length);
|
||
|
ev->dma_data_length = dma_data_length;
|
||
|
ev->remote_address = remote_address;
|
||
|
return signal_event(ev);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initiate a nice (hopefully) shutdown of Linux. We simply are
|
||
|
* going to try and send the init process a SIGINT signal. If
|
||
|
* this fails (why?), we'll simply force it off in a not-so-nice
|
||
|
* manner.
|
||
|
*/
|
||
|
static int shutdown(void)
|
||
|
{
|
||
|
int rc = kill_cad_pid(SIGINT, 1);
|
||
|
|
||
|
if (rc) {
|
||
|
printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
|
||
|
"hard shutdown commencing\n", rc);
|
||
|
mf_power_off();
|
||
|
} else
|
||
|
printk(KERN_INFO "mf.c: init has been successfully notified "
|
||
|
"to proceed with shutdown\n");
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The primary partition VSP object is sending us a new
|
||
|
* event flow. Handle it...
|
||
|
*/
|
||
|
static void handle_int(struct io_mf_lp_event *event)
|
||
|
{
|
||
|
struct ce_msg_data *ce_msg_data;
|
||
|
struct ce_msg_data *pce_msg_data;
|
||
|
unsigned long flags;
|
||
|
struct pending_event *pev;
|
||
|
|
||
|
/* ack the interrupt */
|
||
|
event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
|
||
|
HvCallEvent_ackLpEvent(&event->hp_lp_event);
|
||
|
|
||
|
/* process interrupt */
|
||
|
switch (event->hp_lp_event.xSubtype) {
|
||
|
case 0: /* CE message */
|
||
|
ce_msg_data = &event->data.ce_msg;
|
||
|
switch (ce_msg_data->ce_msg[3]) {
|
||
|
case 0x5B: /* power control notification */
|
||
|
if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
|
||
|
printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
|
||
|
if (shutdown() == 0)
|
||
|
signal_ce_msg_simple(0xDB, NULL);
|
||
|
}
|
||
|
break;
|
||
|
case 0xC0: /* get time */
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
pev = pending_event_head;
|
||
|
if (pev != NULL)
|
||
|
pending_event_head = pending_event_head->next;
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
if (pev == NULL)
|
||
|
break;
|
||
|
pce_msg_data = &pev->event.data.ce_msg;
|
||
|
if (pce_msg_data->ce_msg[3] != 0x40)
|
||
|
break;
|
||
|
if (pce_msg_data->completion != NULL) {
|
||
|
ce_msg_comp_hdlr handler =
|
||
|
pce_msg_data->completion->handler;
|
||
|
void *token = pce_msg_data->completion->token;
|
||
|
|
||
|
if (handler != NULL)
|
||
|
(*handler)(token, ce_msg_data);
|
||
|
}
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
free_pending_event(pev);
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
/* send next waiting event */
|
||
|
if (pending_event_head != NULL)
|
||
|
signal_event(NULL);
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
case 1: /* IT sys shutdown */
|
||
|
printk(KERN_INFO "mf.c: Commencing system shutdown\n");
|
||
|
shutdown();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The primary partition VSP object is acknowledging the receipt
|
||
|
* of a flow we sent to them. If there are other flows queued
|
||
|
* up, we must send another one now...
|
||
|
*/
|
||
|
static void handle_ack(struct io_mf_lp_event *event)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct pending_event *two = NULL;
|
||
|
unsigned long free_it = 0;
|
||
|
struct ce_msg_data *ce_msg_data;
|
||
|
struct ce_msg_data *pce_msg_data;
|
||
|
struct vsp_rsp_data *rsp;
|
||
|
|
||
|
/* handle current event */
|
||
|
if (pending_event_head == NULL) {
|
||
|
printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (event->hp_lp_event.xSubtype) {
|
||
|
case 0: /* CE msg */
|
||
|
ce_msg_data = &event->data.ce_msg;
|
||
|
if (ce_msg_data->ce_msg[3] != 0x40) {
|
||
|
free_it = 1;
|
||
|
break;
|
||
|
}
|
||
|
if (ce_msg_data->ce_msg[2] == 0)
|
||
|
break;
|
||
|
free_it = 1;
|
||
|
pce_msg_data = &pending_event_head->event.data.ce_msg;
|
||
|
if (pce_msg_data->completion != NULL) {
|
||
|
ce_msg_comp_hdlr handler =
|
||
|
pce_msg_data->completion->handler;
|
||
|
void *token = pce_msg_data->completion->token;
|
||
|
|
||
|
if (handler != NULL)
|
||
|
(*handler)(token, ce_msg_data);
|
||
|
}
|
||
|
break;
|
||
|
case 4: /* allocate */
|
||
|
case 5: /* deallocate */
|
||
|
if (pending_event_head->hdlr != NULL)
|
||
|
(*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
|
||
|
free_it = 1;
|
||
|
break;
|
||
|
case 6:
|
||
|
free_it = 1;
|
||
|
rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
|
||
|
if (rsp == NULL) {
|
||
|
printk(KERN_ERR "mf.c: no rsp\n");
|
||
|
break;
|
||
|
}
|
||
|
if (rsp->response != NULL)
|
||
|
memcpy(rsp->response, &event->data.vsp_cmd,
|
||
|
sizeof(event->data.vsp_cmd));
|
||
|
complete(&rsp->com);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* remove from queue */
|
||
|
spin_lock_irqsave(&pending_event_spinlock, flags);
|
||
|
if ((pending_event_head != NULL) && (free_it == 1)) {
|
||
|
struct pending_event *oldHead = pending_event_head;
|
||
|
|
||
|
pending_event_head = pending_event_head->next;
|
||
|
two = pending_event_head;
|
||
|
free_pending_event(oldHead);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&pending_event_spinlock, flags);
|
||
|
|
||
|
/* send next waiting event */
|
||
|
if (two != NULL)
|
||
|
signal_event(NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is the generic event handler we are registering with
|
||
|
* the Hypervisor. Ensure the flows are for us, and then
|
||
|
* parse it enough to know if it is an interrupt or an
|
||
|
* acknowledge.
|
||
|
*/
|
||
|
static void hv_handler(struct HvLpEvent *event)
|
||
|
{
|
||
|
if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
|
||
|
if (hvlpevent_is_ack(event))
|
||
|
handle_ack((struct io_mf_lp_event *)event);
|
||
|
else
|
||
|
handle_int((struct io_mf_lp_event *)event);
|
||
|
} else
|
||
|
printk(KERN_ERR "mf.c: alien event received\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Global kernel interface to allocate and seed events into the
|
||
|
* Hypervisor.
|
||
|
*/
|
||
|
void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
|
||
|
unsigned size, unsigned count, MFCompleteHandler hdlr,
|
||
|
void *user_token)
|
||
|
{
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
int rc;
|
||
|
|
||
|
if (ev == NULL) {
|
||
|
rc = -ENOMEM;
|
||
|
} else {
|
||
|
ev->event.hp_lp_event.xSubtype = 4;
|
||
|
ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'M', 'A');
|
||
|
ev->event.data.alloc.target_lp = target_lp;
|
||
|
ev->event.data.alloc.type = type;
|
||
|
ev->event.data.alloc.size = size;
|
||
|
ev->event.data.alloc.count = count;
|
||
|
ev->hdlr = hdlr;
|
||
|
rc = signal_event(ev);
|
||
|
}
|
||
|
if ((rc != 0) && (hdlr != NULL))
|
||
|
(*hdlr)(user_token, rc);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mf_allocate_lp_events);
|
||
|
|
||
|
/*
|
||
|
* Global kernel interface to unseed and deallocate events already in
|
||
|
* Hypervisor.
|
||
|
*/
|
||
|
void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
|
||
|
unsigned count, MFCompleteHandler hdlr, void *user_token)
|
||
|
{
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
int rc;
|
||
|
|
||
|
if (ev == NULL)
|
||
|
rc = -ENOMEM;
|
||
|
else {
|
||
|
ev->event.hp_lp_event.xSubtype = 5;
|
||
|
ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'M', 'D');
|
||
|
ev->event.data.alloc.target_lp = target_lp;
|
||
|
ev->event.data.alloc.type = type;
|
||
|
ev->event.data.alloc.count = count;
|
||
|
ev->hdlr = hdlr;
|
||
|
rc = signal_event(ev);
|
||
|
}
|
||
|
if ((rc != 0) && (hdlr != NULL))
|
||
|
(*hdlr)(user_token, rc);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mf_deallocate_lp_events);
|
||
|
|
||
|
/*
|
||
|
* Global kernel interface to tell the VSP object in the primary
|
||
|
* partition to power this partition off.
|
||
|
*/
|
||
|
void mf_power_off(void)
|
||
|
{
|
||
|
printk(KERN_INFO "mf.c: Down it goes...\n");
|
||
|
signal_ce_msg_simple(0x4d, NULL);
|
||
|
for (;;)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Global kernel interface to tell the VSP object in the primary
|
||
|
* partition to reboot this partition.
|
||
|
*/
|
||
|
void mf_reboot(char *cmd)
|
||
|
{
|
||
|
printk(KERN_INFO "mf.c: Preparing to bounce...\n");
|
||
|
signal_ce_msg_simple(0x4e, NULL);
|
||
|
for (;;)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Display a single word SRC onto the VSP control panel.
|
||
|
*/
|
||
|
void mf_display_src(u32 word)
|
||
|
{
|
||
|
u8 ce[12];
|
||
|
|
||
|
memset(ce, 0, sizeof(ce));
|
||
|
ce[3] = 0x4a;
|
||
|
ce[7] = 0x01;
|
||
|
ce[8] = word >> 24;
|
||
|
ce[9] = word >> 16;
|
||
|
ce[10] = word >> 8;
|
||
|
ce[11] = word;
|
||
|
signal_ce_msg(ce, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
|
||
|
*/
|
||
|
static __init void mf_display_progress_src(u16 value)
|
||
|
{
|
||
|
u8 ce[12];
|
||
|
u8 src[72];
|
||
|
|
||
|
memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
|
||
|
memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
|
||
|
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
||
|
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
||
|
"\x00\x00\x00\x00PROGxxxx ",
|
||
|
72);
|
||
|
src[6] = value >> 8;
|
||
|
src[7] = value & 255;
|
||
|
src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
|
||
|
src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
|
||
|
src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
|
||
|
src[47] = "0123456789ABCDEF"[value & 15];
|
||
|
dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Clear the VSP control panel. Used to "erase" an SRC that was
|
||
|
* previously displayed.
|
||
|
*/
|
||
|
static void mf_clear_src(void)
|
||
|
{
|
||
|
signal_ce_msg_simple(0x4b, NULL);
|
||
|
}
|
||
|
|
||
|
void __init mf_display_progress(u16 value)
|
||
|
{
|
||
|
if (!mf_initialized)
|
||
|
return;
|
||
|
|
||
|
if (0xFFFF == value)
|
||
|
mf_clear_src();
|
||
|
else
|
||
|
mf_display_progress_src(value);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialization code here.
|
||
|
*/
|
||
|
void __init mf_init(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
spin_lock_init(&pending_event_spinlock);
|
||
|
|
||
|
for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
|
||
|
free_pending_event(&pending_event_prealloc[i]);
|
||
|
|
||
|
HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
|
||
|
|
||
|
/* virtual continue ack */
|
||
|
signal_ce_msg_simple(0x57, NULL);
|
||
|
|
||
|
mf_initialized = 1;
|
||
|
mb();
|
||
|
|
||
|
printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
|
||
|
"initialized\n");
|
||
|
}
|
||
|
|
||
|
struct rtc_time_data {
|
||
|
struct completion com;
|
||
|
struct ce_msg_data ce_msg;
|
||
|
int rc;
|
||
|
};
|
||
|
|
||
|
static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
|
||
|
{
|
||
|
struct rtc_time_data *rtc = token;
|
||
|
|
||
|
memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
|
||
|
rtc->rc = 0;
|
||
|
complete(&rtc->com);
|
||
|
}
|
||
|
|
||
|
static int mf_set_rtc(struct rtc_time *tm)
|
||
|
{
|
||
|
char ce_time[12];
|
||
|
u8 day, mon, hour, min, sec, y1, y2;
|
||
|
unsigned year;
|
||
|
|
||
|
year = 1900 + tm->tm_year;
|
||
|
y1 = year / 100;
|
||
|
y2 = year % 100;
|
||
|
|
||
|
sec = tm->tm_sec;
|
||
|
min = tm->tm_min;
|
||
|
hour = tm->tm_hour;
|
||
|
day = tm->tm_mday;
|
||
|
mon = tm->tm_mon + 1;
|
||
|
|
||
|
sec = bin2bcd(sec);
|
||
|
min = bin2bcd(min);
|
||
|
hour = bin2bcd(hour);
|
||
|
mon = bin2bcd(mon);
|
||
|
day = bin2bcd(day);
|
||
|
y1 = bin2bcd(y1);
|
||
|
y2 = bin2bcd(y2);
|
||
|
|
||
|
memset(ce_time, 0, sizeof(ce_time));
|
||
|
ce_time[3] = 0x41;
|
||
|
ce_time[4] = y1;
|
||
|
ce_time[5] = y2;
|
||
|
ce_time[6] = sec;
|
||
|
ce_time[7] = min;
|
||
|
ce_time[8] = hour;
|
||
|
ce_time[10] = day;
|
||
|
ce_time[11] = mon;
|
||
|
|
||
|
return signal_ce_msg(ce_time, NULL);
|
||
|
}
|
||
|
|
||
|
static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
|
||
|
{
|
||
|
tm->tm_wday = 0;
|
||
|
tm->tm_yday = 0;
|
||
|
tm->tm_isdst = 0;
|
||
|
if (rc) {
|
||
|
tm->tm_sec = 0;
|
||
|
tm->tm_min = 0;
|
||
|
tm->tm_hour = 0;
|
||
|
tm->tm_mday = 15;
|
||
|
tm->tm_mon = 5;
|
||
|
tm->tm_year = 52;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
if ((ce_msg[2] == 0xa9) ||
|
||
|
(ce_msg[2] == 0xaf)) {
|
||
|
/* TOD clock is not set */
|
||
|
tm->tm_sec = 1;
|
||
|
tm->tm_min = 1;
|
||
|
tm->tm_hour = 1;
|
||
|
tm->tm_mday = 10;
|
||
|
tm->tm_mon = 8;
|
||
|
tm->tm_year = 71;
|
||
|
mf_set_rtc(tm);
|
||
|
}
|
||
|
{
|
||
|
u8 year = ce_msg[5];
|
||
|
u8 sec = ce_msg[6];
|
||
|
u8 min = ce_msg[7];
|
||
|
u8 hour = ce_msg[8];
|
||
|
u8 day = ce_msg[10];
|
||
|
u8 mon = ce_msg[11];
|
||
|
|
||
|
sec = bcd2bin(sec);
|
||
|
min = bcd2bin(min);
|
||
|
hour = bcd2bin(hour);
|
||
|
day = bcd2bin(day);
|
||
|
mon = bcd2bin(mon);
|
||
|
year = bcd2bin(year);
|
||
|
|
||
|
if (year <= 69)
|
||
|
year += 100;
|
||
|
|
||
|
tm->tm_sec = sec;
|
||
|
tm->tm_min = min;
|
||
|
tm->tm_hour = hour;
|
||
|
tm->tm_mday = day;
|
||
|
tm->tm_mon = mon;
|
||
|
tm->tm_year = year;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int mf_get_rtc(struct rtc_time *tm)
|
||
|
{
|
||
|
struct ce_msg_comp_data ce_complete;
|
||
|
struct rtc_time_data rtc_data;
|
||
|
int rc;
|
||
|
|
||
|
memset(&ce_complete, 0, sizeof(ce_complete));
|
||
|
memset(&rtc_data, 0, sizeof(rtc_data));
|
||
|
init_completion(&rtc_data.com);
|
||
|
ce_complete.handler = &get_rtc_time_complete;
|
||
|
ce_complete.token = &rtc_data;
|
||
|
rc = signal_ce_msg_simple(0x40, &ce_complete);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
wait_for_completion(&rtc_data.com);
|
||
|
return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
|
||
|
}
|
||
|
|
||
|
struct boot_rtc_time_data {
|
||
|
int busy;
|
||
|
struct ce_msg_data ce_msg;
|
||
|
int rc;
|
||
|
};
|
||
|
|
||
|
static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
|
||
|
{
|
||
|
struct boot_rtc_time_data *rtc = token;
|
||
|
|
||
|
memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
|
||
|
rtc->rc = 0;
|
||
|
rtc->busy = 0;
|
||
|
}
|
||
|
|
||
|
static int mf_get_boot_rtc(struct rtc_time *tm)
|
||
|
{
|
||
|
struct ce_msg_comp_data ce_complete;
|
||
|
struct boot_rtc_time_data rtc_data;
|
||
|
int rc;
|
||
|
|
||
|
memset(&ce_complete, 0, sizeof(ce_complete));
|
||
|
memset(&rtc_data, 0, sizeof(rtc_data));
|
||
|
rtc_data.busy = 1;
|
||
|
ce_complete.handler = &get_boot_rtc_time_complete;
|
||
|
ce_complete.token = &rtc_data;
|
||
|
rc = signal_ce_msg_simple(0x40, &ce_complete);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
/* We need to poll here as we are not yet taking interrupts */
|
||
|
while (rtc_data.busy) {
|
||
|
if (hvlpevent_is_pending())
|
||
|
process_hvlpevents();
|
||
|
}
|
||
|
return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PROC_FS
|
||
|
|
||
|
static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
|
||
|
int count, int *eof, void *data)
|
||
|
{
|
||
|
int len;
|
||
|
char *p;
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
int rc;
|
||
|
dma_addr_t dma_addr;
|
||
|
|
||
|
/* The HV appears to return no more than 256 bytes of command line */
|
||
|
if (off >= 256)
|
||
|
return 0;
|
||
|
if ((off + count) > 256)
|
||
|
count = 256 - off;
|
||
|
|
||
|
dma_addr = iseries_hv_map(page, off + count, DMA_FROM_DEVICE);
|
||
|
if (dma_addr == DMA_ERROR_CODE)
|
||
|
return -ENOMEM;
|
||
|
memset(page, 0, off + count);
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.cmd = 33;
|
||
|
vsp_cmd.sub_data.kern.token = dma_addr;
|
||
|
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
|
||
|
vsp_cmd.sub_data.kern.side = (u64)data;
|
||
|
vsp_cmd.sub_data.kern.length = off + count;
|
||
|
mb();
|
||
|
rc = signal_vsp_instruction(&vsp_cmd);
|
||
|
iseries_hv_unmap(dma_addr, off + count, DMA_FROM_DEVICE);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
if (vsp_cmd.result_code != 0)
|
||
|
return -ENOMEM;
|
||
|
p = page;
|
||
|
len = 0;
|
||
|
while (len < (off + count)) {
|
||
|
if ((*p == '\0') || (*p == '\n')) {
|
||
|
if (*p == '\0')
|
||
|
*p = '\n';
|
||
|
p++;
|
||
|
len++;
|
||
|
*eof = 1;
|
||
|
break;
|
||
|
}
|
||
|
p++;
|
||
|
len++;
|
||
|
}
|
||
|
|
||
|
if (len < off) {
|
||
|
*eof = 1;
|
||
|
len = 0;
|
||
|
}
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
|
||
|
{
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
int rc;
|
||
|
int len = *size;
|
||
|
dma_addr_t dma_addr;
|
||
|
|
||
|
dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
|
||
|
memset(buffer, 0, len);
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.cmd = 32;
|
||
|
vsp_cmd.sub_data.kern.token = dma_addr;
|
||
|
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
|
||
|
vsp_cmd.sub_data.kern.side = side;
|
||
|
vsp_cmd.sub_data.kern.offset = offset;
|
||
|
vsp_cmd.sub_data.kern.length = len;
|
||
|
mb();
|
||
|
rc = signal_vsp_instruction(&vsp_cmd);
|
||
|
if (rc == 0) {
|
||
|
if (vsp_cmd.result_code == 0)
|
||
|
*size = vsp_cmd.sub_data.length_out;
|
||
|
else
|
||
|
rc = -ENOMEM;
|
||
|
}
|
||
|
|
||
|
iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
|
||
|
int count, int *eof, void *data)
|
||
|
{
|
||
|
int sizeToGet = count;
|
||
|
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
return -EACCES;
|
||
|
|
||
|
if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
|
||
|
if (sizeToGet != 0) {
|
||
|
*start = page + off;
|
||
|
return sizeToGet;
|
||
|
}
|
||
|
*eof = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
*eof = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int proc_mf_dump_side(char *page, char **start, off_t off,
|
||
|
int count, int *eof, void *data)
|
||
|
{
|
||
|
int len;
|
||
|
char mf_current_side = ' ';
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.cmd = 2;
|
||
|
vsp_cmd.sub_data.ipl_type = 0;
|
||
|
mb();
|
||
|
|
||
|
if (signal_vsp_instruction(&vsp_cmd) == 0) {
|
||
|
if (vsp_cmd.result_code == 0) {
|
||
|
switch (vsp_cmd.sub_data.ipl_type) {
|
||
|
case 0: mf_current_side = 'A';
|
||
|
break;
|
||
|
case 1: mf_current_side = 'B';
|
||
|
break;
|
||
|
case 2: mf_current_side = 'C';
|
||
|
break;
|
||
|
default: mf_current_side = 'D';
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
len = sprintf(page, "%c\n", mf_current_side);
|
||
|
|
||
|
if (len <= (off + count))
|
||
|
*eof = 1;
|
||
|
*start = page + off;
|
||
|
len -= off;
|
||
|
if (len > count)
|
||
|
len = count;
|
||
|
if (len < 0)
|
||
|
len = 0;
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static int proc_mf_change_side(struct file *file, const char __user *buffer,
|
||
|
unsigned long count, void *data)
|
||
|
{
|
||
|
char side;
|
||
|
u64 newSide;
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
return -EACCES;
|
||
|
|
||
|
if (count == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (get_user(side, buffer))
|
||
|
return -EFAULT;
|
||
|
|
||
|
switch (side) {
|
||
|
case 'A': newSide = 0;
|
||
|
break;
|
||
|
case 'B': newSide = 1;
|
||
|
break;
|
||
|
case 'C': newSide = 2;
|
||
|
break;
|
||
|
case 'D': newSide = 3;
|
||
|
break;
|
||
|
default:
|
||
|
printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.sub_data.ipl_type = newSide;
|
||
|
vsp_cmd.cmd = 10;
|
||
|
|
||
|
(void)signal_vsp_instruction(&vsp_cmd);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static void mf_getSrcHistory(char *buffer, int size)
|
||
|
{
|
||
|
struct IplTypeReturnStuff return_stuff;
|
||
|
struct pending_event *ev = new_pending_event();
|
||
|
int rc = 0;
|
||
|
char *pages[4];
|
||
|
|
||
|
pages[0] = kmalloc(4096, GFP_ATOMIC);
|
||
|
pages[1] = kmalloc(4096, GFP_ATOMIC);
|
||
|
pages[2] = kmalloc(4096, GFP_ATOMIC);
|
||
|
pages[3] = kmalloc(4096, GFP_ATOMIC);
|
||
|
if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
|
||
|
|| (pages[2] == NULL) || (pages[3] == NULL))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return_stuff.xType = 0;
|
||
|
return_stuff.xRc = 0;
|
||
|
return_stuff.xDone = 0;
|
||
|
ev->event.hp_lp_event.xSubtype = 6;
|
||
|
ev->event.hp_lp_event.x.xSubtypeData =
|
||
|
subtype_data('M', 'F', 'V', 'I');
|
||
|
ev->event.data.vsp_cmd.xEvent = &return_stuff;
|
||
|
ev->event.data.vsp_cmd.cmd = 4;
|
||
|
ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
|
||
|
ev->event.data.vsp_cmd.result_code = 0xFF;
|
||
|
ev->event.data.vsp_cmd.reserved = 0;
|
||
|
ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
|
||
|
ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
|
||
|
ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
|
||
|
ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
|
||
|
mb();
|
||
|
if (signal_event(ev) != 0)
|
||
|
return;
|
||
|
|
||
|
while (return_stuff.xDone != 1)
|
||
|
udelay(10);
|
||
|
if (return_stuff.xRc == 0)
|
||
|
memcpy(buffer, pages[0], size);
|
||
|
kfree(pages[0]);
|
||
|
kfree(pages[1]);
|
||
|
kfree(pages[2]);
|
||
|
kfree(pages[3]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int proc_mf_dump_src(char *page, char **start, off_t off,
|
||
|
int count, int *eof, void *data)
|
||
|
{
|
||
|
#if 0
|
||
|
int len;
|
||
|
|
||
|
mf_getSrcHistory(page, count);
|
||
|
len = count;
|
||
|
len -= off;
|
||
|
if (len < count) {
|
||
|
*eof = 1;
|
||
|
if (len <= 0)
|
||
|
return 0;
|
||
|
} else
|
||
|
len = count;
|
||
|
*start = page + off;
|
||
|
return len;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static int proc_mf_change_src(struct file *file, const char __user *buffer,
|
||
|
unsigned long count, void *data)
|
||
|
{
|
||
|
char stkbuf[10];
|
||
|
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
return -EACCES;
|
||
|
|
||
|
if ((count < 4) && (count != 1)) {
|
||
|
printk(KERN_ERR "mf_proc: invalid src\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (count > (sizeof(stkbuf) - 1))
|
||
|
count = sizeof(stkbuf) - 1;
|
||
|
if (copy_from_user(stkbuf, buffer, count))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if ((count == 1) && (*stkbuf == '\0'))
|
||
|
mf_clear_src();
|
||
|
else
|
||
|
mf_display_src(*(u32 *)stkbuf);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
|
||
|
unsigned long count, void *data)
|
||
|
{
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
dma_addr_t dma_addr;
|
||
|
char *page;
|
||
|
int ret = -EACCES;
|
||
|
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
goto out;
|
||
|
|
||
|
dma_addr = 0;
|
||
|
page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
|
||
|
ret = -ENOMEM;
|
||
|
if (page == NULL)
|
||
|
goto out;
|
||
|
|
||
|
ret = -EFAULT;
|
||
|
if (copy_from_user(page, buffer, count))
|
||
|
goto out_free;
|
||
|
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.cmd = 31;
|
||
|
vsp_cmd.sub_data.kern.token = dma_addr;
|
||
|
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
|
||
|
vsp_cmd.sub_data.kern.side = (u64)data;
|
||
|
vsp_cmd.sub_data.kern.length = count;
|
||
|
mb();
|
||
|
(void)signal_vsp_instruction(&vsp_cmd);
|
||
|
ret = count;
|
||
|
|
||
|
out_free:
|
||
|
iseries_hv_free(count, page, dma_addr);
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static ssize_t proc_mf_change_vmlinux(struct file *file,
|
||
|
const char __user *buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
|
||
|
ssize_t rc;
|
||
|
dma_addr_t dma_addr;
|
||
|
char *page;
|
||
|
struct vsp_cmd_data vsp_cmd;
|
||
|
|
||
|
rc = -EACCES;
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
goto out;
|
||
|
|
||
|
dma_addr = 0;
|
||
|
page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
|
||
|
rc = -ENOMEM;
|
||
|
if (page == NULL) {
|
||
|
printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
|
||
|
goto out;
|
||
|
}
|
||
|
rc = -EFAULT;
|
||
|
if (copy_from_user(page, buf, count))
|
||
|
goto out_free;
|
||
|
|
||
|
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
|
||
|
vsp_cmd.cmd = 30;
|
||
|
vsp_cmd.sub_data.kern.token = dma_addr;
|
||
|
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
|
||
|
vsp_cmd.sub_data.kern.side = (u64)dp->data;
|
||
|
vsp_cmd.sub_data.kern.offset = *ppos;
|
||
|
vsp_cmd.sub_data.kern.length = count;
|
||
|
mb();
|
||
|
rc = signal_vsp_instruction(&vsp_cmd);
|
||
|
if (rc)
|
||
|
goto out_free;
|
||
|
rc = -ENOMEM;
|
||
|
if (vsp_cmd.result_code != 0)
|
||
|
goto out_free;
|
||
|
|
||
|
*ppos += count;
|
||
|
rc = count;
|
||
|
out_free:
|
||
|
iseries_hv_free(count, page, dma_addr);
|
||
|
out:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static const struct file_operations proc_vmlinux_operations = {
|
||
|
.write = proc_mf_change_vmlinux,
|
||
|
};
|
||
|
|
||
|
static int __init mf_proc_init(void)
|
||
|
{
|
||
|
struct proc_dir_entry *mf_proc_root;
|
||
|
struct proc_dir_entry *ent;
|
||
|
struct proc_dir_entry *mf;
|
||
|
char name[2];
|
||
|
int i;
|
||
|
|
||
|
if (!firmware_has_feature(FW_FEATURE_ISERIES))
|
||
|
return 0;
|
||
|
|
||
|
mf_proc_root = proc_mkdir("iSeries/mf", NULL);
|
||
|
if (!mf_proc_root)
|
||
|
return 1;
|
||
|
|
||
|
name[1] = '\0';
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
name[0] = 'A' + i;
|
||
|
mf = proc_mkdir(name, mf_proc_root);
|
||
|
if (!mf)
|
||
|
return 1;
|
||
|
|
||
|
ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
|
||
|
if (!ent)
|
||
|
return 1;
|
||
|
ent->data = (void *)(long)i;
|
||
|
ent->read_proc = proc_mf_dump_cmdline;
|
||
|
ent->write_proc = proc_mf_change_cmdline;
|
||
|
|
||
|
if (i == 3) /* no vmlinux entry for 'D' */
|
||
|
continue;
|
||
|
|
||
|
ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
|
||
|
&proc_vmlinux_operations,
|
||
|
(void *)(long)i);
|
||
|
if (!ent)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
|
||
|
if (!ent)
|
||
|
return 1;
|
||
|
ent->data = (void *)0;
|
||
|
ent->read_proc = proc_mf_dump_side;
|
||
|
ent->write_proc = proc_mf_change_side;
|
||
|
|
||
|
ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
|
||
|
if (!ent)
|
||
|
return 1;
|
||
|
ent->data = (void *)0;
|
||
|
ent->read_proc = proc_mf_dump_src;
|
||
|
ent->write_proc = proc_mf_change_src;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
__initcall(mf_proc_init);
|
||
|
|
||
|
#endif /* CONFIG_PROC_FS */
|
||
|
|
||
|
/*
|
||
|
* Get the RTC from the virtual service processor
|
||
|
* This requires flowing LpEvents to the primary partition
|
||
|
*/
|
||
|
void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
|
||
|
{
|
||
|
mf_get_rtc(rtc_tm);
|
||
|
rtc_tm->tm_mon--;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the RTC in the virtual service processor
|
||
|
* This requires flowing LpEvents to the primary partition
|
||
|
*/
|
||
|
int iSeries_set_rtc_time(struct rtc_time *tm)
|
||
|
{
|
||
|
mf_set_rtc(tm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
unsigned long iSeries_get_boot_time(void)
|
||
|
{
|
||
|
struct rtc_time tm;
|
||
|
|
||
|
mf_get_boot_rtc(&tm);
|
||
|
return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
|
||
|
tm.tm_hour, tm.tm_min, tm.tm_sec);
|
||
|
}
|