925 lines
26 KiB
C
925 lines
26 KiB
C
|
/*
|
||
|
* Driver for DiBcom DiB3000MC/P-demodulator.
|
||
|
*
|
||
|
* Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/)
|
||
|
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
|
||
|
*
|
||
|
* This code is partially based on the previous dib3000mc.c .
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License as
|
||
|
* published by the Free Software Foundation, version 2.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/i2c.h>
|
||
|
|
||
|
#include "dvb_frontend.h"
|
||
|
|
||
|
#include "dib3000mc.h"
|
||
|
|
||
|
static int debug;
|
||
|
module_param(debug, int, 0644);
|
||
|
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
|
||
|
|
||
|
static int buggy_sfn_workaround;
|
||
|
module_param(buggy_sfn_workaround, int, 0644);
|
||
|
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
|
||
|
|
||
|
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); printk("\n"); } } while (0)
|
||
|
|
||
|
struct dib3000mc_state {
|
||
|
struct dvb_frontend demod;
|
||
|
struct dib3000mc_config *cfg;
|
||
|
|
||
|
u8 i2c_addr;
|
||
|
struct i2c_adapter *i2c_adap;
|
||
|
|
||
|
struct dibx000_i2c_master i2c_master;
|
||
|
|
||
|
u32 timf;
|
||
|
|
||
|
fe_bandwidth_t current_bandwidth;
|
||
|
|
||
|
u16 dev_id;
|
||
|
|
||
|
u8 sfn_workaround_active :1;
|
||
|
};
|
||
|
|
||
|
static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
|
||
|
{
|
||
|
u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
|
||
|
u8 rb[2];
|
||
|
struct i2c_msg msg[2] = {
|
||
|
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
|
||
|
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
|
||
|
};
|
||
|
|
||
|
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
|
||
|
dprintk("i2c read error on %d\n",reg);
|
||
|
|
||
|
return (rb[0] << 8) | rb[1];
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
|
||
|
{
|
||
|
u8 b[4] = {
|
||
|
(reg >> 8) & 0xff, reg & 0xff,
|
||
|
(val >> 8) & 0xff, val & 0xff,
|
||
|
};
|
||
|
struct i2c_msg msg = {
|
||
|
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
|
||
|
};
|
||
|
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_identify(struct dib3000mc_state *state)
|
||
|
{
|
||
|
u16 value;
|
||
|
if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
|
||
|
dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
|
||
|
value = dib3000mc_read_word(state, 1026);
|
||
|
if (value != 0x3001 && value != 0x3002) {
|
||
|
dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value);
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
state->dev_id = value;
|
||
|
|
||
|
dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset)
|
||
|
{
|
||
|
u32 timf;
|
||
|
|
||
|
if (state->timf == 0) {
|
||
|
timf = 1384402; // default value for 8MHz
|
||
|
if (update_offset)
|
||
|
msleep(200); // first time we do an update
|
||
|
} else
|
||
|
timf = state->timf;
|
||
|
|
||
|
timf *= (bw / 1000);
|
||
|
|
||
|
if (update_offset) {
|
||
|
s16 tim_offs = dib3000mc_read_word(state, 416);
|
||
|
|
||
|
if (tim_offs & 0x2000)
|
||
|
tim_offs -= 0x4000;
|
||
|
|
||
|
if (nfft == TRANSMISSION_MODE_2K)
|
||
|
tim_offs *= 4;
|
||
|
|
||
|
timf += tim_offs;
|
||
|
state->timf = timf / (bw / 1000);
|
||
|
}
|
||
|
|
||
|
dprintk("timf: %d\n", timf);
|
||
|
|
||
|
dib3000mc_write_word(state, 23, (u16) (timf >> 16));
|
||
|
dib3000mc_write_word(state, 24, (u16) (timf ) & 0xffff);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state)
|
||
|
{
|
||
|
u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb;
|
||
|
if (state->cfg->pwm3_inversion) {
|
||
|
reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
|
||
|
reg_52 |= (1 << 2);
|
||
|
} else {
|
||
|
reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
|
||
|
reg_52 |= (1 << 8);
|
||
|
}
|
||
|
dib3000mc_write_word(state, 51, reg_51);
|
||
|
dib3000mc_write_word(state, 52, reg_52);
|
||
|
|
||
|
if (state->cfg->use_pwm3)
|
||
|
dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
|
||
|
else
|
||
|
dib3000mc_write_word(state, 245, 0);
|
||
|
|
||
|
dib3000mc_write_word(state, 1040, 0x3);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
u16 fifo_threshold = 1792;
|
||
|
u16 outreg = 0;
|
||
|
u16 outmode = 0;
|
||
|
u16 elecout = 1;
|
||
|
u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
|
||
|
|
||
|
dprintk("-I- Setting output mode for demod %p to %d\n",
|
||
|
&state->demod, mode);
|
||
|
|
||
|
switch (mode) {
|
||
|
case OUTMODE_HIGH_Z: // disable
|
||
|
elecout = 0;
|
||
|
break;
|
||
|
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
|
||
|
outmode = 0;
|
||
|
break;
|
||
|
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
|
||
|
outmode = 1;
|
||
|
break;
|
||
|
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
|
||
|
outmode = 2;
|
||
|
break;
|
||
|
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
|
||
|
elecout = 3;
|
||
|
/*ADDR @ 206 :
|
||
|
P_smo_error_discard [1;6:6] = 0
|
||
|
P_smo_rs_discard [1;5:5] = 0
|
||
|
P_smo_pid_parse [1;4:4] = 0
|
||
|
P_smo_fifo_flush [1;3:3] = 0
|
||
|
P_smo_mode [2;2:1] = 11
|
||
|
P_smo_ovf_prot [1;0:0] = 0
|
||
|
*/
|
||
|
smo_reg |= 3 << 1;
|
||
|
fifo_threshold = 512;
|
||
|
outmode = 5;
|
||
|
break;
|
||
|
case OUTMODE_DIVERSITY:
|
||
|
outmode = 4;
|
||
|
elecout = 1;
|
||
|
break;
|
||
|
default:
|
||
|
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
|
||
|
outmode = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ((state->cfg->output_mpeg2_in_188_bytes))
|
||
|
smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1
|
||
|
|
||
|
outreg = dib3000mc_read_word(state, 244) & 0x07FF;
|
||
|
outreg |= (outmode << 11);
|
||
|
ret |= dib3000mc_write_word(state, 244, outreg);
|
||
|
ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/
|
||
|
ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */
|
||
|
ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw)
|
||
|
{
|
||
|
u16 bw_cfg[6] = { 0 };
|
||
|
u16 imp_bw_cfg[3] = { 0 };
|
||
|
u16 reg;
|
||
|
|
||
|
/* settings here are for 27.7MHz */
|
||
|
switch (bw) {
|
||
|
case 8000:
|
||
|
bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
|
||
|
imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
|
||
|
break;
|
||
|
|
||
|
case 7000:
|
||
|
bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
|
||
|
imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
|
||
|
break;
|
||
|
|
||
|
case 6000:
|
||
|
bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
|
||
|
imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
|
||
|
break;
|
||
|
|
||
|
case 5000:
|
||
|
bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
|
||
|
imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
|
||
|
break;
|
||
|
|
||
|
default: return -EINVAL;
|
||
|
}
|
||
|
|
||
|
for (reg = 6; reg < 12; reg++)
|
||
|
dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
|
||
|
dib3000mc_write_word(state, 12, 0x0000);
|
||
|
dib3000mc_write_word(state, 13, 0x03e8);
|
||
|
dib3000mc_write_word(state, 14, 0x0000);
|
||
|
dib3000mc_write_word(state, 15, 0x03f2);
|
||
|
dib3000mc_write_word(state, 16, 0x0001);
|
||
|
dib3000mc_write_word(state, 17, 0xb0d0);
|
||
|
// P_sec_len
|
||
|
dib3000mc_write_word(state, 18, 0x0393);
|
||
|
dib3000mc_write_word(state, 19, 0x8700);
|
||
|
|
||
|
for (reg = 55; reg < 58; reg++)
|
||
|
dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
|
||
|
|
||
|
// Timing configuration
|
||
|
dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u16 impulse_noise_val[29] =
|
||
|
|
||
|
{
|
||
|
0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
|
||
|
0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
|
||
|
0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
|
||
|
};
|
||
|
|
||
|
static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
|
||
|
{
|
||
|
u16 i;
|
||
|
for (i = 58; i < 87; i++)
|
||
|
dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
|
||
|
|
||
|
if (nfft == TRANSMISSION_MODE_8K) {
|
||
|
dib3000mc_write_word(state, 58, 0x3b);
|
||
|
dib3000mc_write_word(state, 84, 0x00);
|
||
|
dib3000mc_write_word(state, 85, 0x8200);
|
||
|
}
|
||
|
|
||
|
dib3000mc_write_word(state, 34, 0x1294);
|
||
|
dib3000mc_write_word(state, 35, 0x1ff8);
|
||
|
if (mode == 1)
|
||
|
dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_init(struct dvb_frontend *demod)
|
||
|
{
|
||
|
struct dib3000mc_state *state = demod->demodulator_priv;
|
||
|
struct dibx000_agc_config *agc = state->cfg->agc;
|
||
|
|
||
|
// Restart Configuration
|
||
|
dib3000mc_write_word(state, 1027, 0x8000);
|
||
|
dib3000mc_write_word(state, 1027, 0x0000);
|
||
|
|
||
|
// power up the demod + mobility configuration
|
||
|
dib3000mc_write_word(state, 140, 0x0000);
|
||
|
dib3000mc_write_word(state, 1031, 0);
|
||
|
|
||
|
if (state->cfg->mobile_mode) {
|
||
|
dib3000mc_write_word(state, 139, 0x0000);
|
||
|
dib3000mc_write_word(state, 141, 0x0000);
|
||
|
dib3000mc_write_word(state, 175, 0x0002);
|
||
|
dib3000mc_write_word(state, 1032, 0x0000);
|
||
|
} else {
|
||
|
dib3000mc_write_word(state, 139, 0x0001);
|
||
|
dib3000mc_write_word(state, 141, 0x0000);
|
||
|
dib3000mc_write_word(state, 175, 0x0000);
|
||
|
dib3000mc_write_word(state, 1032, 0x012C);
|
||
|
}
|
||
|
dib3000mc_write_word(state, 1033, 0x0000);
|
||
|
|
||
|
// P_clk_cfg
|
||
|
dib3000mc_write_word(state, 1037, 0x3130);
|
||
|
|
||
|
// other configurations
|
||
|
|
||
|
// P_ctrl_sfreq
|
||
|
dib3000mc_write_word(state, 33, (5 << 0));
|
||
|
dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
|
||
|
|
||
|
// Phase noise control
|
||
|
// P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
|
||
|
dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
|
||
|
|
||
|
if (state->cfg->phase_noise_mode == 0)
|
||
|
dib3000mc_write_word(state, 111, 0x00);
|
||
|
else
|
||
|
dib3000mc_write_word(state, 111, 0x02);
|
||
|
|
||
|
// P_agc_global
|
||
|
dib3000mc_write_word(state, 50, 0x8000);
|
||
|
|
||
|
// agc setup misc
|
||
|
dib3000mc_setup_pwm_state(state);
|
||
|
|
||
|
// P_agc_counter_lock
|
||
|
dib3000mc_write_word(state, 53, 0x87);
|
||
|
// P_agc_counter_unlock
|
||
|
dib3000mc_write_word(state, 54, 0x87);
|
||
|
|
||
|
/* agc */
|
||
|
dib3000mc_write_word(state, 36, state->cfg->max_time);
|
||
|
dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0));
|
||
|
dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
|
||
|
dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
|
||
|
|
||
|
// set_agc_loop_Bw
|
||
|
dib3000mc_write_word(state, 40, 0x0179);
|
||
|
dib3000mc_write_word(state, 41, 0x03f0);
|
||
|
|
||
|
dib3000mc_write_word(state, 42, agc->agc1_max);
|
||
|
dib3000mc_write_word(state, 43, agc->agc1_min);
|
||
|
dib3000mc_write_word(state, 44, agc->agc2_max);
|
||
|
dib3000mc_write_word(state, 45, agc->agc2_min);
|
||
|
dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
|
||
|
dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
|
||
|
dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
|
||
|
dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
|
||
|
|
||
|
// Begin: TimeOut registers
|
||
|
// P_pha3_thres
|
||
|
dib3000mc_write_word(state, 110, 3277);
|
||
|
// P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
|
||
|
dib3000mc_write_word(state, 26, 0x6680);
|
||
|
// lock_mask0
|
||
|
dib3000mc_write_word(state, 1, 4);
|
||
|
// lock_mask1
|
||
|
dib3000mc_write_word(state, 2, 4);
|
||
|
// lock_mask2
|
||
|
dib3000mc_write_word(state, 3, 0x1000);
|
||
|
// P_search_maxtrial=1
|
||
|
dib3000mc_write_word(state, 5, 1);
|
||
|
|
||
|
dib3000mc_set_bandwidth(state, 8000);
|
||
|
|
||
|
// div_lock_mask
|
||
|
dib3000mc_write_word(state, 4, 0x814);
|
||
|
|
||
|
dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
|
||
|
dib3000mc_write_word(state, 22, 0x463d);
|
||
|
|
||
|
// Spurious rm cfg
|
||
|
// P_cspu_regul, P_cspu_win_cut
|
||
|
dib3000mc_write_word(state, 120, 0x200f);
|
||
|
// P_adp_selec_monit
|
||
|
dib3000mc_write_word(state, 134, 0);
|
||
|
|
||
|
// Fec cfg
|
||
|
dib3000mc_write_word(state, 195, 0x10);
|
||
|
|
||
|
// diversity register: P_dvsy_sync_wait..
|
||
|
dib3000mc_write_word(state, 180, 0x2FF0);
|
||
|
|
||
|
// Impulse noise configuration
|
||
|
dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K);
|
||
|
|
||
|
// output mode set-up
|
||
|
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
|
||
|
|
||
|
/* close the i2c-gate */
|
||
|
dib3000mc_write_word(state, 769, (1 << 7) );
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_sleep(struct dvb_frontend *demod)
|
||
|
{
|
||
|
struct dib3000mc_state *state = demod->demodulator_priv;
|
||
|
|
||
|
dib3000mc_write_word(state, 1031, 0xFFFF);
|
||
|
dib3000mc_write_word(state, 1032, 0xFFFF);
|
||
|
dib3000mc_write_word(state, 1033, 0xFFF0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
|
||
|
{
|
||
|
u16 cfg[4] = { 0 },reg;
|
||
|
switch (qam) {
|
||
|
case QPSK:
|
||
|
cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
|
||
|
break;
|
||
|
case QAM_16:
|
||
|
cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
|
||
|
break;
|
||
|
case QAM_64:
|
||
|
cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
|
||
|
break;
|
||
|
}
|
||
|
for (reg = 129; reg < 133; reg++)
|
||
|
dib3000mc_write_word(state, reg, cfg[reg - 129]);
|
||
|
}
|
||
|
|
||
|
static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dvb_frontend_parameters *ch, u16 seq)
|
||
|
{
|
||
|
u16 value;
|
||
|
dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
|
||
|
dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 0);
|
||
|
|
||
|
// if (boost)
|
||
|
// dib3000mc_write_word(state, 100, (11 << 6) + 6);
|
||
|
// else
|
||
|
dib3000mc_write_word(state, 100, (16 << 6) + 9);
|
||
|
|
||
|
dib3000mc_write_word(state, 1027, 0x0800);
|
||
|
dib3000mc_write_word(state, 1027, 0x0000);
|
||
|
|
||
|
//Default cfg isi offset adp
|
||
|
dib3000mc_write_word(state, 26, 0x6680);
|
||
|
dib3000mc_write_word(state, 29, 0x1273);
|
||
|
dib3000mc_write_word(state, 33, 5);
|
||
|
dib3000mc_set_adp_cfg(state, QAM_16);
|
||
|
dib3000mc_write_word(state, 133, 15564);
|
||
|
|
||
|
dib3000mc_write_word(state, 12 , 0x0);
|
||
|
dib3000mc_write_word(state, 13 , 0x3e8);
|
||
|
dib3000mc_write_word(state, 14 , 0x0);
|
||
|
dib3000mc_write_word(state, 15 , 0x3f2);
|
||
|
|
||
|
dib3000mc_write_word(state, 93,0);
|
||
|
dib3000mc_write_word(state, 94,0);
|
||
|
dib3000mc_write_word(state, 95,0);
|
||
|
dib3000mc_write_word(state, 96,0);
|
||
|
dib3000mc_write_word(state, 97,0);
|
||
|
dib3000mc_write_word(state, 98,0);
|
||
|
|
||
|
dib3000mc_set_impulse_noise(state, 0, ch->u.ofdm.transmission_mode);
|
||
|
|
||
|
value = 0;
|
||
|
switch (ch->u.ofdm.transmission_mode) {
|
||
|
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
|
||
|
default:
|
||
|
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
|
||
|
}
|
||
|
switch (ch->u.ofdm.guard_interval) {
|
||
|
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
|
||
|
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
|
||
|
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
|
||
|
default:
|
||
|
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
|
||
|
}
|
||
|
switch (ch->u.ofdm.constellation) {
|
||
|
case QPSK: value |= (0 << 3); break;
|
||
|
case QAM_16: value |= (1 << 3); break;
|
||
|
default:
|
||
|
case QAM_64: value |= (2 << 3); break;
|
||
|
}
|
||
|
switch (HIERARCHY_1) {
|
||
|
case HIERARCHY_2: value |= 2; break;
|
||
|
case HIERARCHY_4: value |= 4; break;
|
||
|
default:
|
||
|
case HIERARCHY_1: value |= 1; break;
|
||
|
}
|
||
|
dib3000mc_write_word(state, 0, value);
|
||
|
dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4));
|
||
|
|
||
|
value = 0;
|
||
|
if (ch->u.ofdm.hierarchy_information == 1)
|
||
|
value |= (1 << 4);
|
||
|
if (1 == 1)
|
||
|
value |= 1;
|
||
|
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
|
||
|
case FEC_2_3: value |= (2 << 1); break;
|
||
|
case FEC_3_4: value |= (3 << 1); break;
|
||
|
case FEC_5_6: value |= (5 << 1); break;
|
||
|
case FEC_7_8: value |= (7 << 1); break;
|
||
|
default:
|
||
|
case FEC_1_2: value |= (1 << 1); break;
|
||
|
}
|
||
|
dib3000mc_write_word(state, 181, value);
|
||
|
|
||
|
// diversity synchro delay add 50% SFN margin
|
||
|
switch (ch->u.ofdm.transmission_mode) {
|
||
|
case TRANSMISSION_MODE_8K: value = 256; break;
|
||
|
case TRANSMISSION_MODE_2K:
|
||
|
default: value = 64; break;
|
||
|
}
|
||
|
switch (ch->u.ofdm.guard_interval) {
|
||
|
case GUARD_INTERVAL_1_16: value *= 2; break;
|
||
|
case GUARD_INTERVAL_1_8: value *= 4; break;
|
||
|
case GUARD_INTERVAL_1_4: value *= 8; break;
|
||
|
default:
|
||
|
case GUARD_INTERVAL_1_32: value *= 1; break;
|
||
|
}
|
||
|
value <<= 4;
|
||
|
value |= dib3000mc_read_word(state, 180) & 0x000f;
|
||
|
dib3000mc_write_word(state, 180, value);
|
||
|
|
||
|
// restart demod
|
||
|
value = dib3000mc_read_word(state, 0);
|
||
|
dib3000mc_write_word(state, 0, value | (1 << 9));
|
||
|
dib3000mc_write_word(state, 0, value);
|
||
|
|
||
|
msleep(30);
|
||
|
|
||
|
dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->u.ofdm.transmission_mode);
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *chan)
|
||
|
{
|
||
|
struct dib3000mc_state *state = demod->demodulator_priv;
|
||
|
u16 reg;
|
||
|
// u32 val;
|
||
|
struct dvb_frontend_parameters schan;
|
||
|
|
||
|
schan = *chan;
|
||
|
|
||
|
/* TODO what is that ? */
|
||
|
|
||
|
/* a channel for autosearch */
|
||
|
schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
|
||
|
schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
|
||
|
schan.u.ofdm.constellation = QAM_64;
|
||
|
schan.u.ofdm.code_rate_HP = FEC_2_3;
|
||
|
schan.u.ofdm.code_rate_LP = FEC_2_3;
|
||
|
schan.u.ofdm.hierarchy_information = 0;
|
||
|
|
||
|
dib3000mc_set_channel_cfg(state, &schan, 11);
|
||
|
|
||
|
reg = dib3000mc_read_word(state, 0);
|
||
|
dib3000mc_write_word(state, 0, reg | (1 << 8));
|
||
|
dib3000mc_read_word(state, 511);
|
||
|
dib3000mc_write_word(state, 0, reg);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
|
||
|
{
|
||
|
struct dib3000mc_state *state = demod->demodulator_priv;
|
||
|
u16 irq_pending = dib3000mc_read_word(state, 511);
|
||
|
|
||
|
if (irq_pending & 0x1) // failed
|
||
|
return 1;
|
||
|
|
||
|
if (irq_pending & 0x2) // succeeded
|
||
|
return 2;
|
||
|
|
||
|
return 0; // still pending
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
|
||
|
{
|
||
|
struct dib3000mc_state *state = demod->demodulator_priv;
|
||
|
|
||
|
// ** configure demod **
|
||
|
dib3000mc_set_channel_cfg(state, ch, 0);
|
||
|
|
||
|
// activates isi
|
||
|
if (state->sfn_workaround_active) {
|
||
|
dprintk("SFN workaround is active\n");
|
||
|
dib3000mc_write_word(state, 29, 0x1273);
|
||
|
dib3000mc_write_word(state, 108, 0x4000); // P_pha3_force_pha_shift
|
||
|
} else {
|
||
|
dib3000mc_write_word(state, 29, 0x1073);
|
||
|
dib3000mc_write_word(state, 108, 0x0000); // P_pha3_force_pha_shift
|
||
|
}
|
||
|
|
||
|
dib3000mc_set_adp_cfg(state, (u8)ch->u.ofdm.constellation);
|
||
|
if (ch->u.ofdm.transmission_mode == TRANSMISSION_MODE_8K) {
|
||
|
dib3000mc_write_word(state, 26, 38528);
|
||
|
dib3000mc_write_word(state, 33, 8);
|
||
|
} else {
|
||
|
dib3000mc_write_word(state, 26, 30336);
|
||
|
dib3000mc_write_word(state, 33, 6);
|
||
|
}
|
||
|
|
||
|
if (dib3000mc_read_word(state, 509) & 0x80)
|
||
|
dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
|
||
|
{
|
||
|
struct dib3000mc_state *st = demod->demodulator_priv;
|
||
|
return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
|
||
|
|
||
|
static int dib3000mc_get_frontend(struct dvb_frontend* fe,
|
||
|
struct dvb_frontend_parameters *fep)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
u16 tps = dib3000mc_read_word(state,458);
|
||
|
|
||
|
fep->inversion = INVERSION_AUTO;
|
||
|
|
||
|
fep->u.ofdm.bandwidth = state->current_bandwidth;
|
||
|
|
||
|
switch ((tps >> 8) & 0x1) {
|
||
|
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
|
||
|
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
|
||
|
}
|
||
|
|
||
|
switch (tps & 0x3) {
|
||
|
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
|
||
|
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
|
||
|
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
|
||
|
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
|
||
|
}
|
||
|
|
||
|
switch ((tps >> 13) & 0x3) {
|
||
|
case 0: fep->u.ofdm.constellation = QPSK; break;
|
||
|
case 1: fep->u.ofdm.constellation = QAM_16; break;
|
||
|
case 2:
|
||
|
default: fep->u.ofdm.constellation = QAM_64; break;
|
||
|
}
|
||
|
|
||
|
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
|
||
|
/* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
|
||
|
|
||
|
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
|
||
|
switch ((tps >> 5) & 0x7) {
|
||
|
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
|
||
|
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
|
||
|
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
|
||
|
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
|
||
|
case 7:
|
||
|
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
|
||
|
|
||
|
}
|
||
|
|
||
|
switch ((tps >> 2) & 0x7) {
|
||
|
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
|
||
|
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
|
||
|
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
|
||
|
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
|
||
|
case 7:
|
||
|
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_set_frontend(struct dvb_frontend* fe,
|
||
|
struct dvb_frontend_parameters *fep)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
int ret;
|
||
|
|
||
|
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
|
||
|
|
||
|
state->current_bandwidth = fep->u.ofdm.bandwidth;
|
||
|
dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
|
||
|
|
||
|
/* maybe the parameter has been changed */
|
||
|
state->sfn_workaround_active = buggy_sfn_workaround;
|
||
|
|
||
|
if (fe->ops.tuner_ops.set_params) {
|
||
|
fe->ops.tuner_ops.set_params(fe, fep);
|
||
|
msleep(100);
|
||
|
}
|
||
|
|
||
|
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
|
||
|
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
|
||
|
fep->u.ofdm.constellation == QAM_AUTO ||
|
||
|
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
|
||
|
int i = 1000, found;
|
||
|
|
||
|
dib3000mc_autosearch_start(fe, fep);
|
||
|
do {
|
||
|
msleep(1);
|
||
|
found = dib3000mc_autosearch_is_irq(fe);
|
||
|
} while (found == 0 && i--);
|
||
|
|
||
|
dprintk("autosearch returns: %d\n",found);
|
||
|
if (found == 0 || found == 1)
|
||
|
return 0; // no channel found
|
||
|
|
||
|
dib3000mc_get_frontend(fe, fep);
|
||
|
}
|
||
|
|
||
|
ret = dib3000mc_tune(fe, fep);
|
||
|
|
||
|
/* make this a config parameter */
|
||
|
dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
u16 lock = dib3000mc_read_word(state, 509);
|
||
|
|
||
|
*stat = 0;
|
||
|
|
||
|
if (lock & 0x8000)
|
||
|
*stat |= FE_HAS_SIGNAL;
|
||
|
if (lock & 0x3000)
|
||
|
*stat |= FE_HAS_CARRIER;
|
||
|
if (lock & 0x0100)
|
||
|
*stat |= FE_HAS_VITERBI;
|
||
|
if (lock & 0x0010)
|
||
|
*stat |= FE_HAS_SYNC;
|
||
|
if (lock & 0x0008)
|
||
|
*stat |= FE_HAS_LOCK;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
*ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
*unc = dib3000mc_read_word(state, 508);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
u16 val = dib3000mc_read_word(state, 392);
|
||
|
*strength = 65535 - val;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
|
||
|
{
|
||
|
*snr = 0x0000;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
|
||
|
{
|
||
|
tune->min_delay_ms = 1000;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dib3000mc_release(struct dvb_frontend *fe)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
dibx000_exit_i2c_master(&state->i2c_master);
|
||
|
kfree(state);
|
||
|
}
|
||
|
|
||
|
int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(dib3000mc_pid_control);
|
||
|
|
||
|
int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
|
||
|
tmp |= (onoff << 4);
|
||
|
return dib3000mc_write_word(state, 206, tmp);
|
||
|
}
|
||
|
EXPORT_SYMBOL(dib3000mc_pid_parse);
|
||
|
|
||
|
void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
|
||
|
{
|
||
|
struct dib3000mc_state *state = fe->demodulator_priv;
|
||
|
state->cfg = cfg;
|
||
|
}
|
||
|
EXPORT_SYMBOL(dib3000mc_set_config);
|
||
|
|
||
|
int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
|
||
|
{
|
||
|
struct dib3000mc_state st = { .i2c_adap = i2c };
|
||
|
int k;
|
||
|
u8 new_addr;
|
||
|
|
||
|
static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26};
|
||
|
|
||
|
for (k = no_of_demods-1; k >= 0; k--) {
|
||
|
st.cfg = &cfg[k];
|
||
|
|
||
|
/* designated i2c address */
|
||
|
new_addr = DIB3000MC_I2C_ADDRESS[k];
|
||
|
st.i2c_addr = new_addr;
|
||
|
if (dib3000mc_identify(&st) != 0) {
|
||
|
st.i2c_addr = default_addr;
|
||
|
if (dib3000mc_identify(&st) != 0) {
|
||
|
dprintk("-E- DiB3000P/MC #%d: not identified\n", k);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dib3000mc_set_output_mode(&st, OUTMODE_MPEG2_PAR_CONT_CLK);
|
||
|
|
||
|
// set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
|
||
|
dib3000mc_write_word(&st, 1024, (new_addr << 3) | 0x1);
|
||
|
st.i2c_addr = new_addr;
|
||
|
}
|
||
|
|
||
|
for (k = 0; k < no_of_demods; k++) {
|
||
|
st.cfg = &cfg[k];
|
||
|
st.i2c_addr = DIB3000MC_I2C_ADDRESS[k];
|
||
|
|
||
|
dib3000mc_write_word(&st, 1024, st.i2c_addr << 3);
|
||
|
|
||
|
/* turn off data output */
|
||
|
dib3000mc_set_output_mode(&st, OUTMODE_HIGH_Z);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
|
||
|
|
||
|
static struct dvb_frontend_ops dib3000mc_ops;
|
||
|
|
||
|
struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
|
||
|
{
|
||
|
struct dvb_frontend *demod;
|
||
|
struct dib3000mc_state *st;
|
||
|
st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
|
||
|
if (st == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
st->cfg = cfg;
|
||
|
st->i2c_adap = i2c_adap;
|
||
|
st->i2c_addr = i2c_addr;
|
||
|
|
||
|
demod = &st->demod;
|
||
|
demod->demodulator_priv = st;
|
||
|
memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
|
||
|
|
||
|
if (dib3000mc_identify(st) != 0)
|
||
|
goto error;
|
||
|
|
||
|
dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
|
||
|
|
||
|
dib3000mc_write_word(st, 1037, 0x3130);
|
||
|
|
||
|
return demod;
|
||
|
|
||
|
error:
|
||
|
kfree(st);
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(dib3000mc_attach);
|
||
|
|
||
|
static struct dvb_frontend_ops dib3000mc_ops = {
|
||
|
.info = {
|
||
|
.name = "DiBcom 3000MC/P",
|
||
|
.type = FE_OFDM,
|
||
|
.frequency_min = 44250000,
|
||
|
.frequency_max = 867250000,
|
||
|
.frequency_stepsize = 62500,
|
||
|
.caps = FE_CAN_INVERSION_AUTO |
|
||
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
||
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
||
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
|
||
|
FE_CAN_TRANSMISSION_MODE_AUTO |
|
||
|
FE_CAN_GUARD_INTERVAL_AUTO |
|
||
|
FE_CAN_RECOVER |
|
||
|
FE_CAN_HIERARCHY_AUTO,
|
||
|
},
|
||
|
|
||
|
.release = dib3000mc_release,
|
||
|
|
||
|
.init = dib3000mc_init,
|
||
|
.sleep = dib3000mc_sleep,
|
||
|
|
||
|
.set_frontend = dib3000mc_set_frontend,
|
||
|
.get_tune_settings = dib3000mc_fe_get_tune_settings,
|
||
|
.get_frontend = dib3000mc_get_frontend,
|
||
|
|
||
|
.read_status = dib3000mc_read_status,
|
||
|
.read_ber = dib3000mc_read_ber,
|
||
|
.read_signal_strength = dib3000mc_read_signal_strength,
|
||
|
.read_snr = dib3000mc_read_snr,
|
||
|
.read_ucblocks = dib3000mc_read_unc_blocks,
|
||
|
};
|
||
|
|
||
|
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
|
||
|
MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
|
||
|
MODULE_LICENSE("GPL");
|