227 lines
4.5 KiB
C
227 lines
4.5 KiB
C
|
/*
|
||
|
* Implement the default iomap interfaces
|
||
|
*
|
||
|
* (C) Copyright 2004 Linus Torvalds
|
||
|
* (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org>
|
||
|
* (C) Copyright 2007 MIPS Technologies, Inc.
|
||
|
* written by Ralf Baechle <ralf@linux-mips.org>
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <asm/io.h>
|
||
|
|
||
|
/*
|
||
|
* Read/write from/to an (offsettable) iomem cookie. It might be a PIO
|
||
|
* access or a MMIO access, these functions don't care. The info is
|
||
|
* encoded in the hardware mapping set up by the mapping functions
|
||
|
* (or the cookie itself, depending on implementation and hw).
|
||
|
*
|
||
|
* The generic routines don't assume any hardware mappings, and just
|
||
|
* encode the PIO/MMIO as part of the cookie. They coldly assume that
|
||
|
* the MMIO IO mappings are not in the low address range.
|
||
|
*
|
||
|
* Architectures for which this is not true can't use this generic
|
||
|
* implementation and should do their own copy.
|
||
|
*/
|
||
|
|
||
|
#define PIO_MASK 0x0ffffUL
|
||
|
|
||
|
unsigned int ioread8(void __iomem *addr)
|
||
|
{
|
||
|
return readb(addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread8);
|
||
|
|
||
|
unsigned int ioread16(void __iomem *addr)
|
||
|
{
|
||
|
return readw(addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread16);
|
||
|
|
||
|
unsigned int ioread16be(void __iomem *addr)
|
||
|
{
|
||
|
return be16_to_cpu(__raw_readw(addr));
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread16be);
|
||
|
|
||
|
unsigned int ioread32(void __iomem *addr)
|
||
|
{
|
||
|
return readl(addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread32);
|
||
|
|
||
|
unsigned int ioread32be(void __iomem *addr)
|
||
|
{
|
||
|
return be32_to_cpu(__raw_readl(addr));
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread32be);
|
||
|
|
||
|
void iowrite8(u8 val, void __iomem *addr)
|
||
|
{
|
||
|
writeb(val, addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite8);
|
||
|
|
||
|
void iowrite16(u16 val, void __iomem *addr)
|
||
|
{
|
||
|
writew(val, addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite16);
|
||
|
|
||
|
void iowrite16be(u16 val, void __iomem *addr)
|
||
|
{
|
||
|
__raw_writew(cpu_to_be16(val), addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite16be);
|
||
|
|
||
|
void iowrite32(u32 val, void __iomem *addr)
|
||
|
{
|
||
|
writel(val, addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite32);
|
||
|
|
||
|
void iowrite32be(u32 val, void __iomem *addr)
|
||
|
{
|
||
|
__raw_writel(cpu_to_be32(val), addr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite32be);
|
||
|
|
||
|
/*
|
||
|
* These are the "repeat MMIO read/write" functions.
|
||
|
* Note the "__raw" accesses, since we don't want to
|
||
|
* convert to CPU byte order. We write in "IO byte
|
||
|
* order" (we also don't have IO barriers).
|
||
|
*/
|
||
|
static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
u8 data = __raw_readb(addr);
|
||
|
*dst = data;
|
||
|
dst++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
u16 data = __raw_readw(addr);
|
||
|
*dst = data;
|
||
|
dst++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
u32 data = __raw_readl(addr);
|
||
|
*dst = data;
|
||
|
dst++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
__raw_writeb(*src, addr);
|
||
|
src++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
__raw_writew(*src, addr);
|
||
|
src++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
|
||
|
{
|
||
|
while (--count >= 0) {
|
||
|
__raw_writel(*src, addr);
|
||
|
src++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
|
||
|
{
|
||
|
mmio_insb(addr, dst, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread8_rep);
|
||
|
|
||
|
void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
|
||
|
{
|
||
|
mmio_insw(addr, dst, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread16_rep);
|
||
|
|
||
|
void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
|
||
|
{
|
||
|
mmio_insl(addr, dst, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioread32_rep);
|
||
|
|
||
|
void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
|
||
|
{
|
||
|
mmio_outsb(addr, src, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite8_rep);
|
||
|
|
||
|
void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
|
||
|
{
|
||
|
mmio_outsw(addr, src, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite16_rep);
|
||
|
|
||
|
void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
|
||
|
{
|
||
|
mmio_outsl(addr, src, count);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(iowrite32_rep);
|
||
|
|
||
|
/*
|
||
|
* Create a virtual mapping cookie for an IO port range
|
||
|
*
|
||
|
* This uses the same mapping are as the in/out family which has to be setup
|
||
|
* by the platform initialization code.
|
||
|
*
|
||
|
* Just to make matters somewhat more interesting on MIPS systems with
|
||
|
* multiple host bridge each will have it's own ioport address space.
|
||
|
*/
|
||
|
static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr)
|
||
|
{
|
||
|
return (void __iomem *) (mips_io_port_base + port);
|
||
|
}
|
||
|
|
||
|
void __iomem *ioport_map(unsigned long port, unsigned int nr)
|
||
|
{
|
||
|
if (port > PIO_MASK)
|
||
|
return NULL;
|
||
|
|
||
|
return ioport_map_legacy(port, nr);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioport_map);
|
||
|
|
||
|
void ioport_unmap(void __iomem *addr)
|
||
|
{
|
||
|
/* Nothing to do */
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(ioport_unmap);
|