281 lines
7.9 KiB
C
281 lines
7.9 KiB
C
|
/*
|
||
|
* Intel Wireless WiMAX Connection 2400m
|
||
|
* SDIO RX handling
|
||
|
*
|
||
|
*
|
||
|
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
*
|
||
|
* Intel Corporation <linux-wimax@intel.com>
|
||
|
* Dirk Brandewie <dirk.j.brandewie@intel.com>
|
||
|
* - Initial implementation
|
||
|
*
|
||
|
*
|
||
|
* This handles the RX path on SDIO.
|
||
|
*
|
||
|
* The SDIO bus driver calls the "irq" routine when data is available.
|
||
|
* This is not a traditional interrupt routine since the SDIO bus
|
||
|
* driver calls us from its irq thread context. Because of this
|
||
|
* sleeping in the SDIO RX IRQ routine is okay.
|
||
|
*
|
||
|
* From there on, we obtain the size of the data that is available,
|
||
|
* allocate an skb, copy it and then pass it to the generic driver's
|
||
|
* RX routine [i2400m_rx()].
|
||
|
*
|
||
|
* ROADMAP
|
||
|
*
|
||
|
* i2400ms_irq()
|
||
|
* i2400ms_rx()
|
||
|
* __i2400ms_rx_get_size()
|
||
|
* i2400m_rx()
|
||
|
*
|
||
|
* i2400ms_rx_setup()
|
||
|
*
|
||
|
* i2400ms_rx_release()
|
||
|
*/
|
||
|
#include <linux/workqueue.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/mmc/sdio.h>
|
||
|
#include <linux/mmc/sdio_func.h>
|
||
|
#include "i2400m-sdio.h"
|
||
|
|
||
|
#define D_SUBMODULE rx
|
||
|
#include "sdio-debug-levels.h"
|
||
|
|
||
|
static const __le32 i2400m_ACK_BARKER[4] = {
|
||
|
__constant_cpu_to_le32(I2400M_ACK_BARKER),
|
||
|
__constant_cpu_to_le32(I2400M_ACK_BARKER),
|
||
|
__constant_cpu_to_le32(I2400M_ACK_BARKER),
|
||
|
__constant_cpu_to_le32(I2400M_ACK_BARKER)
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Read and return the amount of bytes available for RX
|
||
|
*
|
||
|
* The RX size has to be read like this: byte reads of three
|
||
|
* sequential locations; then glue'em together.
|
||
|
*
|
||
|
* sdio_readl() doesn't work.
|
||
|
*/
|
||
|
ssize_t __i2400ms_rx_get_size(struct i2400ms *i2400ms)
|
||
|
{
|
||
|
int ret, cnt, val;
|
||
|
ssize_t rx_size;
|
||
|
unsigned xfer_size_addr;
|
||
|
struct sdio_func *func = i2400ms->func;
|
||
|
struct device *dev = &i2400ms->func->dev;
|
||
|
|
||
|
d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
|
||
|
xfer_size_addr = I2400MS_INTR_GET_SIZE_ADDR;
|
||
|
rx_size = 0;
|
||
|
for (cnt = 0; cnt < 3; cnt++) {
|
||
|
val = sdio_readb(func, xfer_size_addr + cnt, &ret);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dev, "RX: Can't read byte %d of RX size from "
|
||
|
"0x%08x: %d\n", cnt, xfer_size_addr + cnt, ret);
|
||
|
rx_size = ret;
|
||
|
goto error_read;
|
||
|
}
|
||
|
rx_size = rx_size << 8 | (val & 0xff);
|
||
|
}
|
||
|
d_printf(6, dev, "RX: rx_size is %ld\n", (long) rx_size);
|
||
|
error_read:
|
||
|
d_fnend(7, dev, "(i2400ms %p) = %ld\n", i2400ms, (long) rx_size);
|
||
|
return rx_size;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Read data from the device (when in normal)
|
||
|
*
|
||
|
* Allocate an SKB of the right size, read the data in and then
|
||
|
* deliver it to the generic layer.
|
||
|
*
|
||
|
* We also check for a reboot barker. That means the device died and
|
||
|
* we have to reboot it.
|
||
|
*/
|
||
|
static
|
||
|
void i2400ms_rx(struct i2400ms *i2400ms)
|
||
|
{
|
||
|
int ret;
|
||
|
struct sdio_func *func = i2400ms->func;
|
||
|
struct device *dev = &func->dev;
|
||
|
struct i2400m *i2400m = &i2400ms->i2400m;
|
||
|
struct sk_buff *skb;
|
||
|
ssize_t rx_size;
|
||
|
|
||
|
d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
|
||
|
rx_size = __i2400ms_rx_get_size(i2400ms);
|
||
|
if (rx_size < 0) {
|
||
|
ret = rx_size;
|
||
|
goto error_get_size;
|
||
|
}
|
||
|
|
||
|
ret = -ENOMEM;
|
||
|
skb = alloc_skb(rx_size, GFP_ATOMIC);
|
||
|
if (NULL == skb) {
|
||
|
dev_err(dev, "RX: unable to alloc skb\n");
|
||
|
goto error_alloc_skb;
|
||
|
}
|
||
|
ret = sdio_memcpy_fromio(func, skb->data,
|
||
|
I2400MS_DATA_ADDR, rx_size);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dev, "RX: SDIO data read failed: %d\n", ret);
|
||
|
goto error_memcpy_fromio;
|
||
|
}
|
||
|
|
||
|
rmb(); /* make sure we get boot_mode from dev_reset_handle */
|
||
|
if (i2400m->boot_mode == 1) {
|
||
|
spin_lock(&i2400m->rx_lock);
|
||
|
i2400ms->bm_ack_size = rx_size;
|
||
|
spin_unlock(&i2400m->rx_lock);
|
||
|
memcpy(i2400m->bm_ack_buf, skb->data, rx_size);
|
||
|
wake_up(&i2400ms->bm_wfa_wq);
|
||
|
dev_err(dev, "RX: SDIO boot mode message\n");
|
||
|
kfree_skb(skb);
|
||
|
} else if (unlikely(!memcmp(skb->data, i2400m_NBOOT_BARKER,
|
||
|
sizeof(i2400m_NBOOT_BARKER))
|
||
|
|| !memcmp(skb->data, i2400m_SBOOT_BARKER,
|
||
|
sizeof(i2400m_SBOOT_BARKER)))) {
|
||
|
ret = i2400m_dev_reset_handle(i2400m);
|
||
|
dev_err(dev, "RX: SDIO reboot barker\n");
|
||
|
kfree_skb(skb);
|
||
|
} else {
|
||
|
skb_put(skb, rx_size);
|
||
|
i2400m_rx(i2400m, skb);
|
||
|
}
|
||
|
d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms);
|
||
|
return;
|
||
|
|
||
|
error_memcpy_fromio:
|
||
|
kfree_skb(skb);
|
||
|
error_alloc_skb:
|
||
|
error_get_size:
|
||
|
d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Process an interrupt from the SDIO card
|
||
|
*
|
||
|
* FIXME: need to process other events that are not just ready-to-read
|
||
|
*
|
||
|
* Checks there is data ready and then proceeds to read it.
|
||
|
*/
|
||
|
static
|
||
|
void i2400ms_irq(struct sdio_func *func)
|
||
|
{
|
||
|
int ret;
|
||
|
struct i2400ms *i2400ms = sdio_get_drvdata(func);
|
||
|
struct device *dev = &func->dev;
|
||
|
int val;
|
||
|
|
||
|
d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms);
|
||
|
val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dev, "RX: Can't read interrupt status: %d\n", ret);
|
||
|
goto error_no_irq;
|
||
|
}
|
||
|
if (!val) {
|
||
|
dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n");
|
||
|
goto error_no_irq;
|
||
|
}
|
||
|
sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret);
|
||
|
i2400ms_rx(i2400ms);
|
||
|
error_no_irq:
|
||
|
d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Setup SDIO RX
|
||
|
*
|
||
|
* Hooks up the IRQ handler and then enables IRQs.
|
||
|
*/
|
||
|
int i2400ms_rx_setup(struct i2400ms *i2400ms)
|
||
|
{
|
||
|
int result;
|
||
|
struct sdio_func *func = i2400ms->func;
|
||
|
struct device *dev = &func->dev;
|
||
|
struct i2400m *i2400m = &i2400ms->i2400m;
|
||
|
|
||
|
d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
|
||
|
|
||
|
init_waitqueue_head(&i2400ms->bm_wfa_wq);
|
||
|
spin_lock(&i2400m->rx_lock);
|
||
|
i2400ms->bm_wait_result = -EINPROGRESS;
|
||
|
spin_unlock(&i2400m->rx_lock);
|
||
|
|
||
|
sdio_claim_host(func);
|
||
|
result = sdio_claim_irq(func, i2400ms_irq);
|
||
|
if (result < 0) {
|
||
|
dev_err(dev, "Cannot claim IRQ: %d\n", result);
|
||
|
goto error_irq_claim;
|
||
|
}
|
||
|
result = 0;
|
||
|
sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result);
|
||
|
if (result < 0) {
|
||
|
sdio_release_irq(func);
|
||
|
dev_err(dev, "Failed to enable interrupts %d\n", result);
|
||
|
}
|
||
|
error_irq_claim:
|
||
|
sdio_release_host(func);
|
||
|
d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Tear down SDIO RX
|
||
|
*
|
||
|
* Disables IRQs in the device and removes the IRQ handler.
|
||
|
*/
|
||
|
void i2400ms_rx_release(struct i2400ms *i2400ms)
|
||
|
{
|
||
|
int result;
|
||
|
struct sdio_func *func = i2400ms->func;
|
||
|
struct device *dev = &func->dev;
|
||
|
struct i2400m *i2400m = &i2400ms->i2400m;
|
||
|
|
||
|
d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
|
||
|
spin_lock(&i2400m->rx_lock);
|
||
|
i2400ms->bm_ack_size = -EINTR;
|
||
|
spin_unlock(&i2400m->rx_lock);
|
||
|
wake_up_all(&i2400ms->bm_wfa_wq);
|
||
|
sdio_claim_host(func);
|
||
|
sdio_writeb(func, 0, I2400MS_INTR_ENABLE_ADDR, &result);
|
||
|
sdio_release_irq(func);
|
||
|
sdio_release_host(func);
|
||
|
d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
|
||
|
}
|