1187 lines
23 KiB
C
1187 lines
23 KiB
C
|
/*
|
||
|
* builtin-timechart.c - make an svg timechart of system activity
|
||
|
*
|
||
|
* (C) Copyright 2009 Intel Corporation
|
||
|
*
|
||
|
* Authors:
|
||
|
* Arjan van de Ven <arjan@linux.intel.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; version 2
|
||
|
* of the License.
|
||
|
*/
|
||
|
|
||
|
#include "builtin.h"
|
||
|
|
||
|
#include "util/util.h"
|
||
|
|
||
|
#include "util/color.h"
|
||
|
#include <linux/list.h>
|
||
|
#include "util/cache.h"
|
||
|
#include <linux/rbtree.h>
|
||
|
#include "util/symbol.h"
|
||
|
#include "util/string.h"
|
||
|
#include "util/callchain.h"
|
||
|
#include "util/strlist.h"
|
||
|
|
||
|
#include "perf.h"
|
||
|
#include "util/header.h"
|
||
|
#include "util/parse-options.h"
|
||
|
#include "util/parse-events.h"
|
||
|
#include "util/svghelper.h"
|
||
|
|
||
|
static char const *input_name = "perf.data";
|
||
|
static char const *output_name = "output.svg";
|
||
|
|
||
|
|
||
|
static unsigned long page_size;
|
||
|
static unsigned long mmap_window = 32;
|
||
|
static u64 sample_type;
|
||
|
|
||
|
static unsigned int numcpus;
|
||
|
static u64 min_freq; /* Lowest CPU frequency seen */
|
||
|
static u64 max_freq; /* Highest CPU frequency seen */
|
||
|
static u64 turbo_frequency;
|
||
|
|
||
|
static u64 first_time, last_time;
|
||
|
|
||
|
static int power_only;
|
||
|
|
||
|
|
||
|
static struct perf_header *header;
|
||
|
|
||
|
struct per_pid;
|
||
|
struct per_pidcomm;
|
||
|
|
||
|
struct cpu_sample;
|
||
|
struct power_event;
|
||
|
struct wake_event;
|
||
|
|
||
|
struct sample_wrapper;
|
||
|
|
||
|
/*
|
||
|
* Datastructure layout:
|
||
|
* We keep an list of "pid"s, matching the kernels notion of a task struct.
|
||
|
* Each "pid" entry, has a list of "comm"s.
|
||
|
* this is because we want to track different programs different, while
|
||
|
* exec will reuse the original pid (by design).
|
||
|
* Each comm has a list of samples that will be used to draw
|
||
|
* final graph.
|
||
|
*/
|
||
|
|
||
|
struct per_pid {
|
||
|
struct per_pid *next;
|
||
|
|
||
|
int pid;
|
||
|
int ppid;
|
||
|
|
||
|
u64 start_time;
|
||
|
u64 end_time;
|
||
|
u64 total_time;
|
||
|
int display;
|
||
|
|
||
|
struct per_pidcomm *all;
|
||
|
struct per_pidcomm *current;
|
||
|
|
||
|
int painted;
|
||
|
};
|
||
|
|
||
|
|
||
|
struct per_pidcomm {
|
||
|
struct per_pidcomm *next;
|
||
|
|
||
|
u64 start_time;
|
||
|
u64 end_time;
|
||
|
u64 total_time;
|
||
|
|
||
|
int Y;
|
||
|
int display;
|
||
|
|
||
|
long state;
|
||
|
u64 state_since;
|
||
|
|
||
|
char *comm;
|
||
|
|
||
|
struct cpu_sample *samples;
|
||
|
};
|
||
|
|
||
|
struct sample_wrapper {
|
||
|
struct sample_wrapper *next;
|
||
|
|
||
|
u64 timestamp;
|
||
|
unsigned char data[0];
|
||
|
};
|
||
|
|
||
|
#define TYPE_NONE 0
|
||
|
#define TYPE_RUNNING 1
|
||
|
#define TYPE_WAITING 2
|
||
|
#define TYPE_BLOCKED 3
|
||
|
|
||
|
struct cpu_sample {
|
||
|
struct cpu_sample *next;
|
||
|
|
||
|
u64 start_time;
|
||
|
u64 end_time;
|
||
|
int type;
|
||
|
int cpu;
|
||
|
};
|
||
|
|
||
|
static struct per_pid *all_data;
|
||
|
|
||
|
#define CSTATE 1
|
||
|
#define PSTATE 2
|
||
|
|
||
|
struct power_event {
|
||
|
struct power_event *next;
|
||
|
int type;
|
||
|
int state;
|
||
|
u64 start_time;
|
||
|
u64 end_time;
|
||
|
int cpu;
|
||
|
};
|
||
|
|
||
|
struct wake_event {
|
||
|
struct wake_event *next;
|
||
|
int waker;
|
||
|
int wakee;
|
||
|
u64 time;
|
||
|
};
|
||
|
|
||
|
static struct power_event *power_events;
|
||
|
static struct wake_event *wake_events;
|
||
|
|
||
|
struct sample_wrapper *all_samples;
|
||
|
|
||
|
static struct per_pid *find_create_pid(int pid)
|
||
|
{
|
||
|
struct per_pid *cursor = all_data;
|
||
|
|
||
|
while (cursor) {
|
||
|
if (cursor->pid == pid)
|
||
|
return cursor;
|
||
|
cursor = cursor->next;
|
||
|
}
|
||
|
cursor = malloc(sizeof(struct per_pid));
|
||
|
assert(cursor != NULL);
|
||
|
memset(cursor, 0, sizeof(struct per_pid));
|
||
|
cursor->pid = pid;
|
||
|
cursor->next = all_data;
|
||
|
all_data = cursor;
|
||
|
return cursor;
|
||
|
}
|
||
|
|
||
|
static void pid_set_comm(int pid, char *comm)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
p = find_create_pid(pid);
|
||
|
c = p->all;
|
||
|
while (c) {
|
||
|
if (c->comm && strcmp(c->comm, comm) == 0) {
|
||
|
p->current = c;
|
||
|
return;
|
||
|
}
|
||
|
if (!c->comm) {
|
||
|
c->comm = strdup(comm);
|
||
|
p->current = c;
|
||
|
return;
|
||
|
}
|
||
|
c = c->next;
|
||
|
}
|
||
|
c = malloc(sizeof(struct per_pidcomm));
|
||
|
assert(c != NULL);
|
||
|
memset(c, 0, sizeof(struct per_pidcomm));
|
||
|
c->comm = strdup(comm);
|
||
|
p->current = c;
|
||
|
c->next = p->all;
|
||
|
p->all = c;
|
||
|
}
|
||
|
|
||
|
static void pid_fork(int pid, int ppid, u64 timestamp)
|
||
|
{
|
||
|
struct per_pid *p, *pp;
|
||
|
p = find_create_pid(pid);
|
||
|
pp = find_create_pid(ppid);
|
||
|
p->ppid = ppid;
|
||
|
if (pp->current && pp->current->comm && !p->current)
|
||
|
pid_set_comm(pid, pp->current->comm);
|
||
|
|
||
|
p->start_time = timestamp;
|
||
|
if (p->current) {
|
||
|
p->current->start_time = timestamp;
|
||
|
p->current->state_since = timestamp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pid_exit(int pid, u64 timestamp)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
p = find_create_pid(pid);
|
||
|
p->end_time = timestamp;
|
||
|
if (p->current)
|
||
|
p->current->end_time = timestamp;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
struct cpu_sample *sample;
|
||
|
|
||
|
p = find_create_pid(pid);
|
||
|
c = p->current;
|
||
|
if (!c) {
|
||
|
c = malloc(sizeof(struct per_pidcomm));
|
||
|
assert(c != NULL);
|
||
|
memset(c, 0, sizeof(struct per_pidcomm));
|
||
|
p->current = c;
|
||
|
c->next = p->all;
|
||
|
p->all = c;
|
||
|
}
|
||
|
|
||
|
sample = malloc(sizeof(struct cpu_sample));
|
||
|
assert(sample != NULL);
|
||
|
memset(sample, 0, sizeof(struct cpu_sample));
|
||
|
sample->start_time = start;
|
||
|
sample->end_time = end;
|
||
|
sample->type = type;
|
||
|
sample->next = c->samples;
|
||
|
sample->cpu = cpu;
|
||
|
c->samples = sample;
|
||
|
|
||
|
if (sample->type == TYPE_RUNNING && end > start && start > 0) {
|
||
|
c->total_time += (end-start);
|
||
|
p->total_time += (end-start);
|
||
|
}
|
||
|
|
||
|
if (c->start_time == 0 || c->start_time > start)
|
||
|
c->start_time = start;
|
||
|
if (p->start_time == 0 || p->start_time > start)
|
||
|
p->start_time = start;
|
||
|
|
||
|
if (cpu > numcpus)
|
||
|
numcpus = cpu;
|
||
|
}
|
||
|
|
||
|
#define MAX_CPUS 4096
|
||
|
|
||
|
static u64 cpus_cstate_start_times[MAX_CPUS];
|
||
|
static int cpus_cstate_state[MAX_CPUS];
|
||
|
static u64 cpus_pstate_start_times[MAX_CPUS];
|
||
|
static u64 cpus_pstate_state[MAX_CPUS];
|
||
|
|
||
|
static int
|
||
|
process_comm_event(event_t *event)
|
||
|
{
|
||
|
pid_set_comm(event->comm.tid, event->comm.comm);
|
||
|
return 0;
|
||
|
}
|
||
|
static int
|
||
|
process_fork_event(event_t *event)
|
||
|
{
|
||
|
pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
process_exit_event(event_t *event)
|
||
|
{
|
||
|
pid_exit(event->fork.pid, event->fork.time);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct trace_entry {
|
||
|
u32 size;
|
||
|
unsigned short type;
|
||
|
unsigned char flags;
|
||
|
unsigned char preempt_count;
|
||
|
int pid;
|
||
|
int tgid;
|
||
|
};
|
||
|
|
||
|
struct power_entry {
|
||
|
struct trace_entry te;
|
||
|
s64 type;
|
||
|
s64 value;
|
||
|
};
|
||
|
|
||
|
#define TASK_COMM_LEN 16
|
||
|
struct wakeup_entry {
|
||
|
struct trace_entry te;
|
||
|
char comm[TASK_COMM_LEN];
|
||
|
int pid;
|
||
|
int prio;
|
||
|
int success;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* trace_flag_type is an enumeration that holds different
|
||
|
* states when a trace occurs. These are:
|
||
|
* IRQS_OFF - interrupts were disabled
|
||
|
* IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
|
||
|
* NEED_RESCED - reschedule is requested
|
||
|
* HARDIRQ - inside an interrupt handler
|
||
|
* SOFTIRQ - inside a softirq handler
|
||
|
*/
|
||
|
enum trace_flag_type {
|
||
|
TRACE_FLAG_IRQS_OFF = 0x01,
|
||
|
TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
|
||
|
TRACE_FLAG_NEED_RESCHED = 0x04,
|
||
|
TRACE_FLAG_HARDIRQ = 0x08,
|
||
|
TRACE_FLAG_SOFTIRQ = 0x10,
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
struct sched_switch {
|
||
|
struct trace_entry te;
|
||
|
char prev_comm[TASK_COMM_LEN];
|
||
|
int prev_pid;
|
||
|
int prev_prio;
|
||
|
long prev_state; /* Arjan weeps. */
|
||
|
char next_comm[TASK_COMM_LEN];
|
||
|
int next_pid;
|
||
|
int next_prio;
|
||
|
};
|
||
|
|
||
|
static void c_state_start(int cpu, u64 timestamp, int state)
|
||
|
{
|
||
|
cpus_cstate_start_times[cpu] = timestamp;
|
||
|
cpus_cstate_state[cpu] = state;
|
||
|
}
|
||
|
|
||
|
static void c_state_end(int cpu, u64 timestamp)
|
||
|
{
|
||
|
struct power_event *pwr;
|
||
|
pwr = malloc(sizeof(struct power_event));
|
||
|
if (!pwr)
|
||
|
return;
|
||
|
memset(pwr, 0, sizeof(struct power_event));
|
||
|
|
||
|
pwr->state = cpus_cstate_state[cpu];
|
||
|
pwr->start_time = cpus_cstate_start_times[cpu];
|
||
|
pwr->end_time = timestamp;
|
||
|
pwr->cpu = cpu;
|
||
|
pwr->type = CSTATE;
|
||
|
pwr->next = power_events;
|
||
|
|
||
|
power_events = pwr;
|
||
|
}
|
||
|
|
||
|
static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
|
||
|
{
|
||
|
struct power_event *pwr;
|
||
|
pwr = malloc(sizeof(struct power_event));
|
||
|
|
||
|
if (new_freq > 8000000) /* detect invalid data */
|
||
|
return;
|
||
|
|
||
|
if (!pwr)
|
||
|
return;
|
||
|
memset(pwr, 0, sizeof(struct power_event));
|
||
|
|
||
|
pwr->state = cpus_pstate_state[cpu];
|
||
|
pwr->start_time = cpus_pstate_start_times[cpu];
|
||
|
pwr->end_time = timestamp;
|
||
|
pwr->cpu = cpu;
|
||
|
pwr->type = PSTATE;
|
||
|
pwr->next = power_events;
|
||
|
|
||
|
if (!pwr->start_time)
|
||
|
pwr->start_time = first_time;
|
||
|
|
||
|
power_events = pwr;
|
||
|
|
||
|
cpus_pstate_state[cpu] = new_freq;
|
||
|
cpus_pstate_start_times[cpu] = timestamp;
|
||
|
|
||
|
if ((u64)new_freq > max_freq)
|
||
|
max_freq = new_freq;
|
||
|
|
||
|
if (new_freq < min_freq || min_freq == 0)
|
||
|
min_freq = new_freq;
|
||
|
|
||
|
if (new_freq == max_freq - 1000)
|
||
|
turbo_frequency = max_freq;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
|
||
|
{
|
||
|
struct wake_event *we;
|
||
|
struct per_pid *p;
|
||
|
struct wakeup_entry *wake = (void *)te;
|
||
|
|
||
|
we = malloc(sizeof(struct wake_event));
|
||
|
if (!we)
|
||
|
return;
|
||
|
|
||
|
memset(we, 0, sizeof(struct wake_event));
|
||
|
we->time = timestamp;
|
||
|
we->waker = pid;
|
||
|
|
||
|
if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
|
||
|
we->waker = -1;
|
||
|
|
||
|
we->wakee = wake->pid;
|
||
|
we->next = wake_events;
|
||
|
wake_events = we;
|
||
|
p = find_create_pid(we->wakee);
|
||
|
|
||
|
if (p && p->current && p->current->state == TYPE_NONE) {
|
||
|
p->current->state_since = timestamp;
|
||
|
p->current->state = TYPE_WAITING;
|
||
|
}
|
||
|
if (p && p->current && p->current->state == TYPE_BLOCKED) {
|
||
|
pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
|
||
|
p->current->state_since = timestamp;
|
||
|
p->current->state = TYPE_WAITING;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
|
||
|
{
|
||
|
struct per_pid *p = NULL, *prev_p;
|
||
|
struct sched_switch *sw = (void *)te;
|
||
|
|
||
|
|
||
|
prev_p = find_create_pid(sw->prev_pid);
|
||
|
|
||
|
p = find_create_pid(sw->next_pid);
|
||
|
|
||
|
if (prev_p->current && prev_p->current->state != TYPE_NONE)
|
||
|
pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
|
||
|
if (p && p->current) {
|
||
|
if (p->current->state != TYPE_NONE)
|
||
|
pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
|
||
|
|
||
|
p->current->state_since = timestamp;
|
||
|
p->current->state = TYPE_RUNNING;
|
||
|
}
|
||
|
|
||
|
if (prev_p->current) {
|
||
|
prev_p->current->state = TYPE_NONE;
|
||
|
prev_p->current->state_since = timestamp;
|
||
|
if (sw->prev_state & 2)
|
||
|
prev_p->current->state = TYPE_BLOCKED;
|
||
|
if (sw->prev_state == 0)
|
||
|
prev_p->current->state = TYPE_WAITING;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static int
|
||
|
process_sample_event(event_t *event)
|
||
|
{
|
||
|
int cursor = 0;
|
||
|
u64 addr = 0;
|
||
|
u64 stamp = 0;
|
||
|
u32 cpu = 0;
|
||
|
u32 pid = 0;
|
||
|
struct trace_entry *te;
|
||
|
|
||
|
if (sample_type & PERF_SAMPLE_IP)
|
||
|
cursor++;
|
||
|
|
||
|
if (sample_type & PERF_SAMPLE_TID) {
|
||
|
pid = event->sample.array[cursor]>>32;
|
||
|
cursor++;
|
||
|
}
|
||
|
if (sample_type & PERF_SAMPLE_TIME) {
|
||
|
stamp = event->sample.array[cursor++];
|
||
|
|
||
|
if (!first_time || first_time > stamp)
|
||
|
first_time = stamp;
|
||
|
if (last_time < stamp)
|
||
|
last_time = stamp;
|
||
|
|
||
|
}
|
||
|
if (sample_type & PERF_SAMPLE_ADDR)
|
||
|
addr = event->sample.array[cursor++];
|
||
|
if (sample_type & PERF_SAMPLE_ID)
|
||
|
cursor++;
|
||
|
if (sample_type & PERF_SAMPLE_STREAM_ID)
|
||
|
cursor++;
|
||
|
if (sample_type & PERF_SAMPLE_CPU)
|
||
|
cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
|
||
|
if (sample_type & PERF_SAMPLE_PERIOD)
|
||
|
cursor++;
|
||
|
|
||
|
te = (void *)&event->sample.array[cursor];
|
||
|
|
||
|
if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
|
||
|
char *event_str;
|
||
|
struct power_entry *pe;
|
||
|
|
||
|
pe = (void *)te;
|
||
|
|
||
|
event_str = perf_header__find_event(te->type);
|
||
|
|
||
|
if (!event_str)
|
||
|
return 0;
|
||
|
|
||
|
if (strcmp(event_str, "power:power_start") == 0)
|
||
|
c_state_start(cpu, stamp, pe->value);
|
||
|
|
||
|
if (strcmp(event_str, "power:power_end") == 0)
|
||
|
c_state_end(cpu, stamp);
|
||
|
|
||
|
if (strcmp(event_str, "power:power_frequency") == 0)
|
||
|
p_state_change(cpu, stamp, pe->value);
|
||
|
|
||
|
if (strcmp(event_str, "sched:sched_wakeup") == 0)
|
||
|
sched_wakeup(cpu, stamp, pid, te);
|
||
|
|
||
|
if (strcmp(event_str, "sched:sched_switch") == 0)
|
||
|
sched_switch(cpu, stamp, te);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* After the last sample we need to wrap up the current C/P state
|
||
|
* and close out each CPU for these.
|
||
|
*/
|
||
|
static void end_sample_processing(void)
|
||
|
{
|
||
|
u64 cpu;
|
||
|
struct power_event *pwr;
|
||
|
|
||
|
for (cpu = 0; cpu <= numcpus; cpu++) {
|
||
|
pwr = malloc(sizeof(struct power_event));
|
||
|
if (!pwr)
|
||
|
return;
|
||
|
memset(pwr, 0, sizeof(struct power_event));
|
||
|
|
||
|
/* C state */
|
||
|
#if 0
|
||
|
pwr->state = cpus_cstate_state[cpu];
|
||
|
pwr->start_time = cpus_cstate_start_times[cpu];
|
||
|
pwr->end_time = last_time;
|
||
|
pwr->cpu = cpu;
|
||
|
pwr->type = CSTATE;
|
||
|
pwr->next = power_events;
|
||
|
|
||
|
power_events = pwr;
|
||
|
#endif
|
||
|
/* P state */
|
||
|
|
||
|
pwr = malloc(sizeof(struct power_event));
|
||
|
if (!pwr)
|
||
|
return;
|
||
|
memset(pwr, 0, sizeof(struct power_event));
|
||
|
|
||
|
pwr->state = cpus_pstate_state[cpu];
|
||
|
pwr->start_time = cpus_pstate_start_times[cpu];
|
||
|
pwr->end_time = last_time;
|
||
|
pwr->cpu = cpu;
|
||
|
pwr->type = PSTATE;
|
||
|
pwr->next = power_events;
|
||
|
|
||
|
if (!pwr->start_time)
|
||
|
pwr->start_time = first_time;
|
||
|
if (!pwr->state)
|
||
|
pwr->state = min_freq;
|
||
|
power_events = pwr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static u64 sample_time(event_t *event)
|
||
|
{
|
||
|
int cursor;
|
||
|
|
||
|
cursor = 0;
|
||
|
if (sample_type & PERF_SAMPLE_IP)
|
||
|
cursor++;
|
||
|
if (sample_type & PERF_SAMPLE_TID)
|
||
|
cursor++;
|
||
|
if (sample_type & PERF_SAMPLE_TIME)
|
||
|
return event->sample.array[cursor];
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* We first queue all events, sorted backwards by insertion.
|
||
|
* The order will get flipped later.
|
||
|
*/
|
||
|
static int
|
||
|
queue_sample_event(event_t *event)
|
||
|
{
|
||
|
struct sample_wrapper *copy, *prev;
|
||
|
int size;
|
||
|
|
||
|
size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
|
||
|
|
||
|
copy = malloc(size);
|
||
|
if (!copy)
|
||
|
return 1;
|
||
|
|
||
|
memset(copy, 0, size);
|
||
|
|
||
|
copy->next = NULL;
|
||
|
copy->timestamp = sample_time(event);
|
||
|
|
||
|
memcpy(©->data, event, event->sample.header.size);
|
||
|
|
||
|
/* insert in the right place in the list */
|
||
|
|
||
|
if (!all_samples) {
|
||
|
/* first sample ever */
|
||
|
all_samples = copy;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (all_samples->timestamp < copy->timestamp) {
|
||
|
/* insert at the head of the list */
|
||
|
copy->next = all_samples;
|
||
|
all_samples = copy;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
prev = all_samples;
|
||
|
while (prev->next) {
|
||
|
if (prev->next->timestamp < copy->timestamp) {
|
||
|
copy->next = prev->next;
|
||
|
prev->next = copy;
|
||
|
return 0;
|
||
|
}
|
||
|
prev = prev->next;
|
||
|
}
|
||
|
/* insert at the end of the list */
|
||
|
prev->next = copy;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void sort_queued_samples(void)
|
||
|
{
|
||
|
struct sample_wrapper *cursor, *next;
|
||
|
|
||
|
cursor = all_samples;
|
||
|
all_samples = NULL;
|
||
|
|
||
|
while (cursor) {
|
||
|
next = cursor->next;
|
||
|
cursor->next = all_samples;
|
||
|
all_samples = cursor;
|
||
|
cursor = next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sort the pid datastructure
|
||
|
*/
|
||
|
static void sort_pids(void)
|
||
|
{
|
||
|
struct per_pid *new_list, *p, *cursor, *prev;
|
||
|
/* sort by ppid first, then by pid, lowest to highest */
|
||
|
|
||
|
new_list = NULL;
|
||
|
|
||
|
while (all_data) {
|
||
|
p = all_data;
|
||
|
all_data = p->next;
|
||
|
p->next = NULL;
|
||
|
|
||
|
if (new_list == NULL) {
|
||
|
new_list = p;
|
||
|
p->next = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
prev = NULL;
|
||
|
cursor = new_list;
|
||
|
while (cursor) {
|
||
|
if (cursor->ppid > p->ppid ||
|
||
|
(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
|
||
|
/* must insert before */
|
||
|
if (prev) {
|
||
|
p->next = prev->next;
|
||
|
prev->next = p;
|
||
|
cursor = NULL;
|
||
|
continue;
|
||
|
} else {
|
||
|
p->next = new_list;
|
||
|
new_list = p;
|
||
|
cursor = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
prev = cursor;
|
||
|
cursor = cursor->next;
|
||
|
if (!cursor)
|
||
|
prev->next = p;
|
||
|
}
|
||
|
}
|
||
|
all_data = new_list;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void draw_c_p_states(void)
|
||
|
{
|
||
|
struct power_event *pwr;
|
||
|
pwr = power_events;
|
||
|
|
||
|
/*
|
||
|
* two pass drawing so that the P state bars are on top of the C state blocks
|
||
|
*/
|
||
|
while (pwr) {
|
||
|
if (pwr->type == CSTATE)
|
||
|
svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
|
||
|
pwr = pwr->next;
|
||
|
}
|
||
|
|
||
|
pwr = power_events;
|
||
|
while (pwr) {
|
||
|
if (pwr->type == PSTATE) {
|
||
|
if (!pwr->state)
|
||
|
pwr->state = min_freq;
|
||
|
svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
|
||
|
}
|
||
|
pwr = pwr->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void draw_wakeups(void)
|
||
|
{
|
||
|
struct wake_event *we;
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
|
||
|
we = wake_events;
|
||
|
while (we) {
|
||
|
int from = 0, to = 0;
|
||
|
char *task_from = NULL, *task_to = NULL;
|
||
|
|
||
|
/* locate the column of the waker and wakee */
|
||
|
p = all_data;
|
||
|
while (p) {
|
||
|
if (p->pid == we->waker || p->pid == we->wakee) {
|
||
|
c = p->all;
|
||
|
while (c) {
|
||
|
if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
|
||
|
if (p->pid == we->waker) {
|
||
|
from = c->Y;
|
||
|
task_from = strdup(c->comm);
|
||
|
}
|
||
|
if (p->pid == we->wakee) {
|
||
|
to = c->Y;
|
||
|
task_to = strdup(c->comm);
|
||
|
}
|
||
|
}
|
||
|
c = c->next;
|
||
|
}
|
||
|
c = p->all;
|
||
|
while (c) {
|
||
|
if (p->pid == we->waker && !from) {
|
||
|
from = c->Y;
|
||
|
task_from = strdup(c->comm);
|
||
|
}
|
||
|
if (p->pid == we->wakee && !to) {
|
||
|
to = c->Y;
|
||
|
task_to = strdup(c->comm);
|
||
|
}
|
||
|
c = c->next;
|
||
|
}
|
||
|
}
|
||
|
p = p->next;
|
||
|
}
|
||
|
|
||
|
if (!task_from) {
|
||
|
task_from = malloc(40);
|
||
|
sprintf(task_from, "[%i]", we->waker);
|
||
|
}
|
||
|
if (!task_to) {
|
||
|
task_to = malloc(40);
|
||
|
sprintf(task_to, "[%i]", we->wakee);
|
||
|
}
|
||
|
|
||
|
if (we->waker == -1)
|
||
|
svg_interrupt(we->time, to);
|
||
|
else if (from && to && abs(from - to) == 1)
|
||
|
svg_wakeline(we->time, from, to);
|
||
|
else
|
||
|
svg_partial_wakeline(we->time, from, task_from, to, task_to);
|
||
|
we = we->next;
|
||
|
|
||
|
free(task_from);
|
||
|
free(task_to);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void draw_cpu_usage(void)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
struct cpu_sample *sample;
|
||
|
p = all_data;
|
||
|
while (p) {
|
||
|
c = p->all;
|
||
|
while (c) {
|
||
|
sample = c->samples;
|
||
|
while (sample) {
|
||
|
if (sample->type == TYPE_RUNNING)
|
||
|
svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
|
||
|
|
||
|
sample = sample->next;
|
||
|
}
|
||
|
c = c->next;
|
||
|
}
|
||
|
p = p->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void draw_process_bars(void)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
struct cpu_sample *sample;
|
||
|
int Y = 0;
|
||
|
|
||
|
Y = 2 * numcpus + 2;
|
||
|
|
||
|
p = all_data;
|
||
|
while (p) {
|
||
|
c = p->all;
|
||
|
while (c) {
|
||
|
if (!c->display) {
|
||
|
c->Y = 0;
|
||
|
c = c->next;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
svg_box(Y, c->start_time, c->end_time, "process");
|
||
|
sample = c->samples;
|
||
|
while (sample) {
|
||
|
if (sample->type == TYPE_RUNNING)
|
||
|
svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
|
||
|
if (sample->type == TYPE_BLOCKED)
|
||
|
svg_box(Y, sample->start_time, sample->end_time, "blocked");
|
||
|
if (sample->type == TYPE_WAITING)
|
||
|
svg_waiting(Y, sample->start_time, sample->end_time);
|
||
|
sample = sample->next;
|
||
|
}
|
||
|
|
||
|
if (c->comm) {
|
||
|
char comm[256];
|
||
|
if (c->total_time > 5000000000) /* 5 seconds */
|
||
|
sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
|
||
|
else
|
||
|
sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
|
||
|
|
||
|
svg_text(Y, c->start_time, comm);
|
||
|
}
|
||
|
c->Y = Y;
|
||
|
Y++;
|
||
|
c = c->next;
|
||
|
}
|
||
|
p = p->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int determine_display_tasks(u64 threshold)
|
||
|
{
|
||
|
struct per_pid *p;
|
||
|
struct per_pidcomm *c;
|
||
|
int count = 0;
|
||
|
|
||
|
p = all_data;
|
||
|
while (p) {
|
||
|
p->display = 0;
|
||
|
if (p->start_time == 1)
|
||
|
p->start_time = first_time;
|
||
|
|
||
|
/* no exit marker, task kept running to the end */
|
||
|
if (p->end_time == 0)
|
||
|
p->end_time = last_time;
|
||
|
if (p->total_time >= threshold && !power_only)
|
||
|
p->display = 1;
|
||
|
|
||
|
c = p->all;
|
||
|
|
||
|
while (c) {
|
||
|
c->display = 0;
|
||
|
|
||
|
if (c->start_time == 1)
|
||
|
c->start_time = first_time;
|
||
|
|
||
|
if (c->total_time >= threshold && !power_only) {
|
||
|
c->display = 1;
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
if (c->end_time == 0)
|
||
|
c->end_time = last_time;
|
||
|
|
||
|
c = c->next;
|
||
|
}
|
||
|
p = p->next;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#define TIME_THRESH 10000000
|
||
|
|
||
|
static void write_svg_file(const char *filename)
|
||
|
{
|
||
|
u64 i;
|
||
|
int count;
|
||
|
|
||
|
numcpus++;
|
||
|
|
||
|
|
||
|
count = determine_display_tasks(TIME_THRESH);
|
||
|
|
||
|
/* We'd like to show at least 15 tasks; be less picky if we have fewer */
|
||
|
if (count < 15)
|
||
|
count = determine_display_tasks(TIME_THRESH / 10);
|
||
|
|
||
|
open_svg(filename, numcpus, count, first_time, last_time);
|
||
|
|
||
|
svg_time_grid();
|
||
|
svg_legenda();
|
||
|
|
||
|
for (i = 0; i < numcpus; i++)
|
||
|
svg_cpu_box(i, max_freq, turbo_frequency);
|
||
|
|
||
|
draw_cpu_usage();
|
||
|
draw_process_bars();
|
||
|
draw_c_p_states();
|
||
|
draw_wakeups();
|
||
|
|
||
|
svg_close();
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
process_event(event_t *event)
|
||
|
{
|
||
|
|
||
|
switch (event->header.type) {
|
||
|
|
||
|
case PERF_RECORD_COMM:
|
||
|
return process_comm_event(event);
|
||
|
case PERF_RECORD_FORK:
|
||
|
return process_fork_event(event);
|
||
|
case PERF_RECORD_EXIT:
|
||
|
return process_exit_event(event);
|
||
|
case PERF_RECORD_SAMPLE:
|
||
|
return queue_sample_event(event);
|
||
|
|
||
|
/*
|
||
|
* We dont process them right now but they are fine:
|
||
|
*/
|
||
|
case PERF_RECORD_MMAP:
|
||
|
case PERF_RECORD_THROTTLE:
|
||
|
case PERF_RECORD_UNTHROTTLE:
|
||
|
return 0;
|
||
|
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void process_samples(void)
|
||
|
{
|
||
|
struct sample_wrapper *cursor;
|
||
|
event_t *event;
|
||
|
|
||
|
sort_queued_samples();
|
||
|
|
||
|
cursor = all_samples;
|
||
|
while (cursor) {
|
||
|
event = (void *)&cursor->data;
|
||
|
cursor = cursor->next;
|
||
|
process_sample_event(event);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static int __cmd_timechart(void)
|
||
|
{
|
||
|
int ret, rc = EXIT_FAILURE;
|
||
|
unsigned long offset = 0;
|
||
|
unsigned long head, shift;
|
||
|
struct stat statbuf;
|
||
|
event_t *event;
|
||
|
uint32_t size;
|
||
|
char *buf;
|
||
|
int input;
|
||
|
|
||
|
input = open(input_name, O_RDONLY);
|
||
|
if (input < 0) {
|
||
|
fprintf(stderr, " failed to open file: %s", input_name);
|
||
|
if (!strcmp(input_name, "perf.data"))
|
||
|
fprintf(stderr, " (try 'perf record' first)");
|
||
|
fprintf(stderr, "\n");
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
ret = fstat(input, &statbuf);
|
||
|
if (ret < 0) {
|
||
|
perror("failed to stat file");
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
if (!statbuf.st_size) {
|
||
|
fprintf(stderr, "zero-sized file, nothing to do!\n");
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
header = perf_header__read(input);
|
||
|
head = header->data_offset;
|
||
|
|
||
|
sample_type = perf_header__sample_type(header);
|
||
|
|
||
|
shift = page_size * (head / page_size);
|
||
|
offset += shift;
|
||
|
head -= shift;
|
||
|
|
||
|
remap:
|
||
|
buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
|
||
|
MAP_SHARED, input, offset);
|
||
|
if (buf == MAP_FAILED) {
|
||
|
perror("failed to mmap file");
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
more:
|
||
|
event = (event_t *)(buf + head);
|
||
|
|
||
|
size = event->header.size;
|
||
|
if (!size)
|
||
|
size = 8;
|
||
|
|
||
|
if (head + event->header.size >= page_size * mmap_window) {
|
||
|
int ret2;
|
||
|
|
||
|
shift = page_size * (head / page_size);
|
||
|
|
||
|
ret2 = munmap(buf, page_size * mmap_window);
|
||
|
assert(ret2 == 0);
|
||
|
|
||
|
offset += shift;
|
||
|
head -= shift;
|
||
|
goto remap;
|
||
|
}
|
||
|
|
||
|
size = event->header.size;
|
||
|
|
||
|
if (!size || process_event(event) < 0) {
|
||
|
|
||
|
printf("%p [%p]: skipping unknown header type: %d\n",
|
||
|
(void *)(offset + head),
|
||
|
(void *)(long)(event->header.size),
|
||
|
event->header.type);
|
||
|
|
||
|
/*
|
||
|
* assume we lost track of the stream, check alignment, and
|
||
|
* increment a single u64 in the hope to catch on again 'soon'.
|
||
|
*/
|
||
|
|
||
|
if (unlikely(head & 7))
|
||
|
head &= ~7ULL;
|
||
|
|
||
|
size = 8;
|
||
|
}
|
||
|
|
||
|
head += size;
|
||
|
|
||
|
if (offset + head >= header->data_offset + header->data_size)
|
||
|
goto done;
|
||
|
|
||
|
if (offset + head < (unsigned long)statbuf.st_size)
|
||
|
goto more;
|
||
|
|
||
|
done:
|
||
|
rc = EXIT_SUCCESS;
|
||
|
close(input);
|
||
|
|
||
|
|
||
|
process_samples();
|
||
|
|
||
|
end_sample_processing();
|
||
|
|
||
|
sort_pids();
|
||
|
|
||
|
write_svg_file(output_name);
|
||
|
|
||
|
printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static const char * const timechart_usage[] = {
|
||
|
"perf timechart [<options>] {record}",
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const char *record_args[] = {
|
||
|
"record",
|
||
|
"-a",
|
||
|
"-R",
|
||
|
"-M",
|
||
|
"-f",
|
||
|
"-c", "1",
|
||
|
"-e", "power:power_start",
|
||
|
"-e", "power:power_end",
|
||
|
"-e", "power:power_frequency",
|
||
|
"-e", "sched:sched_wakeup",
|
||
|
"-e", "sched:sched_switch",
|
||
|
};
|
||
|
|
||
|
static int __cmd_record(int argc, const char **argv)
|
||
|
{
|
||
|
unsigned int rec_argc, i, j;
|
||
|
const char **rec_argv;
|
||
|
|
||
|
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
|
||
|
rec_argv = calloc(rec_argc + 1, sizeof(char *));
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(record_args); i++)
|
||
|
rec_argv[i] = strdup(record_args[i]);
|
||
|
|
||
|
for (j = 1; j < (unsigned int)argc; j++, i++)
|
||
|
rec_argv[i] = argv[j];
|
||
|
|
||
|
return cmd_record(i, rec_argv, NULL);
|
||
|
}
|
||
|
|
||
|
static const struct option options[] = {
|
||
|
OPT_STRING('i', "input", &input_name, "file",
|
||
|
"input file name"),
|
||
|
OPT_STRING('o', "output", &output_name, "file",
|
||
|
"output file name"),
|
||
|
OPT_INTEGER('w', "width", &svg_page_width,
|
||
|
"page width"),
|
||
|
OPT_BOOLEAN('p', "power-only", &power_only,
|
||
|
"output power data only"),
|
||
|
OPT_END()
|
||
|
};
|
||
|
|
||
|
|
||
|
int cmd_timechart(int argc, const char **argv, const char *prefix __used)
|
||
|
{
|
||
|
symbol__init();
|
||
|
|
||
|
page_size = getpagesize();
|
||
|
|
||
|
argc = parse_options(argc, argv, options, timechart_usage,
|
||
|
PARSE_OPT_STOP_AT_NON_OPTION);
|
||
|
|
||
|
if (argc && !strncmp(argv[0], "rec", 3))
|
||
|
return __cmd_record(argc, argv);
|
||
|
else if (argc)
|
||
|
usage_with_options(timechart_usage, options);
|
||
|
|
||
|
setup_pager();
|
||
|
|
||
|
return __cmd_timechart();
|
||
|
}
|