add idl4k kernel firmware version 1.13.0.105

This commit is contained in:
Jaroslav Kysela
2015-03-26 17:22:37 +01:00
parent 5194d2792e
commit e9070cdc77
31064 changed files with 12769984 additions and 0 deletions

View File

@@ -0,0 +1,232 @@
Documentation for dvb-usb-framework module and its devices
Idea behind the dvb-usb-framework
=================================
In March 2005 I got the new Twinhan USB2.0 DVB-T device. They provided specs and a firmware.
Quite keen I wanted to put the driver (with some quirks of course) into dibusb.
After reading some specs and doing some USB snooping, it realized, that the
dibusb-driver would be a complete mess afterwards. So I decided to do it in a
different way: With the help of a dvb-usb-framework.
The framework provides generic functions (mostly kernel API calls), such as:
- Transport Stream URB handling in conjunction with dvb-demux-feed-control
(bulk and isoc are supported)
- registering the device for the DVB-API
- registering an I2C-adapter if applicable
- remote-control/input-device handling
- firmware requesting and loading (currently just for the Cypress USB
controllers)
- other functions/methods which can be shared by several drivers (such as
functions for bulk-control-commands)
- TODO: a I2C-chunker. It creates device-specific chunks of register-accesses
depending on length of a register and the number of values that can be
multi-written and multi-read.
The source code of the particular DVB USB devices does just the communication
with the device via the bus. The connection between the DVB-API-functionality
is done via callbacks, assigned in a static device-description (struct
dvb_usb_device) each device-driver has to have.
For an example have a look in drivers/media/dvb/dvb-usb/vp7045*.
Objective is to migrate all the usb-devices (dibusb, cinergyT2, maybe the
ttusb; flexcop-usb already benefits from the generic flexcop-device) to use
the dvb-usb-lib.
TODO: dynamic enabling and disabling of the pid-filter in regard to number of
feeds requested.
Supported devices
========================
See the LinuxTV DVB Wiki at www.linuxtv.org for a complete list of
cards/drivers/firmwares:
http://www.linuxtv.org/wiki/index.php/DVB_USB
0. History & News:
2005-06-30 - added support for WideView WT-220U (Thanks to Steve Chang)
2005-05-30 - added basic isochronous support to the dvb-usb-framework
added support for Conexant Hybrid reference design and Nebula DigiTV USB
2005-04-17 - all dibusb devices ported to make use of the dvb-usb-framework
2005-04-02 - re-enabled and improved remote control code.
2005-03-31 - ported the Yakumo/Hama/Typhoon DVB-T USB2.0 device to dvb-usb.
2005-03-30 - first commit of the dvb-usb-module based on the dibusb-source. First device is a new driver for the
TwinhanDTV Alpha / MagicBox II USB2.0-only DVB-T device.
(change from dvb-dibusb to dvb-usb)
2005-03-28 - added support for the AVerMedia AverTV DVB-T USB2.0 device (Thanks to Glen Harris and Jiun-Kuei Jung, AVerMedia)
2005-03-14 - added support for the Typhoon/Yakumo/HAMA DVB-T mobile USB2.0
2005-02-11 - added support for the KWorld/ADSTech Instant DVB-T USB2.0. Thanks a lot to Joachim von Caron
2005-02-02 - added support for the Hauppauge Win-TV Nova-T USB2
2005-01-31 - distorted streaming is gone for USB1.1 devices
2005-01-13 - moved the mirrored pid_filter_table back to dvb-dibusb
- first almost working version for HanfTek UMT-010
- found out, that Yakumo/HAMA/Typhoon are predecessors of the HanfTek UMT-010
2005-01-10 - refactoring completed, now everything is very delightful
- tuner quirks for some weird devices (Artec T1 AN2235 device has sometimes a
Panasonic Tuner assembled). Tunerprobing implemented. Thanks a lot to Gunnar Wittich.
2004-12-29 - after several days of struggling around bug of no returning URBs fixed.
2004-12-26 - refactored the dibusb-driver, splitted into separate files
- i2c-probing enabled
2004-12-06 - possibility for demod i2c-address probing
- new usb IDs (Compro, Artec)
2004-11-23 - merged changes from DiB3000MC_ver2.1
- revised the debugging
- possibility to deliver the complete TS for USB2.0
2004-11-21 - first working version of the dib3000mc/p frontend driver.
2004-11-12 - added additional remote control keys. Thanks to Uwe Hanke.
2004-11-07 - added remote control support. Thanks to David Matthews.
2004-11-05 - added support for a new devices (Grandtec/Avermedia/Artec)
- merged my changes (for dib3000mb/dibusb) to the FE_REFACTORING, because it became HEAD
- moved transfer control (pid filter, fifo control) from usb driver to frontend, it seems
better settled there (added xfer_ops-struct)
- created a common files for frontends (mc/p/mb)
2004-09-28 - added support for a new device (Unkown, vendor ID is Hyper-Paltek)
2004-09-20 - added support for a new device (Compro DVB-U2000), thanks
to Amaury Demol for reporting
- changed usb TS transfer method (several urbs, stopping transfer
before setting a new pid)
2004-09-13 - added support for a new device (Artec T1 USB TVBOX), thanks
to Christian Motschke for reporting
2004-09-05 - released the dibusb device and dib3000mb-frontend driver
(old news for vp7041.c)
2004-07-15 - found out, by accident, that the device has a TUA6010XS for
PLL
2004-07-12 - figured out, that the driver should also work with the
CTS Portable (Chinese Television System)
2004-07-08 - firmware-extraction-2.422-problem solved, driver is now working
properly with firmware extracted from 2.422
- #if for 2.6.4 (dvb), compile issue
- changed firmware handling, see vp7041.txt sec 1.1
2004-07-02 - some tuner modifications, v0.1, cleanups, first public
2004-06-28 - now using the dvb_dmx_swfilter_packets, everything
runs fine now
2004-06-27 - able to watch and switching channels (pre-alpha)
- no section filtering yet
2004-06-06 - first TS received, but kernel oops :/
2004-05-14 - firmware loader is working
2004-05-11 - start writing the driver
1. How to use?
1.1. Firmware
Most of the USB drivers need to download a firmware to the device before start
working.
Have a look at the Wikipage for the DVB-USB-drivers to find out, which firmware
you need for your device:
http://www.linuxtv.org/wiki/index.php/DVB_USB
1.2. Compiling
Since the driver is in the linux kernel, activating the driver in
your favorite config-environment should sufficient. I recommend
to compile the driver as module. Hotplug does the rest.
If you use dvb-kernel enter the build-2.6 directory run 'make' and 'insmod.sh
load' afterwards.
1.3. Loading the drivers
Hotplug is able to load the driver, when it is needed (because you plugged
in the device).
If you want to enable debug output, you have to load the driver manually and
from withing the dvb-kernel cvs repository.
first have a look, which debug level are available:
modinfo dvb-usb
modinfo dvb-usb-vp7045
etc.
modprobe dvb-usb debug=<level>
modprobe dvb-usb-vp7045 debug=<level>
etc.
should do the trick.
When the driver is loaded successfully, the firmware file was in
the right place and the device is connected, the "Power"-LED should be
turned on.
At this point you should be able to start a dvb-capable application. I'm use
(t|s)zap, mplayer and dvbscan to test the basics. VDR-xine provides the
long-term test scenario.
2. Known problems and bugs
- Don't remove the USB device while running an DVB application, your system
will go crazy or die most likely.
2.1. Adding support for devices
TODO
2.2. USB1.1 Bandwidth limitation
A lot of the currently supported devices are USB1.1 and thus they have a
maximum bandwidth of about 5-6 MBit/s when connected to a USB2.0 hub.
This is not enough for receiving the complete transport stream of a
DVB-T channel (which is about 16 MBit/s). Normally this is not a
problem, if you only want to watch TV (this does not apply for HDTV),
but watching a channel while recording another channel on the same
frequency simply does not work very well. This applies to all USB1.1
DVB-T devices, not just the dvb-usb-devices)
The bug, where the TS is distorted by a heavy usage of the device is gone
definitely. All dvb-usb-devices I was using (Twinhan, Kworld, DiBcom) are
working like charm now with VDR. Sometimes I even was able to record a channel
and watch another one.
2.3. Comments
Patches, comments and suggestions are very very welcome.
3. Acknowledgements
Amaury Demol (ademol@dibcom.fr) and Francois Kanounnikoff from DiBcom for
providing specs, code and help, on which the dvb-dibusb, dib3000mb and
dib3000mc are based.
David Matthews for identifying a new device type (Artec T1 with AN2235)
and for extending dibusb with remote control event handling. Thank you.
Alex Woods for frequently answering question about usb and dvb
stuff, a big thank you.
Bernd Wagner for helping with huge bug reports and discussions.
Gunnar Wittich and Joachim von Caron for their trust for providing
root-shells on their machines to implement support for new devices.
Allan Third and Michael Hutchinson for their help to write the Nebula
digitv-driver.
Glen Harris for bringing up, that there is a new dibusb-device and Jiun-Kuei
Jung from AVerMedia who kindly provided a special firmware to get the device
up and running in Linux.
Jennifer Chen, Jeff and Jack from Twinhan for kindly supporting by
writing the vp7045-driver.
Steve Chang from WideView for providing information for new devices and
firmware files.
Michael Paxton for submitting remote control keymaps.
Some guys on the linux-dvb mailing list for encouraging me.
Peter Schildmann >peter.schildmann-nospam-at-web.de< for his
user-level firmware loader, which saves a lot of time
(when writing the vp7041 driver)
Ulf Hermenau for helping me out with traditional chinese.
André Smoktun and Christian Frömmel for supporting me with
hardware and listening to my problems very patiently.

View File

@@ -0,0 +1,301 @@
HOWTO: Get An Avermedia DVB-T working under Linux
______________________________________________
Table of Contents
Assumptions and Introduction
The Avermedia DVB-T
Getting the card going
Receiving DVB-T in Australia
Known Limitations
Further Update
Assumptions and Introduction
It is assumed that the reader understands the basic structure
of the Linux Kernel DVB drivers and the general principles of
Digital TV.
One significant difference between Digital TV and Analogue TV
that the unwary (like myself) should consider is that,
although the component structure of budget DVB-T cards are
substantially similar to Analogue TV cards, they function in
substantially different ways.
The purpose of an Analogue TV is to receive and display an
Analogue Television signal. An Analogue TV signal (otherwise
known as composite video) is an analogue encoding of a
sequence of image frames (25 per second) rasterised using an
interlacing technique. Interlacing takes two fields to
represent one frame. Computers today are at their best when
dealing with digital signals, not analogue signals and a
composite video signal is about as far removed from a digital
data stream as you can get. Therefore, an Analogue TV card for
a PC has the following purpose:
* Tune the receiver to receive a broadcast signal
* demodulate the broadcast signal
* demultiplex the analogue video signal and analogue audio
signal (note some countries employ a digital audio signal
embedded within the modulated composite analogue signal -
NICAM.)
* digitize the analogue video signal and make the resulting
datastream available to the data bus.
The digital datastream from an Analogue TV card is generated
by circuitry on the card and is often presented uncompressed.
For a PAL TV signal encoded at a resolution of 768x576 24-bit
color pixels over 25 frames per second - a fair amount of data
is generated and must be processed by the PC before it can be
displayed on the video monitor screen. Some Analogue TV cards
for PCs have onboard MPEG2 encoders which permit the raw
digital data stream to be presented to the PC in an encoded
and compressed form - similar to the form that is used in
Digital TV.
The purpose of a simple budget digital TV card (DVB-T,C or S)
is to simply:
* Tune the received to receive a broadcast signal.
* Extract the encoded digital datastream from the broadcast
signal.
* Make the encoded digital datastream (MPEG2) available to
the data bus.
The significant difference between the two is that the tuner
on the analogue TV card spits out an Analogue signal, whereas
the tuner on the digital TV card spits out a compressed
encoded digital datastream. As the signal is already
digitised, it is trivial to pass this datastream to the PC
databus with minimal additional processing and then extract
the digital video and audio datastreams passing them to the
appropriate software or hardware for decoding and viewing.
_________________________________________________________
The Avermedia DVB-T
The Avermedia DVB-T is a budget PCI DVB card. It has 3 inputs:
* RF Tuner Input
* Composite Video Input (RCA Jack)
* SVIDEO Input (Mini-DIN)
The RF Tuner Input is the input to the tuner module of the
card. The Tuner is otherwise known as the "Frontend" . The
Frontend of the Avermedia DVB-T is a Microtune 7202D. A timely
post to the linux-dvb mailing list ascertained that the
Microtune 7202D is supported by the sp887x driver which is
found in the dvb-hw CVS module.
The DVB-T card is based around the BT878 chip which is a very
common multimedia bridge and often found on Analogue TV cards.
There is no on-board MPEG2 decoder, which means that all MPEG2
decoding must be done in software, or if you have one, on an
MPEG2 hardware decoding card or chipset.
_________________________________________________________
Getting the card going
In order to fire up the card, it is necessary to load a number
of modules from the DVB driver set. Prior to this it will have
been necessary to download these drivers from the linuxtv CVS
server and compile them successfully.
Depending on the card's feature set, the Device Driver API for
DVB under Linux will expose some of the following device files
in the /dev tree:
* /dev/dvb/adapter0/audio0
* /dev/dvb/adapter0/ca0
* /dev/dvb/adapter0/demux0
* /dev/dvb/adapter0/dvr0
* /dev/dvb/adapter0/frontend0
* /dev/dvb/adapter0/net0
* /dev/dvb/adapter0/osd0
* /dev/dvb/adapter0/video0
The primary device nodes that we are interested in (at this
stage) for the Avermedia DVB-T are:
* /dev/dvb/adapter0/dvr0
* /dev/dvb/adapter0/frontend0
The dvr0 device node is used to read the MPEG2 Data Stream and
the frontend0 node is used to tune the frontend tuner module.
At this stage, it has not been able to ascertain the
functionality of the remaining device nodes in respect of the
Avermedia DVBT. However, full functionality in respect of
tuning, receiving and supplying the MPEG2 data stream is
possible with the currently available versions of the driver.
It may be possible that additional functionality is available
from the card (i.e. viewing the additional analogue inputs
that the card presents), but this has not been tested yet. If
I get around to this, I'll update the document with whatever I
find.
To power up the card, load the following modules in the
following order:
* modprobe bttv (normally loaded automatically)
* modprobe dvb-bt8xx (or place dvb-bt8xx in /etc/modules)
Insertion of these modules into the running kernel will
activate the appropriate DVB device nodes. It is then possible
to start accessing the card with utilities such as scan, tzap,
dvbstream etc.
The frontend module sp887x.o, requires an external firmware.
Please use the command "get_dvb_firmware sp887x" to download
it. Then copy it to /usr/lib/hotplug/firmware or /lib/firmware/
(depending on configuration of firmware hotplug).
Receiving DVB-T in Australia
I have no experience of DVB-T in other countries other than
Australia, so I will attempt to explain how it works here in
Melbourne and how this affects the configuration of the DVB-T
card.
The Digital Broadcasting Australia website has a Reception
locatortool which provides information on transponder channels
and frequencies. My local transmitter happens to be Mount
Dandenong.
The frequencies broadcast by Mount Dandenong are:
Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus.
Broadcaster Channel Frequency
ABC VHF 12 226.5 MHz
TEN VHF 11 219.5 MHz
NINE VHF 8 191.625 MHz
SEVEN VHF 6 177.5 MHz
SBS UHF 29 536.5 MHz
The Scan utility has a set of compiled-in defaults for various
countries and regions, but if they do not suit, or if you have
a pre-compiled scan binary, you can specify a data file on the
command line which contains the transponder frequencies. Here
is a sample file for the above channel transponders:
# Data file for DVB scan program
#
# C Frequency SymbolRate FEC QAM
# S Frequency Polarisation SymbolRate FEC
# T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier
T 226500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 191625000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 219500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 177500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 536500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
The defaults for the transponder frequency and other
modulation parameters were obtained from www.dba.org.au.
When Scan runs, it will output channels.conf information for
any channel's transponders which the card's frontend can lock
onto. (i.e. any whose signal is strong enough at your
antenna).
Here's my channels.conf file for anyone who's interested:
ABC HDTV:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64
:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:2307:0:560
ABC TV Melbourne:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_
4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:65
0:561
ABC TV 2:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64
:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:562
ABC TV 3:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64
:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:563
ABC TV 4:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64
:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:564
ABC DiG Radio:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:0:2311:56
6
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:158
5
TEN Digital 1:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1
586
TEN Digital 2:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1
587
TEN Digital 3:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1
588
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:158
9
TEN Digital 4:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1
590
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:159
1
TEN HD:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:T
RANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:0:1592
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:159
3
Nine Digital:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QA
M_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:513:660:10
72
Nine Digital HD:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2
:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:0:1
073
Nine Guide:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_
64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:670:1074
7 Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_6
4:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1328
7 Digital 1:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1329
7 Digital 2:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1330
7 Digital 3:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1331
7 HD Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QA
M_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:833:834:133
2
7 Program Guide:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3
:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:865:866:
1334
SBS HD:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:T
RANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:102:103:784
SBS DIGITAL 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:161:81:785
SBS DIGITAL 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:Q
AM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:162:83:786
SBS EPG:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:
TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:163:85:787
SBS RADIO 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:201:798
SBS RADIO 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM
_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:202:799
_________________________________________________________
Known Limitations
At present I can say with confidence that the frontend tunes
via /dev/dvb/adapter{x}/frontend0 and supplies an MPEG2 stream
via /dev/dvb/adapter{x}/dvr0. I have not tested the
functionality of any other part of the card yet. I will do so
over time and update this document.
There are some limitations in the i2c layer due to a returned
error message inconsistency. Although this generates errors in
dmesg and the system logs, it does not appear to affect the
ability of the frontend to function correctly.
_________________________________________________________
Further Update
dvbstream and VideoLAN Client on windows works a treat with
DVB, in fact this is currently serving as my main way of
viewing DVB-T at the moment. Additionally, VLC is happily
decoding HDTV signals, although the PC is dropping the odd
frame here and there - I assume due to processing capability -
as all the decoding is being done under windows in software.
Many thanks to Nigel Pearson for the updates to this document
since the recent revision of the driver.
February 14th 2006

View File

@@ -0,0 +1,98 @@
How to get the bt8xx cards working
==================================
1) General information
======================
This class of cards has a bt878a as the PCI interface, and require the bttv driver
for accessing the i2c bus and the gpio pins of the bt8xx chipset.
Please see Documentation/dvb/cards.txt => o Cards based on the Conexant Bt8xx PCI bridge:
Compiling kernel please enable:
a.)"Device drivers" => "Multimedia devices" => "Video For Linux" => "Enable Video for Linux API 1 (DEPRECATED)"
b.)"Device drivers" => "Multimedia devices" => "Video For Linux" => "Video Capture Adapters" => "BT848 Video For Linux"
c.)"Device drivers" => "Multimedia devices" => "Digital Video Broadcasting Devices" => "DVB for Linux" "DVB Core Support" "Bt8xx based PCI Cards"
Please use the following options with care as deselection of drivers which are in fact necessary
may result in DVB devices that cannot be tuned due to lack of driver support:
You can save RAM by deselecting every frontend module that your DVB card does not need.
First please remove the static dependency of DVB card drivers on all frontend modules for all possible card variants by enabling:
d.) "Device drivers" => "Multimedia devices" => "Digital Video Broadcasting Devices"
=> "DVB for Linux" "DVB Core Support" "Load and attach frontend modules as needed"
If you know the frontend driver that your card needs please enable:
e.)"Device drivers" => "Multimedia devices" => "Digital Video Broadcasting Devices"
=> "DVB for Linux" "DVB Core Support" "Customise DVB Frontends" => "Customise the frontend modules to build"
Then please select your card-specific frontend module.
2) Loading Modules
==================
Regular case: If the bttv driver detects a bt8xx-based DVB card, all frontend and backend modules will be loaded automatically.
Exceptions are:
- Old TwinHan DST cards or clones with or without CA slot and not containing an Eeprom.
People running udev please see Documentation/dvb/udev.txt.
In the following cases overriding the PCI type detection for dvb-bt8xx might be necessary:
2a) Running TwinHan and Clones
------------------------------
$ modprobe bttv card=113
$ modprobe dst
Useful parameters for verbosity level and debugging the dst module:
verbose=0: messages are disabled
1: only error messages are displayed
2: notifications are displayed
3: other useful messages are displayed
4: debug setting
dst_addons=0: card is a free to air (FTA) card only
0x20: card has a conditional access slot for scrambled channels
The autodetected values are determined by the cards' "response string".
In your logs see f. ex.: dst_get_device_id: Recognize [DSTMCI].
For bug reports please send in a complete log with verbose=4 activated.
Please also see Documentation/dvb/ci.txt.
2b) Running multiple cards
--------------------------
Examples of card ID's:
Pinnacle PCTV Sat: 94
Nebula Electronics Digi TV: 104
pcHDTV HD-2000 TV: 112
Twinhan DST and clones: 113
Avermedia AverTV DVB-T 771: 123
Avermedia AverTV DVB-T 761: 124
DViCO FusionHDTV DVB-T Lite: 128
DViCO FusionHDTV 5 Lite: 135
Notice: The order of the card ID should be uprising:
Example:
$ modprobe bttv card=113 card=135
For a full list of card ID's please see Documentation/video4linux/CARDLIST.bttv.
In case of further problems please subscribe and send questions to the mailing list: linux-dvb@linuxtv.org.
2c) Probing the cards with broken PCI subsystem ID
--------------------------------------------------
There are some TwinHan cards that the EEPROM has become corrupted for some
reason. The cards do not have correct PCI subsystem ID. But we can force
probing the cards with broken PCI subsystem ID
$ echo 109e 0878 $subvendor $subdevice > \
/sys/bus/pci/drivers/bt878/new_id
109e: PCI_VENDOR_ID_BROOKTREE
0878: PCI_DEVICE_ID_BROOKTREE_878
Authors: Richard Walker,
Jamie Honan,
Michael Hunold,
Manu Abraham,
Uwe Bugla,
Michael Krufky

View File

@@ -0,0 +1,122 @@
Hardware supported by the linuxtv.org DVB drivers
=================================================
Generally, the DVB hardware manufacturers frequently change the
frontends (i.e. tuner / demodulator units) used, usually without
changing the product name, revision number or specs. Some cards
are also available in versions with different frontends for
DVB-S/DVB-C/DVB-T. Thus the frontend drivers are listed separately.
Note 1: There is no guarantee that every frontend driver works
out of the box with every card, because of different wiring.
Note 2: The demodulator chips can be used with a variety of
tuner/PLL chips, and not all combinations are supported. Often
the demodulator and tuner/PLL chip are inside a metal box for
shielding, and the whole metal box has its own part number.
o Frontends drivers:
- dvb_dummy_fe: for testing...
DVB-S:
- ves1x93 : Alps BSRV2 (ves1893 demodulator) and dbox2 (ves1993)
- cx24110 : Conexant HM1221/HM1811 (cx24110 or cx24106 demod, cx24108 PLL)
- grundig_29504-491 : Grundig 29504-491 (Philips TDA8083 demodulator), tsa5522 PLL
- mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLLi, Technisat Sky2Pc with bios Rev. 2.3
- stv0299 : Alps BSRU6 (tsa5059 PLL), LG TDQB-S00x (tsa5059 PLL),
LG TDQF-S001F (sl1935 PLL), Philips SU1278 (tua6100 PLL),
Philips SU1278SH (tsa5059 PLL), Samsung TBMU24112IMB, Technisat Sky2Pc with bios Rev. 2.6
DVB-C:
- ves1820 : various (ves1820 demodulator, sp5659c or spXXXX PLL)
- at76c651 : Atmel AT76c651(B) with DAT7021 PLL
DVB-T:
- alps_tdlb7 : Alps TDLB7 (sp8870 demodulator, sp5659 PLL)
- alps_tdmb7 : Alps TDMB7 (cx22700 demodulator)
- grundig_29504-401 : Grundig 29504-401 (LSI L64781 demodulator), tsa5060 PLL
- tda1004x : Philips tda10045h (td1344 or tdm1316l PLL)
- nxt6000 : Alps TDME7 (MITEL SP5659 PLL), Alps TDED4 (TI ALP510 PLL),
Comtech DVBT-6k07 (SP5730 PLL)
(NxtWave Communications NXT6000 demodulator)
- sp887x : Microtune 7202D
- dib3000mb : DiBcom 3000-MB demodulator
DVB-S/C/T:
- dst : TwinHan DST Frontend
ATSC:
- nxt200x : Nxtwave NXT2002 & NXT2004
- or51211 : or51211 based (pcHDTV HD2000 card)
- or51132 : or51132 based (pcHDTV HD3000 card)
- bcm3510 : Broadcom BCM3510
- lgdt330x : LG Electronics DT3302 & DT3303
o Cards based on the Phillips saa7146 multimedia PCI bridge chip:
- TI AV7110 based cards (i.e. with hardware MPEG decoder):
- Siemens/Technotrend/Hauppauge PCI DVB card revision 1.1, 1.3, 1.5, 1.6, 2.1
(aka Hauppauge Nexus)
- "budget" cards (i.e. without hardware MPEG decoder):
- Technotrend Budget / Hauppauge WinTV-Nova PCI Cards
- SATELCO Multimedia PCI
- KNC1 DVB-S, Typhoon DVB-S, Terratec Cinergy 1200 DVB-S (no CI support)
- Typhoon DVB-S budget
- Fujitsu-Siemens Activy DVB-S budget card
o Cards based on the B2C2 Inc. FlexCopII/IIb/III:
- Technisat SkyStar2 PCI DVB card revision 2.3, 2.6B, 2.6C
o Cards based on the Conexant Bt8xx PCI bridge:
- Pinnacle PCTV Sat DVB
- Nebula Electronics DigiTV
- TwinHan DST
- Avermedia DVB-T
- ChainTech digitop DST-1000 DVB-S
- pcHDTV HD-2000 TV
- DViCO FusionHDTV DVB-T Lite
- DViCO FusionHDTV5 Lite
o Technotrend / Hauppauge DVB USB devices:
- Nova USB
- DEC 2000-T, 3000-S, 2540-T
o DiBcom DVB-T USB based devices:
- Twinhan VisionPlus VisionDTV USB-Ter DVB-T Device
- HAMA DVB-T USB device
- CTS Portable (Chinese Television System)
- KWorld V-Stream XPERT DTV DVB-T USB
- JetWay DTV DVB-T USB
- ADSTech Instant TV DVB-T USB
- Ultima Electronic/Artec T1 USB TVBOX (AN2135 and AN2235)
- Compro Videomate DVB-U2000 - DVB-T USB
- Grandtec USB DVB-T
- Avermedia AverTV DVBT USB
- DiBcom USB DVB-T reference device (non-public)
- Yakumo DVB-T mobile USB2.0
- DiBcom USB2.0 DVB-T reference device (non-public)
o Experimental support for the analog module of the Siemens DVB-C PCI card
o Cards based on the Conexant cx2388x PCI bridge:
- ADS Tech Instant TV DVB-T PCI
- ATI HDTV Wonder
- digitalnow DNTV Live! DVB-T
- DViCO FusionHDTV DVB-T1
- DViCO FusionHDTV DVB-T Plus
- DViCO FusionHDTV3 Gold-Q
- DViCO FusionHDTV3 Gold-T
- DViCO FusionHDTV5 Gold
- Hauppauge Nova-T DVB-T
- KWorld/VStream XPert DVB-T
- pcHDTV HD3000 HDTV
- TerraTec Cinergy 1400 DVB-T
- WinFast DTV1000-T
o Cards based on the Phillips saa7134 PCI bridge:
- Medion 7134
- Pinnacle PCTV 300i DVB-T + PAL
- LifeView FlyDVB-T DUO
- Typhoon DVB-T Duo Digital/Analog Cardbus
- Philips TOUGH DVB-T reference design
- Philips EUROPA V3 reference design
- Compro Videomate DVB-T300
- Compro Videomate DVB-T200
- AVerMedia AVerTVHD MCE A180

View File

@@ -0,0 +1,212 @@
* For the user
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NOTE: This document describes the usage of the high level CI API as
in accordance to the Linux DVB API. This is a not a documentation for the,
existing low level CI API.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To utilize the High Level CI capabilities,
(1*) This point is valid only for the Twinhan/clones
For the Twinhan/Twinhan clones, the dst_ca module handles the CI
hardware handling.This module is loaded automatically if a CI
(Common Interface, that holds the CAM (Conditional Access Module)
is detected.
(2) one requires a userspace application, ca_zap. This small userland
application is in charge of sending the descrambling related information
to the CAM.
This application requires the following to function properly as of now.
(a) Tune to a valid channel, with szap.
eg: $ szap -c channels.conf -r "TMC" -x
(b) a channels.conf containing a valid PMT PID
eg: TMC:11996:h:0:27500:278:512:650:321
here 278 is a valid PMT PID. the rest of the values are the
same ones that szap uses.
(c) after running a szap, you have to run ca_zap, for the
descrambler to function,
eg: $ ca_zap channels.conf "TMC"
(d) Hopefully enjoy your favourite subscribed channel as you do with
a FTA card.
(3) Currently ca_zap, and dst_test, both are meant for demonstration
purposes only, they can become full fledged applications if necessary.
* Cards that fall in this category
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At present the cards that fall in this category are the Twinhan and it's
clones, these cards are available as VVMER, Tomato, Hercules, Orange and
so on.
* CI modules that are supported
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The CI module support is largely dependant upon the firmware on the cards
Some cards do support almost all of the available CI modules. There is
nothing much that can be done in order to make additional CI modules
working with these cards.
Modules that have been tested by this driver at present are
(1) Irdeto 1 and 2 from SCM
(2) Viaccess from SCM
(3) Dragoncam
* The High level CI API
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For the programmer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With the High Level CI approach any new card with almost any random
architecture can be implemented with this style, the definitions
inside the switch statement can be easily adapted for any card, thereby
eliminating the need for any additional ioctls.
The disadvantage is that the driver/hardware has to manage the rest. For
the application programmer it would be as simple as sending/receiving an
array to/from the CI ioctls as defined in the Linux DVB API. No changes
have been made in the API to accommodate this feature.
* Why the need for another CI interface ?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is one of the most commonly asked question. Well a nice question.
Strictly speaking this is not a new interface.
The CI interface is defined in the DVB API in ca.h as
typedef struct ca_slot_info {
int num; /* slot number */
int type; /* CA interface this slot supports */
#define CA_CI 1 /* CI high level interface */
#define CA_CI_LINK 2 /* CI link layer level interface */
#define CA_CI_PHYS 4 /* CI physical layer level interface */
#define CA_DESCR 8 /* built-in descrambler */
#define CA_SC 128 /* simple smart card interface */
unsigned int flags;
#define CA_CI_MODULE_PRESENT 1 /* module (or card) inserted */
#define CA_CI_MODULE_READY 2
} ca_slot_info_t;
This CI interface follows the CI high level interface, which is not
implemented by most applications. Hence this area is revisited.
This CI interface is quite different in the case that it tries to
accommodate all other CI based devices, that fall into the other categories.
This means that this CI interface handles the EN50221 style tags in the
Application layer only and no session management is taken care of by the
application. The driver/hardware will take care of all that.
This interface is purely an EN50221 interface exchanging APDU's. This
means that no session management, link layer or a transport layer do
exist in this case in the application to driver communication. It is
as simple as that. The driver/hardware has to take care of that.
With this High Level CI interface, the interface can be defined with the
regular ioctls.
All these ioctls are also valid for the High level CI interface
#define CA_RESET _IO('o', 128)
#define CA_GET_CAP _IOR('o', 129, ca_caps_t)
#define CA_GET_SLOT_INFO _IOR('o', 130, ca_slot_info_t)
#define CA_GET_DESCR_INFO _IOR('o', 131, ca_descr_info_t)
#define CA_GET_MSG _IOR('o', 132, ca_msg_t)
#define CA_SEND_MSG _IOW('o', 133, ca_msg_t)
#define CA_SET_DESCR _IOW('o', 134, ca_descr_t)
#define CA_SET_PID _IOW('o', 135, ca_pid_t)
On querying the device, the device yields information thus
CA_GET_SLOT_INFO
----------------------------
Command = [info]
APP: Number=[1]
APP: Type=[1]
APP: flags=[1]
APP: CI High level interface
APP: CA/CI Module Present
CA_GET_CAP
----------------------------
Command = [caps]
APP: Slots=[1]
APP: Type=[1]
APP: Descrambler keys=[16]
APP: Type=[1]
CA_SEND_MSG
----------------------------
Descriptors(Program Level)=[ 09 06 06 04 05 50 ff f1]
Found CA descriptor @ program level
(20) ES type=[2] ES pid=[201] ES length =[0 (0x0)]
(25) ES type=[4] ES pid=[301] ES length =[0 (0x0)]
ca_message length is 25 (0x19) bytes
EN50221 CA MSG=[ 9f 80 32 19 03 01 2d d1 f0 08 01 09 06 06 04 05 50 ff f1 02 e0 c9 00 00 04 e1 2d 00 00]
Not all ioctl's are implemented in the driver from the API, the other
features of the hardware that cannot be implemented by the API are achieved
using the CA_GET_MSG and CA_SEND_MSG ioctls. An EN50221 style wrapper is
used to exchange the data to maintain compatibility with other hardware.
/* a message to/from a CI-CAM */
typedef struct ca_msg {
unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];
} ca_msg_t;
The flow of data can be described thus,
App (User)
-----
parse
|
|
v
en50221 APDU (package)
--------------------------------------
| | | High Level CI driver
| | |
| v |
| en50221 APDU (unpackage) |
| | |
| | |
| v |
| sanity checks |
| | |
| | |
| v |
| do (H/W dep) |
--------------------------------------
| Hardware
|
v
The High Level CI interface uses the EN50221 DVB standard, following a
standard ensures futureproofness.

View File

@@ -0,0 +1,96 @@
Thanks go to the following people for patches and contributions:
Michael Hunold <m.hunold@gmx.de>
for the initial saa7146 driver and it's recent overhaul
Christian Theiss
for his work on the initial Linux DVB driver
Marcus Metzler <mocm@metzlerbros.de>
Ralph Metzler <rjkm@metzlerbros.de>
for their continuing work on the DVB driver
Michael Holzt <kju@debian.org>
for his contributions to the dvb-net driver
Diego Picciani <d.picciani@novacomp.it>
for CyberLogin for Linux which allows logging onto EON
(in case you are wondering where CyberLogin is, EON changed its login
procedure and CyberLogin is no longer used.)
Martin Schaller <martin@smurf.franken.de>
for patching the cable card decoder driver
Klaus Schmidinger <Klaus.Schmidinger@cadsoft.de>
for various fixes regarding tuning, OSD and CI stuff and his work on VDR
Steve Brown <sbrown@cortland.com>
for his AFC kernel thread
Christoph Martin <martin@uni-mainz.de>
for his LIRC infrared handler
Andreas Oberritter <obi@linuxtv.org>
Dennis Noermann <dennis.noermann@noernet.de>
Felix Domke <tmbinc@elitedvb.net>
Florian Schirmer <jolt@tuxbox.org>
Ronny Strutz <3des@elitedvb.de>
Wolfram Joost <dbox2@frokaschwei.de>
...and all the other dbox2 people
for many bugfixes in the generic DVB Core, frontend drivers and
their work on the dbox2 port of the DVB driver
Oliver Endriss <o.endriss@gmx.de>
for many bugfixes
Andrew de Quincey <adq_dvb@lidskialf.net>
for the tda1004x frontend driver, and various bugfixes
Peter Schildmann <peter.schildmann@web.de>
for the driver for the Technisat SkyStar2 PCI DVB card
Vadim Catana <skystar@moldova.cc>
Roberto Ragusa <r.ragusa@libero.it>
Augusto Cardoso <augusto@carhil.net>
for all the work for the FlexCopII chipset by B2C2,Inc.
Davor Emard <emard@softhome.net>
for his work on the budget drivers, the demux code,
the module unloading problems, ...
Hans-Frieder Vogt <hfvogt@arcor.de>
for his work on calculating and checking the crc's for the
TechnoTrend/Hauppauge DEC driver firmware
Michael Dreher <michael@5dot1.de>
Andreas 'randy' Weinberger
for the support of the Fujitsu-Siemens Activy budget DVB-S
Kenneth Aafløy <ke-aa@frisurf.no>
for adding support for Typhoon DVB-S budget card
Ernst Peinlich <e.peinlich@inode.at>
for tuning/DiSEqC support for the DEC 3000-s
Peter Beutner <p.beutner@gmx.net>
for the IR code for the ttusb-dec driver
Wilson Michaels <wilsonmichaels@earthlink.net>
for the lgdt330x frontend driver, and various bugfixes
Michael Krufky <mkrufky@m1k.net>
for maintaining v4l/dvb inter-tree dependencies
Taylor Jacob <rtjacob@earthlink.net>
for the nxt2002 frontend driver
Jean-Francois Thibert <jeanfrancois@sagetv.com>
for the nxt2004 frontend driver
Kirk Lapray <kirk.lapray@gmail.com>
for the or51211 and or51132 frontend drivers, and
for merging the nxt2002 and nxt2004 modules into a
single nxt200x frontend driver.
(If you think you should be in this list, but you are not, drop a
line to the DVB mailing list)

View File

@@ -0,0 +1,159 @@
Some very frequently asked questions about linuxtv-dvb
1. The signal seems to die a few seconds after tuning.
It's not a bug, it's a feature. Because the frontends have
significant power requirements (and hence get very hot), they
are powered down if they are unused (i.e. if the frontend device
is closed). The dvb-core.o module parameter "dvb_shutdown_timeout"
allow you to change the timeout (default 5 seconds). Setting the
timeout to 0 disables the timeout feature.
2. How can I watch TV?
The driver distribution includes some simple utilities which
are mainly intended for testing and to demonstrate how the
DVB API works.
Depending on whether you have a DVB-S, DVB-C or DVB-T card, use
apps/szap/szap, czap or tzap. You must supply a channel list
in ~/.[sct]zap/channels.conf. If you are lucky you can just copy
one of the supplied channel lists, or you can create a new one
by running apps/scan/scan. If you run scan on an unknown network
you might have to supply some start data in apps/scan/initial.h.
If you have a card with a built-in hardware MPEG-decoder the
drivers create a video4linux device (/dev/v4l/video0) which
you can use to watch TV with any v4l application. xawtv is known
to work. Note that you cannot change channels with xawtv, you
have to zap using [sct]zap. If you want a nice application for
TV watching and record/playback, have a look at VDR.
If your card does not have a hardware MPEG decoder you need
a software MPEG decoder. Mplayer or xine are known to work.
Newsflash: MythTV also has DVB support now.
Note: Only very recent versions of Mplayer and xine can decode.
MPEG2 transport streams (TS) directly. Then, run
'[sct]zap channelname -r' in one xterm, and keep it running,
and start 'mplayer - < /dev/dvb/adapter0/dvr0' or
'xine stdin://mpeg2 < /dev/dvb/adapter0/dvr0' in a second xterm.
That's all far from perfect, but it seems no one has written
a nice DVB application which includes a builtin software MPEG
decoder yet.
Newsflash: Newest xine directly supports DVB. Just copy your
channels.conf to ~/.xine and start 'xine dvb://', or select
the DVB button in the xine GUI. Channel switching works using the
numpad pgup/pgdown (NP9 / NP3) keys to scroll through the channel osd
menu and pressing numpad-enter to switch to the selected channel.
Note: Older versions of xine and mplayer understand MPEG program
streams (PS) only, and can be used in conjunction with the
ts2ps tool from the Metzler Brother's dvb-mpegtools package.
3. Which other DVB applications exist?
http://www.cadsoft.de/people/kls/vdr/
Klaus Schmidinger's Video Disk Recorder
http://www.metzlerbros.org/dvb/
Metzler Bros. DVB development; alternate drivers and
DVB utilities, include dvb-mpegtools and tuxzap.
http://sourceforge.net/projects/dvbtools/
Dave Chapman's dvbtools package, including
dvbstream and dvbtune
http://www.linuxdvb.tv/
Henning Holtschneider's site with many interesting
links and docs
http://www.dbox2.info/
LinuxDVB on the dBox2
http://www.tuxbox.org/
http://cvs.tuxbox.org/
the TuxBox CVS many interesting DVB applications and the dBox2
DVB source
http://sourceforge.net/projects/dvbsak/
DVB Swiss Army Knife library and utilities
http://www.nenie.org/misc/mpsys/
MPSYS: a MPEG2 system library and tools
http://mplayerhq.hu/
mplayer
http://xine.sourceforge.net/
http://xinehq.de/
xine
http://www.mythtv.org/
MythTV - analog TV PVR, but now with DVB support, too
(with software MPEG decode)
http://dvbsnoop.sourceforge.net/
DVB sniffer program to monitor, analyze, debug, dump
or view dvb/mpeg/dsm-cc/mhp stream information (TS,
PES, SECTION)
4. Can't get a signal tuned correctly
If you are using a Technotrend/Hauppauge DVB-C card *without* analog
module, you might have to use module parameter adac=-1 (dvb-ttpci.o).
5. The dvb_net device doesn't give me any packets at all
Run tcpdump on the dvb0_0 interface. This sets the interface
into promiscous mode so it accepts any packets from the PID
you have configured with the dvbnet utility. Check if there
are any packets with the IP addr and MAC addr you have
configured with ifconfig.
If tcpdump doesn't give you any output, check the statistics
which ifconfig outputs. (Note: If the MAC address is wrong,
dvb_net won't get any input; thus you have to run tcpdump
before checking the statistics.) If there are no packets at
all then maybe the PID is wrong. If there are error packets,
then either the PID is wrong or the stream does not conform to
the MPE standard (EN 301 192, http://www.etsi.org/). You can
use e.g. dvbsnoop for debugging.
6. The dvb_net device doesn't give me any multicast packets
Check your routes if they include the multicast address range.
Additionally make sure that "source validation by reversed path
lookup" is disabled:
$ "echo 0 > /proc/sys/net/ipv4/conf/dvb0/rp_filter"
7. What the hell are all those modules that need to be loaded?
For a dvb-ttpci av7110 based full-featured card the following
modules are loaded:
- videodev: Video4Linux core module. This is the base module that
gives you access to the "analog" tv picture of the av7110 mpeg2
decoder.
- v4l2-common: common functions for Video4Linux-2 drivers
- v4l1-compat: backward compatibility layer for Video4Linux-1 legacy
applications
- dvb-core: DVB core module. This provides you with the
/dev/dvb/adapter entries
- saa7146: SAA7146 core driver. This is need to access any SAA7146
based card in your system.
- saa7146_vv: SAA7146 video and vbi functions. These are only needed
for full-featured cards.
- videobuf-dma-sg: capture helper module for the saa7146_vv driver. This
one is responsible to handle capture buffers.
- dvb-ttpci: The main driver for AV7110 based, full-featured
DVB-S/C/T cards
eof

View File

@@ -0,0 +1,674 @@
#!/usr/bin/perl
# DVB firmware extractor
#
# (c) 2004 Andrew de Quincey
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
use File::Temp qw/ tempdir /;
use IO::Handle;
@components = ( "sp8870", "sp887x", "tda10045", "tda10046",
"tda10046lifeview", "av7110", "dec2000t", "dec2540t",
"dec3000s", "vp7041", "dibusb", "nxt2002", "nxt2004",
"or51211", "or51132_qam", "or51132_vsb", "bluebird",
"opera1", "cx231xx", "cx18", "cx23885", "pvrusb2", "mpc718",
"af9015");
# Check args
syntax() if (scalar(@ARGV) != 1);
$cid = $ARGV[0];
# Do it!
for ($i=0; $i < scalar(@components); $i++) {
if ($cid eq $components[$i]) {
$outfile = eval($cid);
die $@ if $@;
print STDERR <<EOF;
Firmware(s) $outfile extracted successfully.
Now copy it(they) to either /usr/lib/hotplug/firmware or /lib/firmware
(depending on configuration of firmware hotplug).
EOF
exit(0);
}
}
# If we get here, it wasn't found
print STDERR "Unknown component \"$cid\"\n";
syntax();
# ---------------------------------------------------------------
# Firmware-specific extraction subroutines
sub sp8870 {
my $sourcefile = "tt_Premium_217g.zip";
my $url = "http://www.softwarepatch.pl/9999ccd06a4813cb827dbb0005071c71/$sourcefile";
my $hash = "53970ec17a538945a6d8cb608a7b3899";
my $outfile = "dvb-fe-sp8870.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/software/OEM/HE/App/boot/SC_MAIN.MC", $hash);
copy("$tmpdir/software/OEM/HE/App/boot/SC_MAIN.MC", $outfile);
$outfile;
}
sub sp887x {
my $sourcefile = "Dvbt1.3.57.6.zip";
my $url = "http://www.avermedia.com/software/$sourcefile";
my $cabfile = "DVBT Net Ver1.3.57.6/disk1/data1.cab";
my $hash = "237938d53a7f834c05c42b894ca68ac3";
my $outfile = "dvb-fe-sp887x.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
checkunshield();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
unshield("$tmpdir/$cabfile", $tmpdir);
verify("$tmpdir/ZEnglish/sc_main.mc", $hash);
copy("$tmpdir/ZEnglish/sc_main.mc", $outfile);
$outfile;
}
sub tda10045 {
my $sourcefile = "tt_budget_217g.zip";
my $url = "http://www.technotrend.de/new/217g/$sourcefile";
my $hash = "2105fd5bf37842fbcdfa4bfd58f3594a";
my $outfile = "dvb-fe-tda10045.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
extract("$tmpdir/software/OEM/PCI/App/ttlcdacc.dll", 0x37ef9, 30555, "$tmpdir/fwtmp");
verify("$tmpdir/fwtmp", $hash);
copy("$tmpdir/fwtmp", $outfile);
$outfile;
}
sub tda10046 {
my $sourcefile = "TT_PCI_2.19h_28_11_2006.zip";
my $url = "http://www.tt-download.com/download/updates/219/$sourcefile";
my $hash = "6a7e1e2f2644b162ff0502367553c72d";
my $outfile = "dvb-fe-tda10046.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
extract("$tmpdir/TT_PCI_2.19h_28_11_2006/software/OEM/PCI/App/ttlcdacc.dll", 0x65389, 24478, "$tmpdir/fwtmp");
verify("$tmpdir/fwtmp", $hash);
copy("$tmpdir/fwtmp", $outfile);
$outfile;
}
sub tda10046lifeview {
my $sourcefile = "7%5Cdrv_2.11.02.zip";
my $url = "http://www.lifeview.hk/dbimages/document/$sourcefile";
my $hash = "1ea24dee4eea8fe971686981f34fd2e0";
my $outfile = "dvb-fe-tda10046.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
extract("$tmpdir/LVHybrid.sys", 0x8b088, 24602, "$tmpdir/fwtmp");
verify("$tmpdir/fwtmp", $hash);
copy("$tmpdir/fwtmp", $outfile);
$outfile;
}
sub av7110 {
my $sourcefile = "dvb-ttpci-01.fw-261d";
my $url = "http://www.linuxtv.org/downloads/firmware/$sourcefile";
my $hash = "603431b6259715a8e88f376a53b64e2f";
my $outfile = "dvb-ttpci-01.fw";
checkstandard();
wgetfile($sourcefile, $url);
verify($sourcefile, $hash);
copy($sourcefile, $outfile);
$outfile;
}
sub dec2000t {
my $sourcefile = "dec217g.exe";
my $url = "http://hauppauge.lightpath.net/de/$sourcefile";
my $hash = "bd86f458cee4a8f0a8ce2d20c66215a9";
my $outfile = "dvb-ttusb-dec-2000t.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/software/OEM/STB/App/Boot/STB_PC_T.bin", $hash);
copy("$tmpdir/software/OEM/STB/App/Boot/STB_PC_T.bin", $outfile);
$outfile;
}
sub dec2540t {
my $sourcefile = "dec217g.exe";
my $url = "http://hauppauge.lightpath.net/de/$sourcefile";
my $hash = "53e58f4f5b5c2930beee74a7681fed92";
my $outfile = "dvb-ttusb-dec-2540t.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/software/OEM/STB/App/Boot/STB_PC_X.bin", $hash);
copy("$tmpdir/software/OEM/STB/App/Boot/STB_PC_X.bin", $outfile);
$outfile;
}
sub dec3000s {
my $sourcefile = "dec217g.exe";
my $url = "http://hauppauge.lightpath.net/de/$sourcefile";
my $hash = "b013ececea83f4d6d8d2a29ac7c1b448";
my $outfile = "dvb-ttusb-dec-3000s.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/software/OEM/STB/App/Boot/STB_PC_S.bin", $hash);
copy("$tmpdir/software/OEM/STB/App/Boot/STB_PC_S.bin", $outfile);
$outfile;
}
sub opera1{
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 0);
checkstandard();
my $fwfile1="dvb-usb-opera1-fpga-01.fw";
my $fwfile2="dvb-usb-opera-01.fw";
extract("2830SCap2.sys", 0x62e8, 55024, "$tmpdir/opera1-fpga.fw");
extract("2830SLoad2.sys",0x3178,0x3685-0x3178,"$tmpdir/fw1part1");
extract("2830SLoad2.sys",0x0980,0x3150-0x0980,"$tmpdir/fw1part2");
delzero("$tmpdir/fw1part1","$tmpdir/fw1part1-1");
delzero("$tmpdir/fw1part2","$tmpdir/fw1part2-1");
verify("$tmpdir/fw1part1-1","5e0909858fdf0b5b09ad48b9fe622e70");
verify("$tmpdir/fw1part2-1","d6e146f321427e931df2c6fcadac37a1");
verify("$tmpdir/opera1-fpga.fw","0f8133f5e9051f5f3c1928f7e5a1b07d");
my $RES1="\x01\x92\x7f\x00\x01\x00";
my $RES0="\x01\x92\x7f\x00\x00\x00";
my $DAT1="\x01\x00\xe6\x00\x01\x00";
my $DAT0="\x01\x00\xe6\x00\x00\x00";
open FW,">$tmpdir/opera.fw";
print FW "$RES1";
print FW "$DAT1";
print FW "$RES1";
print FW "$DAT1";
appendfile(FW,"$tmpdir/fw1part1-1");
print FW "$RES0";
print FW "$DAT0";
print FW "$RES1";
print FW "$DAT1";
appendfile(FW,"$tmpdir/fw1part2-1");
print FW "$RES1";
print FW "$DAT1";
print FW "$RES0";
print FW "$DAT0";
copy ("$tmpdir/opera1-fpga.fw",$fwfile1);
copy ("$tmpdir/opera.fw",$fwfile2);
$fwfile1.",".$fwfile2;
}
sub vp7041 {
my $sourcefile = "2.422.zip";
my $url = "http://www.twinhan.com/files/driver/USB-Ter/$sourcefile";
my $hash = "e88c9372d1f66609a3e7b072c53fbcfe";
my $outfile = "dvb-vp7041-2.422.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
extract("$tmpdir/VisionDTV/Drivers/Win2K&XP/UDTTload.sys", 12503, 3036, "$tmpdir/fwtmp1");
extract("$tmpdir/VisionDTV/Drivers/Win2K&XP/UDTTload.sys", 2207, 10274, "$tmpdir/fwtmp2");
my $CMD = "\000\001\000\222\177\000";
my $PAD = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
my ($FW);
open $FW, ">$tmpdir/fwtmp3";
print $FW "$CMD\001$PAD";
print $FW "$CMD\001$PAD";
appendfile($FW, "$tmpdir/fwtmp1");
print $FW "$CMD\000$PAD";
print $FW "$CMD\001$PAD";
appendfile($FW, "$tmpdir/fwtmp2");
print $FW "$CMD\001$PAD";
print $FW "$CMD\000$PAD";
close($FW);
verify("$tmpdir/fwtmp3", $hash);
copy("$tmpdir/fwtmp3", $outfile);
$outfile;
}
sub dibusb {
my $url = "http://www.linuxtv.org/downloads/firmware/dvb-usb-dibusb-5.0.0.11.fw";
my $outfile = "dvb-dibusb-5.0.0.11.fw";
my $hash = "fa490295a527360ca16dcdf3224ca243";
checkstandard();
wgetfile($outfile, $url);
verify($outfile,$hash);
$outfile;
}
sub nxt2002 {
my $sourcefile = "Technisat_DVB-PC_4_4_COMPACT.zip";
my $url = "http://www.bbti.us/download/windows/$sourcefile";
my $hash = "476befae8c7c1bb9648954060b1eec1f";
my $outfile = "dvb-fe-nxt2002.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/SkyNET.sys", $hash);
extract("$tmpdir/SkyNET.sys", 331624, 5908, $outfile);
$outfile;
}
sub nxt2004 {
my $sourcefile = "AVerTVHD_MCE_A180_Drv_v1.2.2.16.zip";
my $url = "http://www.avermedia-usa.com/support/Drivers/$sourcefile";
my $hash = "111cb885b1e009188346d72acfed024c";
my $outfile = "dvb-fe-nxt2004.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/3xHybrid.sys", $hash);
extract("$tmpdir/3xHybrid.sys", 465304, 9584, $outfile);
$outfile;
}
sub or51211 {
my $fwfile = "dvb-fe-or51211.fw";
my $url = "http://linuxtv.org/downloads/firmware/$fwfile";
my $hash = "d830949c771a289505bf9eafc225d491";
checkstandard();
wgetfile($fwfile, $url);
verify($fwfile, $hash);
$fwfile;
}
sub cx231xx {
my $fwfile = "v4l-cx231xx-avcore-01.fw";
my $url = "http://linuxtv.org/downloads/firmware/$fwfile";
my $hash = "7d3bb956dc9df0eafded2b56ba57cc42";
checkstandard();
wgetfile($fwfile, $url);
verify($fwfile, $hash);
$fwfile;
}
sub cx18 {
my $url = "http://linuxtv.org/downloads/firmware/";
my %files = (
'v4l-cx23418-apu.fw' => '588f081b562f5c653a3db1ad8f65939a',
'v4l-cx23418-cpu.fw' => 'b6c7ed64bc44b1a6e0840adaeac39d79',
'v4l-cx23418-dig.fw' => '95bc688d3e7599fd5800161e9971cc55',
);
checkstandard();
my $allfiles;
foreach my $fwfile (keys %files) {
wgetfile($fwfile, "$url/$fwfile");
verify($fwfile, $files{$fwfile});
$allfiles .= " $fwfile";
}
$allfiles =~ s/^\s//;
$allfiles;
}
sub mpc718 {
my $archive = 'Yuan MPC718 TV Tuner Card 2.13.10.1016.zip';
my $url = "ftp://ftp.work.acer-euro.com/desktop/aspire_idea510/vista/Drivers/$archive";
my $fwfile = "dvb-cx18-mpc718-mt352.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($archive, $url);
unzip($archive, $tmpdir);
my $sourcefile = "$tmpdir/Yuan MPC718 TV Tuner Card 2.13.10.1016/mpc718_32bit/yuanrap.sys";
my $found = 0;
open IN, '<', $sourcefile or die "Couldn't open $sourcefile to extract $fwfile data\n";
binmode IN;
open OUT, '>', $fwfile;
binmode OUT;
{
# Block scope because we change the line terminator variable $/
my $prevlen = 0;
my $currlen;
# Buried in the data segment are 3 runs of almost identical
# register-value pairs that end in 0x5d 0x01 which is a "TUNER GO"
# command for the MT352.
# Pull out the middle run (because it's easy) of register-value
# pairs to make the "firmware" file.
local $/ = "\x5d\x01"; # MT352 "TUNER GO"
while (<IN>) {
$currlen = length($_);
if ($prevlen == $currlen && $currlen <= 64) {
chop; chop; # Get rid of "TUNER GO"
s/^\0\0//; # get rid of leading 00 00 if it's there
printf OUT "$_";
$found = 1;
last;
}
$prevlen = $currlen;
}
}
close OUT;
close IN;
if (!$found) {
unlink $fwfile;
die "Couldn't find valid register-value sequence in $sourcefile for $fwfile\n";
}
$fwfile;
}
sub cx23885 {
my $url = "http://linuxtv.org/downloads/firmware/";
my %files = (
'v4l-cx23885-avcore-01.fw' => 'a9f8f5d901a7fb42f552e1ee6384f3bb',
'v4l-cx23885-enc.fw' => 'a9f8f5d901a7fb42f552e1ee6384f3bb',
);
checkstandard();
my $allfiles;
foreach my $fwfile (keys %files) {
wgetfile($fwfile, "$url/$fwfile");
verify($fwfile, $files{$fwfile});
$allfiles .= " $fwfile";
}
$allfiles =~ s/^\s//;
$allfiles;
}
sub pvrusb2 {
my $url = "http://linuxtv.org/downloads/firmware/";
my %files = (
'v4l-cx25840.fw' => 'dadb79e9904fc8af96e8111d9cb59320',
);
checkstandard();
my $allfiles;
foreach my $fwfile (keys %files) {
wgetfile($fwfile, "$url/$fwfile");
verify($fwfile, $files{$fwfile});
$allfiles .= " $fwfile";
}
$allfiles =~ s/^\s//;
$allfiles;
}
sub or51132_qam {
my $fwfile = "dvb-fe-or51132-qam.fw";
my $url = "http://linuxtv.org/downloads/firmware/$fwfile";
my $hash = "7702e8938612de46ccadfe9b413cb3b5";
checkstandard();
wgetfile($fwfile, $url);
verify($fwfile, $hash);
$fwfile;
}
sub or51132_vsb {
my $fwfile = "dvb-fe-or51132-vsb.fw";
my $url = "http://linuxtv.org/downloads/firmware/$fwfile";
my $hash = "c16208e02f36fc439a557ad4c613364a";
checkstandard();
wgetfile($fwfile, $url);
verify($fwfile, $hash);
$fwfile;
}
sub bluebird {
my $url = "http://www.linuxtv.org/download/dvb/firmware/dvb-usb-bluebird-01.fw";
my $outfile = "dvb-usb-bluebird-01.fw";
my $hash = "658397cb9eba9101af9031302671f49d";
checkstandard();
wgetfile($outfile, $url);
verify($outfile,$hash);
$outfile;
}
sub af9015 {
my $sourcefile = "download.ashx?file=57";
my $url = "http://www.ite.com.tw/EN/Services/$sourcefile";
my $hash = "ff5b096ed47c080870eacdab2de33ad6";
my $outfile = "dvb-usb-af9015.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
my $fwoffset = 0x22708;
my $fwlength = 18225;
my ($chunklength, $buf, $rcount);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/Driver/Files/AF15BDA.sys", $hash);
open INFILE, '<', "$tmpdir/Driver/Files/AF15BDA.sys";
open OUTFILE, '>', $outfile;
sysseek(INFILE, $fwoffset, SEEK_SET);
while($fwlength > 0) {
$chunklength = 55;
$chunklength = $fwlength if ($chunklength > $fwlength);
$rcount = sysread(INFILE, $buf, $chunklength);
die "Ran out of data\n" if ($rcount != $chunklength);
syswrite(OUTFILE, $buf);
sysread(INFILE, $buf, 8);
$fwlength -= $rcount + 8;
}
close OUTFILE;
close INFILE;
}
# ---------------------------------------------------------------
# Utilities
sub checkstandard {
if (system("which unzip > /dev/null 2>&1")) {
die "This firmware requires the unzip command - see ftp://ftp.info-zip.org/pub/infozip/UnZip.html\n";
}
if (system("which md5sum > /dev/null 2>&1")) {
die "This firmware requires the md5sum command - see http://www.gnu.org/software/coreutils/\n";
}
if (system("which wget > /dev/null 2>&1")) {
die "This firmware requires the wget command - see http://wget.sunsite.dk/\n";
}
}
sub checkunshield {
if (system("which unshield > /dev/null 2>&1")) {
die "This firmware requires the unshield command - see http://sourceforge.net/projects/synce/\n";
}
}
sub wgetfile {
my ($sourcefile, $url) = @_;
if (! -f $sourcefile) {
system("wget -O \"$sourcefile\" \"$url\"") and die "wget failed - unable to download firmware";
}
}
sub unzip {
my ($sourcefile, $todir) = @_;
$status = system("unzip -q -o -d \"$todir\" \"$sourcefile\" 2>/dev/null" );
if ((($status >> 8) > 2) || (($status & 0xff) != 0)) {
die ("unzip failed - unable to extract firmware");
}
}
sub unshield {
my ($sourcefile, $todir) = @_;
system("unshield x -d \"$todir\" \"$sourcefile\" > /dev/null" ) and die ("unshield failed - unable to extract firmware");
}
sub verify {
my ($filename, $hash) = @_;
my ($testhash);
open(CMD, "md5sum \"$filename\"|");
$testhash = <CMD>;
$testhash =~ /([a-zA-Z0-9]*)/;
$testhash = $1;
close CMD;
die "Hash of extracted file does not match!\n" if ($testhash ne $hash);
}
sub copy {
my ($from, $to) = @_;
system("cp -f \"$from\" \"$to\"") and die ("cp failed");
}
sub extract {
my ($infile, $offset, $length, $outfile) = @_;
my ($chunklength, $buf, $rcount);
open INFILE, "<$infile";
open OUTFILE, ">$outfile";
sysseek(INFILE, $offset, SEEK_SET);
while($length > 0) {
# Calc chunk size
$chunklength = 2048;
$chunklength = $length if ($chunklength > $length);
$rcount = sysread(INFILE, $buf, $chunklength);
die "Ran out of data\n" if ($rcount != $chunklength);
syswrite(OUTFILE, $buf);
$length -= $rcount;
}
close INFILE;
close OUTFILE;
}
sub appendfile {
my ($FH, $infile) = @_;
my ($buf);
open INFILE, "<$infile";
while(1) {
$rcount = sysread(INFILE, $buf, 2048);
last if ($rcount == 0);
print $FH $buf;
}
close(INFILE);
}
sub delzero{
my ($infile,$outfile) =@_;
open INFILE,"<$infile";
open OUTFILE,">$outfile";
while (1){
$rcount=sysread(INFILE,$buf,22);
$len=ord(substr($buf,0,1));
print OUTFILE substr($buf,0,1);
print OUTFILE substr($buf,2,$len+3);
last if ($rcount<1);
printf OUTFILE "%c",0;
#print $len." ".length($buf)."\n";
}
close(INFILE);
close(OUTFILE);
}
sub syntax() {
print STDERR "syntax: get_dvb_firmware <component>\n";
print STDERR "Supported components:\n";
for($i=0; $i < scalar(@components); $i++) {
print STDERR "\t" . $components[$i] . "\n";
}
exit(1);
}

View File

@@ -0,0 +1,27 @@
To extract the firmware for the Opera DVB-S1 USB-Box
you need to copy the files:
2830SCap2.sys
2830SLoad2.sys
from the windriver disk into this directory.
Then run
./get_dvb_firware opera1
and after that you have 2 files:
dvb-usb-opera-01.fw
dvb-usb-opera1-fpga-01.fw
in here.
Copy them into /lib/firmware/ .
After that the driver can load the firmware
(if you have enabled firmware loading
in kernel config and have hotplug running).
Marco Gittler <g.marco@freenet.de>

View File

@@ -0,0 +1,62 @@
Linux Digital Video Broadcast (DVB) subsystem
=============================================
The main development site and CVS repository for these
drivers is http://linuxtv.org/.
The developer mailing list linux-dvb is also hosted there,
see http://linuxtv.org/lists.php. Please check
the archive http://linuxtv.org/pipermail/linux-dvb/
and the Wiki http://linuxtv.org/wiki/
before asking newbie questions on the list.
API documentation, utilities and test/example programs
are available as part of the old driver package for Linux 2.4
(linuxtv-dvb-1.0.x.tar.gz), or from CVS (module DVB).
We plan to split this into separate packages, but it's not
been done yet.
http://linuxtv.org/downloads/
What's inside this directory:
"avermedia.txt"
contains detailed information about the
Avermedia DVB-T cards. See also "bt8xx.txt".
"bt8xx.txt"
contains detailed information about the
various bt8xx based "budget" DVB cards.
"cards.txt"
contains a list of supported hardware.
"ci.txt"
contains detailed information about the
CI module as part from TwinHan cards and Clones.
"contributors.txt"
is the who-is-who of DVB development.
"faq.txt"
contains frequently asked questions and their answers.
"get_dvb_firmware"
script to download and extract firmware for those devices
that require it.
"ttusb-dec.txt"
contains detailed information about the
TT DEC2000/DEC3000 USB DVB hardware.
"udev.txt"
how to get DVB and udev up and running.
"README.dvb-usb"
contains detailed information about the DVB USB cards.
"README.flexcop"
contains detailed information about the
Technisat- and Flexcop B2C2 drivers.
Good luck and have fun!

View File

@@ -0,0 +1,78 @@
How to set up the Technisat/B2C2 Flexcop devices
================================================
1) Find out what device you have
================================
Important Notice: The driver does NOT support Technisat USB 2 devices!
First start your linux box with a shipped kernel:
lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip /
Technisat SkyStar2 DVB card (rev 02)
dmesg | grep frontend may show you for example:
DVB: registering frontend 0 (Conexant CX24123/CX24109)...
2) Kernel compilation:
======================
If the Flexcop / Technisat is the only DVB / TV / Radio device in your box
get rid of unnecessary modules and check this one:
"Multimedia support" => "Customise analog and hybrid tuner modules to build"
In this directory uncheck every driver which is activated there
(except "Simple tuner support" for ATSC 3rd generation only -> see case 9 please).
Then please activate:
2a) Main module part:
"Multimedia support" => "DVB/ATSC adapters"
=> "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
a.) => "Technisat/B2C2 Air/Sky/Cable2PC PCI" (PCI card) or
b.) => "Technisat/B2C2 Air/Sky/Cable2PC USB" (USB 1.1 adapter)
and for troubleshooting purposes:
c.) => "Enable debug for the B2C2 FlexCop drivers"
2b) Frontend / Tuner / Demodulator module part:
"Multimedia support" => "DVB/ATSC adapters"
=> "Customise the frontend modules to build" "Customise DVB frontends" =>
1.) SkyStar DVB-S Revision 2.3:
a.) => "Zarlink VP310/MT312/ZL10313 based"
b.) => "Generic I2C PLL based tuners"
2.) SkyStar DVB-S Revision 2.6:
a.) => "ST STV0299 based"
b.) => "Generic I2C PLL based tuners"
3.) SkyStar DVB-S Revision 2.7:
a.) => "Samsung S5H1420 based"
b.) => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
c.) => "ISL6421 SEC controller"
4.) SkyStar DVB-S Revision 2.8:
a.) => "Conexant CX24123 based"
b.) => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
c.) => "ISL6421 SEC controller"
5.) AirStar DVB-T card:
a.) => "Zarlink MT352 based"
b.) => "Generic I2C PLL based tuners"
6.) CableStar DVB-C card:
a.) => "ST STV0297 based"
b.) => "Generic I2C PLL based tuners"
7.) AirStar ATSC card 1st generation:
a.) => "Broadcom BCM3510"
8.) AirStar ATSC card 2nd generation:
a.) => "NxtWave Communications NXT2002/NXT2004 based"
b.) => "Generic I2C PLL based tuners"
9.) AirStar ATSC card 3rd generation:
a.) => "LG Electronics LGDT3302/LGDT3303 based"
b.) "Multimedia support" => "Customise analog and hybrid tuner modules to build"
=> "Simple tuner support"
Author: Uwe Bugla <uwe.bugla@gmx.de> August 2009

View File

@@ -0,0 +1,45 @@
TechnoTrend/Hauppauge DEC USB Driver
====================================
Driver Status
-------------
Supported:
DEC2000-t
DEC2450-t
DEC3000-s
Linux Kernels 2.4 and 2.6
Video Streaming
Audio Streaming
Section Filters
Channel Zapping
Hotplug firmware loader under 2.6 kernels
To Do:
Tuner status information
DVB network interface
Streaming video PC->DEC
Conax support for 2450-t
Getting the Firmware
--------------------
To download the firmware, use the following commands:
"get_dvb_firmware dec2000t"
"get_dvb_firmware dec2540t"
"get_dvb_firmware dec3000s"
Compilation Notes for 2.4 kernels
---------------------------------
For 2.4 kernels the firmware for the DECs is compiled into the driver itself.
Copy the three files downloaded above into the build-2.4 directory.
Hotplug Firmware Loading for 2.6 kernels
----------------------------------------
For 2.6 kernels the firmware is loaded at the point that the driver module is
loaded. See linux/Documentation/dvb/firmware.txt for more information.
Copy the three files downloaded above into the /usr/lib/hotplug/firmware or
/lib/firmware directory (depending on configuration of firmware hotplug).

View File

@@ -0,0 +1,46 @@
The DVB subsystem currently registers to the sysfs subsystem using the
"class_simple" interface.
This means that only the basic informations like module loading parameters
are presented through sysfs. Other things that might be interesting are
currently *not* available.
Nevertheless it's now possible to add proper udev rules so that the
DVB device nodes are created automatically.
We assume that you have udev already up and running and that have been
creating the DVB device nodes manually up to now due to the missing sysfs
support.
0. Don't forget to disable your current method of creating the
device nodes manually.
1. Unfortunately, you'll need a helper script to transform the kernel
sysfs device name into the well known dvb adapter / device naming scheme.
The script should be called "dvb.sh" and should be placed into a script
dir where udev can execute it, most likely /etc/udev/scripts/
So, create a new file /etc/udev/scripts/dvb.sh and add the following:
------------------------------schnipp------------------------------------------------
#!/bin/sh
/bin/echo $1 | /bin/sed -e 's,dvb\([0-9]\)\.\([^0-9]*\)\([0-9]\),dvb/adapter\1/\2\3,'
------------------------------schnipp------------------------------------------------
Don't forget to make the script executable with "chmod".
1. You need to create a proper udev rule that will create the device nodes
like you know them. All real distributions out there scan the /etc/udev/rules.d
directory for rule files. The main udev configuration file /etc/udev/udev.conf
will tell you the directory where the rules are, most likely it's /etc/udev/rules.d/
Create a new rule file in that directory called "dvb.rule" and add the following line:
------------------------------schnipp------------------------------------------------
KERNEL="dvb*", PROGRAM="/etc/udev/scripts/dvb.sh %k", NAME="%c"
------------------------------schnipp------------------------------------------------
If you want more control over the device nodes (for example a special group membership)
have a look at "man udev".
For every device that registers to the sysfs subsystem with a "dvb" prefix,
the helper script /etc/udev/scripts/dvb.sh is invoked, which will then
create the proper device node in your /dev/ directory.