add idl4k kernel firmware version 1.13.0.105

This commit is contained in:
Jaroslav Kysela
2015-03-26 17:22:37 +01:00
parent 5194d2792e
commit e9070cdc77
31064 changed files with 12769984 additions and 0 deletions

View File

@@ -0,0 +1,96 @@
Kernel driver eeprom
====================
Supported chips:
* Any EEPROM chip in the designated address range
Prefix: 'eeprom'
Addresses scanned: I2C 0x50 - 0x57
Datasheets: Publicly available from:
Atmel (www.atmel.com),
Catalyst (www.catsemi.com),
Fairchild (www.fairchildsemi.com),
Microchip (www.microchip.com),
Philips (www.semiconductor.philips.com),
Rohm (www.rohm.com),
ST (www.st.com),
Xicor (www.xicor.com),
and others.
Chip Size (bits) Address
24C01 1K 0x50 (shadows at 0x51 - 0x57)
24C01A 1K 0x50 - 0x57 (Typical device on DIMMs)
24C02 2K 0x50 - 0x57
24C04 4K 0x50, 0x52, 0x54, 0x56
(additional data at 0x51, 0x53, 0x55, 0x57)
24C08 8K 0x50, 0x54 (additional data at 0x51, 0x52,
0x53, 0x55, 0x56, 0x57)
24C16 16K 0x50 (additional data at 0x51 - 0x57)
Sony 2K 0x57
Atmel 34C02B 2K 0x50 - 0x57, SW write protect at 0x30-37
Catalyst 34FC02 2K 0x50 - 0x57, SW write protect at 0x30-37
Catalyst 34RC02 2K 0x50 - 0x57, SW write protect at 0x30-37
Fairchild 34W02 2K 0x50 - 0x57, SW write protect at 0x30-37
Microchip 24AA52 2K 0x50 - 0x57, SW write protect at 0x30-37
ST M34C02 2K 0x50 - 0x57, SW write protect at 0x30-37
Authors:
Frodo Looijaard <frodol@dds.nl>,
Philip Edelbrock <phil@netroedge.com>,
Jean Delvare <khali@linux-fr.org>,
Greg Kroah-Hartman <greg@kroah.com>,
IBM Corp.
Description
-----------
This is a simple EEPROM module meant to enable reading the first 256 bytes
of an EEPROM (on a SDRAM DIMM for example). However, it will access serial
EEPROMs on any I2C adapter. The supported devices are generically called
24Cxx, and are listed above; however the numbering for these
industry-standard devices may vary by manufacturer.
This module was a programming exercise to get used to the new project
organization laid out by Frodo, but it should be at least completely
effective for decoding the contents of EEPROMs on DIMMs.
DIMMS will typically contain a 24C01A or 24C02, or the 34C02 variants.
The other devices will not be found on a DIMM because they respond to more
than one address.
DDC Monitors may contain any device. Often a 24C01, which responds to all 8
addresses, is found.
Recent Sony Vaio laptops have an EEPROM at 0x57. We couldn't get the
specification, so it is guess work and far from being complete.
The Microchip 24AA52/24LCS52, ST M34C02, and others support an additional
software write protect register at 0x30 - 0x37 (0x20 less than the memory
location). The chip responds to "write quick" detection at this address but
does not respond to byte reads. If this register is present, the lower 128
bytes of the memory array are not write protected. Any byte data write to
this address will write protect the memory array permanently, and the
device will no longer respond at the 0x30-37 address. The eeprom driver
does not support this register.
Lacking functionality:
* Full support for larger devices (24C04, 24C08, 24C16). These are not
typically found on a PC. These devices will appear as separate devices at
multiple addresses.
* Support for really large devices (24C32, 24C64, 24C128, 24C256, 24C512).
These devices require two-byte address fields and are not supported.
* Enable Writing. Again, no technical reason why not, but making it easy
to change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
to disable the DIMMs (potentially preventing the computer from booting)
until the values are restored somehow.
Use:
After inserting the module (and any other required SMBus/i2c modules), you
should have some EEPROM directories in /sys/bus/i2c/devices/* of names such
as "0-0050". Inside each of these is a series of files, the eeprom file
contains the binary data from EEPROM.

View File

@@ -0,0 +1,62 @@
Kernel driver isl29003
=====================
Supported chips:
* Intersil ISL29003
Prefix: 'isl29003'
Addresses scanned: none
Datasheet:
http://www.intersil.com/data/fn/fn7464.pdf
Author: Daniel Mack <daniel@caiaq.de>
Description
-----------
The ISL29003 is an integrated light sensor with a 16-bit integrating type
ADC, I2C user programmable lux range select for optimized counts/lux, and
I2C multi-function control and monitoring capabilities. The internal ADC
provides 16-bit resolution while rejecting 50Hz and 60Hz flicker caused by
artificial light sources.
The driver allows to set the lux range, the bit resolution, the operational
mode (see below) and the power state of device and can read the current lux
value, of course.
Detection
---------
The ISL29003 does not have an ID register which could be used to identify
it, so the detection routine will just try to read from the configured I2C
addess and consider the device to be present as soon as it ACKs the
transfer.
Sysfs entries
-------------
range:
0: 0 lux to 1000 lux (default)
1: 0 lux to 4000 lux
2: 0 lux to 16,000 lux
3: 0 lux to 64,000 lux
resolution:
0: 2^16 cycles (default)
1: 2^12 cycles
2: 2^8 cycles
3: 2^4 cycles
mode:
0: diode1's current (unsigned 16bit) (default)
1: diode1's current (unsigned 16bit)
2: difference between diodes (l1 - l2, signed 15bit)
power_state:
0: device is disabled (default)
1: device is enabled
lux (read only):
returns the value from the last sensor reading

View File

@@ -0,0 +1,110 @@
Kernel driver max6875
=====================
Supported chips:
* Maxim MAX6874, MAX6875
Prefix: 'max6875'
Addresses scanned: None (see below)
Datasheet:
http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
Author: Ben Gardner <bgardner@wabtec.com>
Description
-----------
The Maxim MAX6875 is an EEPROM-programmable power-supply sequencer/supervisor.
It provides timed outputs that can be used as a watchdog, if properly wired.
It also provides 512 bytes of user EEPROM.
At reset, the MAX6875 reads the configuration EEPROM into its configuration
registers. The chip then begins to operate according to the values in the
registers.
The Maxim MAX6874 is a similar, mostly compatible device, with more intputs
and outputs:
vin gpi vout
MAX6874 6 4 8
MAX6875 4 3 5
See the datasheet for more information.
Sysfs entries
-------------
eeprom - 512 bytes of user-defined EEPROM space.
General Remarks
---------------
Valid addresses for the MAX6875 are 0x50 and 0x52.
Valid addresses for the MAX6874 are 0x50, 0x52, 0x54 and 0x56.
The driver does not probe any address, so you explicitly instantiate the
devices.
Example:
$ modprobe max6875
$ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device
The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
addresses. For example, for address 0x50, it also reserves 0x51.
The even-address instance is called 'max6875', the odd one is 'dummy'.
Programming the chip using i2c-dev
----------------------------------
Use the i2c-dev interface to access and program the chips.
Reads and writes are performed differently depending on the address range.
The configuration registers are at addresses 0x00 - 0x45.
Use i2c_smbus_write_byte_data() to write a register and
i2c_smbus_read_byte_data() to read a register.
The command is the register number.
Examples:
To write a 1 to register 0x45:
i2c_smbus_write_byte_data(fd, 0x45, 1);
To read register 0x45:
value = i2c_smbus_read_byte_data(fd, 0x45);
The configuration EEPROM is at addresses 0x8000 - 0x8045.
The user EEPROM is at addresses 0x8100 - 0x82ff.
Use i2c_smbus_write_word_data() to write a byte to EEPROM.
The command is the upper byte of the address: 0x80, 0x81, or 0x82.
The data word is the lower part of the address or'd with data << 8.
cmd = address >> 8;
val = (address & 0xff) | (data << 8);
Example:
To write 0x5a to address 0x8003:
i2c_smbus_write_word_data(fd, 0x80, 0x5a03);
Reading data from the EEPROM is a little more complicated.
Use i2c_smbus_write_byte_data() to set the read address and then
i2c_smbus_read_byte() or i2c_smbus_read_i2c_block_data() to read the data.
Example:
To read data starting at offset 0x8100, first set the address:
i2c_smbus_write_byte_data(fd, 0x81, 0x00);
And then read the data
value = i2c_smbus_read_byte(fd);
or
count = i2c_smbus_read_i2c_block_data(fd, 0x84, 16, buffer);
The block read should read 16 bytes.
0x84 is the block read command.
See the datasheet for more details.