add idl4k kernel firmware version 1.13.0.105

This commit is contained in:
Jaroslav Kysela
2015-03-26 17:22:37 +01:00
parent 5194d2792e
commit e9070cdc77
31064 changed files with 12769984 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
#
# linux/arch/arm/vfp/Makefile
#
# Copyright (C) 2001 ARM Limited
#
# EXTRA_CFLAGS := -DDEBUG
# EXTRA_AFLAGS := -DDEBUG
KBUILD_AFLAGS :=$(KBUILD_AFLAGS:-msoft-float=-Wa,-mfpu=softvfp+vfp)
LDFLAGS +=--no-warn-mismatch
obj-y += vfp.o
vfp-$(CONFIG_VFP) += vfpmodule.o entry.o vfphw.o vfpsingle.o vfpdouble.o

View File

@@ -0,0 +1,69 @@
/*
* linux/arch/arm/vfp/entry.S
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Basic entry code, called from the kernel's undefined instruction trap.
* r0 = faulted instruction
* r5 = faulted PC+4
* r9 = successful return
* r10 = thread_info structure
* lr = failure return
*/
#include <asm/thread_info.h>
#include <asm/vfpmacros.h>
#include "../kernel/entry-header.S"
ENTRY(do_vfp)
#ifdef CONFIG_PREEMPT
ldr r4, [r10, #TI_PREEMPT] @ get preempt count
add r11, r4, #1 @ increment it
str r11, [r10, #TI_PREEMPT]
#endif
enable_irq
ldr r4, .LCvfp
ldr r11, [r10, #TI_CPU] @ CPU number
add r10, r10, #TI_VFPSTATE @ r10 = workspace
ldr pc, [r4] @ call VFP entry point
ENDPROC(do_vfp)
ENTRY(vfp_null_entry)
#ifdef CONFIG_PREEMPT
get_thread_info r10
ldr r4, [r10, #TI_PREEMPT] @ get preempt count
sub r11, r4, #1 @ decrement it
str r11, [r10, #TI_PREEMPT]
#endif
mov pc, lr
ENDPROC(vfp_null_entry)
.align 2
.LCvfp:
.word vfp_vector
@ This code is called if the VFP does not exist. It needs to flag the
@ failure to the VFP initialisation code.
__INIT
ENTRY(vfp_testing_entry)
#ifdef CONFIG_PREEMPT
get_thread_info r10
ldr r4, [r10, #TI_PREEMPT] @ get preempt count
sub r11, r4, #1 @ decrement it
str r11, [r10, #TI_PREEMPT]
#endif
ldr r0, VFP_arch_address
str r5, [r0] @ known non-zero value
mov pc, r9 @ we have handled the fault
ENDPROC(vfp_testing_entry)
.align 2
VFP_arch_address:
.word VFP_arch
__FINIT

380
kernel/arch/arm/vfp/vfp.h Normal file
View File

@@ -0,0 +1,380 @@
/*
* linux/arch/arm/vfp/vfp.h
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
{
if (shift) {
if (shift < 32)
val = val >> shift | ((val << (32 - shift)) != 0);
else
val = val != 0;
}
return val;
}
static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
{
if (shift) {
if (shift < 64)
val = val >> shift | ((val << (64 - shift)) != 0);
else
val = val != 0;
}
return val;
}
static inline u32 vfp_hi64to32jamming(u64 val)
{
u32 v;
asm(
"cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
"movcc %0, %R1\n\t"
"orrcs %0, %R1, #1"
: "=r" (v) : "r" (val) : "cc");
return v;
}
static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
{
asm( "adds %Q0, %Q2, %Q4\n\t"
"adcs %R0, %R2, %R4\n\t"
"adcs %Q1, %Q3, %Q5\n\t"
"adc %R1, %R3, %R5"
: "=r" (nl), "=r" (nh)
: "0" (nl), "1" (nh), "r" (ml), "r" (mh)
: "cc");
*resh = nh;
*resl = nl;
}
static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
{
asm( "subs %Q0, %Q2, %Q4\n\t"
"sbcs %R0, %R2, %R4\n\t"
"sbcs %Q1, %Q3, %Q5\n\t"
"sbc %R1, %R3, %R5\n\t"
: "=r" (nl), "=r" (nh)
: "0" (nl), "1" (nh), "r" (ml), "r" (mh)
: "cc");
*resh = nh;
*resl = nl;
}
static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
{
u32 nh, nl, mh, ml;
u64 rh, rma, rmb, rl;
nl = n;
ml = m;
rl = (u64)nl * ml;
nh = n >> 32;
rma = (u64)nh * ml;
mh = m >> 32;
rmb = (u64)nl * mh;
rma += rmb;
rh = (u64)nh * mh;
rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
rma <<= 32;
rl += rma;
rh += (rl < rma);
*resl = rl;
*resh = rh;
}
static inline void shift64left(u64 *resh, u64 *resl, u64 n)
{
*resh = n >> 63;
*resl = n << 1;
}
static inline u64 vfp_hi64multiply64(u64 n, u64 m)
{
u64 rh, rl;
mul64to128(&rh, &rl, n, m);
return rh | (rl != 0);
}
static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
{
u64 mh, ml, remh, reml, termh, terml, z;
if (nh >= m)
return ~0ULL;
mh = m >> 32;
if (mh << 32 <= nh) {
z = 0xffffffff00000000ULL;
} else {
z = nh;
do_div(z, mh);
z <<= 32;
}
mul64to128(&termh, &terml, m, z);
sub128(&remh, &reml, nh, nl, termh, terml);
ml = m << 32;
while ((s64)remh < 0) {
z -= 0x100000000ULL;
add128(&remh, &reml, remh, reml, mh, ml);
}
remh = (remh << 32) | (reml >> 32);
if (mh << 32 <= remh) {
z |= 0xffffffff;
} else {
do_div(remh, mh);
z |= remh;
}
return z;
}
/*
* Operations on unpacked elements
*/
#define vfp_sign_negate(sign) (sign ^ 0x8000)
/*
* Single-precision
*/
struct vfp_single {
s16 exponent;
u16 sign;
u32 significand;
};
extern s32 vfp_get_float(unsigned int reg);
extern void vfp_put_float(s32 val, unsigned int reg);
/*
* VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
* VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
* VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
* which are not propagated to the float upon packing.
*/
#define VFP_SINGLE_MANTISSA_BITS (23)
#define VFP_SINGLE_EXPONENT_BITS (8)
#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
/*
* The bit in an unpacked float which indicates that it is a quiet NaN
*/
#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
/*
* Operations on packed single-precision numbers
*/
#define vfp_single_packed_sign(v) ((v) & 0x80000000)
#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
/*
* Unpack a single-precision float. Note that this returns the magnitude
* of the single-precision float mantissa with the 1. if necessary,
* aligned to bit 30.
*/
static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
{
u32 significand;
s->sign = vfp_single_packed_sign(val) >> 16,
s->exponent = vfp_single_packed_exponent(val);
significand = (u32) val;
significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
if (s->exponent && s->exponent != 255)
significand |= 0x40000000;
s->significand = significand;
}
/*
* Re-pack a single-precision float. This assumes that the float is
* already normalised such that the MSB is bit 30, _not_ bit 31.
*/
static inline s32 vfp_single_pack(struct vfp_single *s)
{
u32 val;
val = (s->sign << 16) +
(s->exponent << VFP_SINGLE_MANTISSA_BITS) +
(s->significand >> VFP_SINGLE_LOW_BITS);
return (s32)val;
}
#define VFP_NUMBER (1<<0)
#define VFP_ZERO (1<<1)
#define VFP_DENORMAL (1<<2)
#define VFP_INFINITY (1<<3)
#define VFP_NAN (1<<4)
#define VFP_NAN_SIGNAL (1<<5)
#define VFP_QNAN (VFP_NAN)
#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
static inline int vfp_single_type(struct vfp_single *s)
{
int type = VFP_NUMBER;
if (s->exponent == 255) {
if (s->significand == 0)
type = VFP_INFINITY;
else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
type = VFP_QNAN;
else
type = VFP_SNAN;
} else if (s->exponent == 0) {
if (s->significand == 0)
type |= VFP_ZERO;
else
type |= VFP_DENORMAL;
}
return type;
}
#ifndef DEBUG
#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
#else
u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
#endif
/*
* Double-precision
*/
struct vfp_double {
s16 exponent;
u16 sign;
u64 significand;
};
/*
* VFP_REG_ZERO is a special register number for vfp_get_double
* which returns (double)0.0. This is useful for the compare with
* zero instructions.
*/
#ifdef CONFIG_VFPv3
#define VFP_REG_ZERO 32
#else
#define VFP_REG_ZERO 16
#endif
extern u64 vfp_get_double(unsigned int reg);
extern void vfp_put_double(u64 val, unsigned int reg);
#define VFP_DOUBLE_MANTISSA_BITS (52)
#define VFP_DOUBLE_EXPONENT_BITS (11)
#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
/*
* The bit in an unpacked double which indicates that it is a quiet NaN
*/
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
/*
* Operations on packed single-precision numbers
*/
#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
/*
* Unpack a double-precision float. Note that this returns the magnitude
* of the double-precision float mantissa with the 1. if necessary,
* aligned to bit 62.
*/
static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
{
u64 significand;
s->sign = vfp_double_packed_sign(val) >> 48;
s->exponent = vfp_double_packed_exponent(val);
significand = (u64) val;
significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
if (s->exponent && s->exponent != 2047)
significand |= (1ULL << 62);
s->significand = significand;
}
/*
* Re-pack a double-precision float. This assumes that the float is
* already normalised such that the MSB is bit 30, _not_ bit 31.
*/
static inline s64 vfp_double_pack(struct vfp_double *s)
{
u64 val;
val = ((u64)s->sign << 48) +
((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
(s->significand >> VFP_DOUBLE_LOW_BITS);
return (s64)val;
}
static inline int vfp_double_type(struct vfp_double *s)
{
int type = VFP_NUMBER;
if (s->exponent == 2047) {
if (s->significand == 0)
type = VFP_INFINITY;
else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
type = VFP_QNAN;
else
type = VFP_SNAN;
} else if (s->exponent == 0) {
if (s->significand == 0)
type |= VFP_ZERO;
else
type |= VFP_DENORMAL;
}
return type;
}
u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
/*
* A special flag to tell the normalisation code not to normalise.
*/
#define VFP_NAN_FLAG 0x100
/*
* A bit pattern used to indicate the initial (unset) value of the
* exception mask, in case nothing handles an instruction. This
* doesn't include the NAN flag, which get masked out before
* we check for an error.
*/
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
/*
* A flag to tell vfp instruction type.
* OP_SCALAR - this operation always operates in scalar mode
* OP_SD - the instruction exceptionally writes to a single precision result.
* OP_DD - the instruction exceptionally writes to a double precision result.
* OP_SM - the instruction exceptionally reads from a single precision operand.
*/
#define OP_SCALAR (1 << 0)
#define OP_SD (1 << 1)
#define OP_DD (1 << 1)
#define OP_SM (1 << 2)
struct op {
u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
u32 flags;
};
extern void vfp_save_state(void *location, u32 fpexc);

File diff suppressed because it is too large Load Diff

285
kernel/arch/arm/vfp/vfphw.S Normal file
View File

@@ -0,0 +1,285 @@
/*
* linux/arch/arm/vfp/vfphw.S
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This code is called from the kernel's undefined instruction trap.
* r9 holds the return address for successful handling.
* lr holds the return address for unrecognised instructions.
* r10 points at the start of the private FP workspace in the thread structure
* sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
*/
#include <asm/thread_info.h>
#include <asm/vfpmacros.h>
#include "../kernel/entry-header.S"
.macro DBGSTR, str
#ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr}
add r0, pc, #4
bl printk
b 1f
.asciz "<7>VFP: \str\n"
.balign 4
1: ldmfd sp!, {r0-r3, ip, lr}
#endif
.endm
.macro DBGSTR1, str, arg
#ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr}
mov r1, \arg
add r0, pc, #4
bl printk
b 1f
.asciz "<7>VFP: \str\n"
.balign 4
1: ldmfd sp!, {r0-r3, ip, lr}
#endif
.endm
.macro DBGSTR3, str, arg1, arg2, arg3
#ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr}
mov r3, \arg3
mov r2, \arg2
mov r1, \arg1
add r0, pc, #4
bl printk
b 1f
.asciz "<7>VFP: \str\n"
.balign 4
1: ldmfd sp!, {r0-r3, ip, lr}
#endif
.endm
@ VFP hardware support entry point.
@
@ r0 = faulted instruction
@ r2 = faulted PC+4
@ r9 = successful return
@ r10 = vfp_state union
@ r11 = CPU number
@ lr = failure return
ENTRY(vfp_support_entry)
DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
VFPFMRX r1, FPEXC @ Is the VFP enabled?
DBGSTR1 "fpexc %08x", r1
tst r1, #FPEXC_EN
bne look_for_VFP_exceptions @ VFP is already enabled
DBGSTR1 "enable %x", r10
ldr r3, last_VFP_context_address
orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
ldr r4, [r3, r11, lsl #2] @ last_VFP_context pointer
bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
cmp r4, r10
beq check_for_exception @ we are returning to the same
@ process, so the registers are
@ still there. In this case, we do
@ not want to drop a pending exception.
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
@ exceptions, so we can get at the
@ rest of it
#ifndef CONFIG_SMP
@ Save out the current registers to the old thread state
@ No need for SMP since this is not done lazily
DBGSTR1 "save old state %p", r4
cmp r4, #0
beq no_old_VFP_process
VFPFSTMIA r4, r5 @ save the working registers
VFPFMRX r5, FPSCR @ current status
#ifndef CONFIG_CPU_FEROCEON
tst r1, #FPEXC_EX @ is there additional state to save?
beq 1f
VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
beq 1f
VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
1:
#endif
stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
@ and point r4 at the word at the
@ start of the register dump
#endif
no_old_VFP_process:
DBGSTR1 "load state %p", r10
str r10, [r3, r11, lsl #2] @ update the last_VFP_context pointer
@ Load the saved state back into the VFP
VFPFLDMIA r10, r5 @ reload the working registers while
@ FPEXC is in a safe state
ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
#ifndef CONFIG_CPU_FEROCEON
tst r1, #FPEXC_EX @ is there additional state to restore?
beq 1f
VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set)
tst r1, #FPEXC_FP2V @ is there an FPINST2 to write?
beq 1f
VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present)
1:
#endif
VFPFMXR FPSCR, r5 @ restore status
check_for_exception:
tst r1, #FPEXC_EX
bne process_exception @ might as well handle the pending
@ exception before retrying branch
@ out before setting an FPEXC that
@ stops us reading stuff
VFPFMXR FPEXC, r1 @ restore FPEXC last
sub r2, r2, #4
str r2, [sp, #S_PC] @ retry the instruction
#ifdef CONFIG_PREEMPT
get_thread_info r10
ldr r4, [r10, #TI_PREEMPT] @ get preempt count
sub r11, r4, #1 @ decrement it
str r11, [r10, #TI_PREEMPT]
#endif
mov pc, r9 @ we think we have handled things
look_for_VFP_exceptions:
@ Check for synchronous or asynchronous exception
tst r1, #FPEXC_EX | FPEXC_DEX
bne process_exception
@ On some implementations of the VFP subarch 1, setting FPSCR.IXE
@ causes all the CDP instructions to be bounced synchronously without
@ setting the FPEXC.EX bit
VFPFMRX r5, FPSCR
tst r5, #FPSCR_IXE
bne process_exception
@ Fall into hand on to next handler - appropriate coproc instr
@ not recognised by VFP
DBGSTR "not VFP"
#ifdef CONFIG_PREEMPT
get_thread_info r10
ldr r4, [r10, #TI_PREEMPT] @ get preempt count
sub r11, r4, #1 @ decrement it
str r11, [r10, #TI_PREEMPT]
#endif
mov pc, lr
process_exception:
DBGSTR "bounce"
mov r2, sp @ nothing stacked - regdump is at TOS
mov lr, r9 @ setup for a return to the user code.
@ Now call the C code to package up the bounce to the support code
@ r0 holds the trigger instruction
@ r1 holds the FPEXC value
@ r2 pointer to register dump
b VFP_bounce @ we have handled this - the support
@ code will raise an exception if
@ required. If not, the user code will
@ retry the faulted instruction
ENDPROC(vfp_support_entry)
ENTRY(vfp_save_state)
@ Save the current VFP state
@ r0 - save location
@ r1 - FPEXC
DBGSTR1 "save VFP state %p", r0
VFPFSTMIA r0, r2 @ save the working registers
VFPFMRX r2, FPSCR @ current status
tst r1, #FPEXC_EX @ is there additional state to save?
beq 1f
VFPFMRX r3, FPINST @ FPINST (only if FPEXC.EX is set)
tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
beq 1f
VFPFMRX r12, FPINST2 @ FPINST2 if needed (and present)
1:
stmia r0, {r1, r2, r3, r12} @ save FPEXC, FPSCR, FPINST, FPINST2
mov pc, lr
ENDPROC(vfp_save_state)
last_VFP_context_address:
.word last_VFP_context
.macro tbl_branch, base, tmp, shift
#ifdef CONFIG_THUMB2_KERNEL
adr \tmp, 1f
add \tmp, \tmp, \base, lsl \shift
mov pc, \tmp
#else
add pc, pc, \base, lsl \shift
mov r0, r0
#endif
1:
.endm
ENTRY(vfp_get_float)
tbl_branch r0, r3, #3
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: mrc p10, 0, r0, c\dr, c0, 0 @ fmrs r0, s0
mov pc, lr
.org 1b + 8
1: mrc p10, 0, r0, c\dr, c0, 4 @ fmrs r0, s1
mov pc, lr
.org 1b + 8
.endr
ENDPROC(vfp_get_float)
ENTRY(vfp_put_float)
tbl_branch r1, r3, #3
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: mcr p10, 0, r0, c\dr, c0, 0 @ fmsr r0, s0
mov pc, lr
.org 1b + 8
1: mcr p10, 0, r0, c\dr, c0, 4 @ fmsr r0, s1
mov pc, lr
.org 1b + 8
.endr
ENDPROC(vfp_put_float)
ENTRY(vfp_get_double)
tbl_branch r0, r3, #3
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: fmrrd r0, r1, d\dr
mov pc, lr
.org 1b + 8
.endr
#ifdef CONFIG_VFPv3
@ d16 - d31 registers
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: mrrc p11, 3, r0, r1, c\dr @ fmrrd r0, r1, d\dr
mov pc, lr
.org 1b + 8
.endr
#endif
@ virtual register 16 (or 32 if VFPv3) for compare with zero
mov r0, #0
mov r1, #0
mov pc, lr
ENDPROC(vfp_get_double)
ENTRY(vfp_put_double)
tbl_branch r2, r3, #3
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: fmdrr d\dr, r0, r1
mov pc, lr
.org 1b + 8
.endr
#ifdef CONFIG_VFPv3
@ d16 - d31 registers
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1: mcrr p11, 3, r0, r1, c\dr @ fmdrr r0, r1, d\dr
mov pc, lr
.org 1b + 8
.endr
#endif
ENDPROC(vfp_put_double)

View File

@@ -0,0 +1,88 @@
/*
* linux/arch/arm/vfp/vfpinstr.h
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* VFP instruction masks.
*/
#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000)
#define INST_CPRT(inst) ((inst) & (1 << 4))
#define INST_CPRT_L(inst) ((inst) & (1 << 20))
#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12)
#define INST_CPRT_OP(inst) (((inst) >> 21) & 7)
#define INST_CPNUM(inst) ((inst) & 0xf00)
#define CPNUM(cp) ((cp) << 8)
#define FOP_MASK (0x00b00040)
#define FOP_FMAC (0x00000000)
#define FOP_FNMAC (0x00000040)
#define FOP_FMSC (0x00100000)
#define FOP_FNMSC (0x00100040)
#define FOP_FMUL (0x00200000)
#define FOP_FNMUL (0x00200040)
#define FOP_FADD (0x00300000)
#define FOP_FSUB (0x00300040)
#define FOP_FDIV (0x00800000)
#define FOP_EXT (0x00b00040)
#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
#define FEXT_MASK (0x000f0080)
#define FEXT_FCPY (0x00000000)
#define FEXT_FABS (0x00000080)
#define FEXT_FNEG (0x00010000)
#define FEXT_FSQRT (0x00010080)
#define FEXT_FCMP (0x00040000)
#define FEXT_FCMPE (0x00040080)
#define FEXT_FCMPZ (0x00050000)
#define FEXT_FCMPEZ (0x00050080)
#define FEXT_FCVT (0x00070080)
#define FEXT_FUITO (0x00080000)
#define FEXT_FSITO (0x00080080)
#define FEXT_FTOUI (0x000c0000)
#define FEXT_FTOUIZ (0x000c0080)
#define FEXT_FTOSI (0x000d0000)
#define FEXT_FTOSIZ (0x000d0080)
#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
#define FPSCR_N (1 << 31)
#define FPSCR_Z (1 << 30)
#define FPSCR_C (1 << 29)
#define FPSCR_V (1 << 28)
/*
* Since we aren't building with -mfpu=vfp, we need to code
* these instructions using their MRC/MCR equivalents.
*/
#define vfpreg(_vfp_) #_vfp_
#define fmrx(_vfp_) ({ \
u32 __v; \
asm("mrc p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmrx %0, " #_vfp_ \
: "=r" (__v) : : "cc"); \
__v; \
})
#define fmxr(_vfp_,_var_) \
asm("mcr p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmxr " #_vfp_ ", %0" \
: : "r" (_var_) : "cc")
u32 vfp_single_cpdo(u32 inst, u32 fpscr);
u32 vfp_single_cprt(u32 inst, u32 fpscr, struct pt_regs *regs);
u32 vfp_double_cpdo(u32 inst, u32 fpscr);

View File

@@ -0,0 +1,508 @@
/*
* linux/arch/arm/vfp/vfpmodule.c
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
#include "vfp.h"
/*
* Our undef handlers (in entry.S)
*/
void vfp_testing_entry(void);
void vfp_support_entry(void);
void vfp_null_entry(void);
void (*vfp_vector)(void) = vfp_null_entry;
union vfp_state *last_VFP_context[NR_CPUS];
/*
* Dual-use variable.
* Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture
*/
unsigned int VFP_arch;
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
struct thread_info *thread = v;
union vfp_state *vfp;
__u32 cpu = thread->cpu;
if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
u32 fpexc = fmrx(FPEXC);
#ifdef CONFIG_SMP
/*
* On SMP, if VFP is enabled, save the old state in
* case the thread migrates to a different CPU. The
* restoring is done lazily.
*/
if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
vfp_save_state(last_VFP_context[cpu], fpexc);
last_VFP_context[cpu]->hard.cpu = cpu;
}
/*
* Thread migration, just force the reloading of the
* state on the new CPU in case the VFP registers
* contain stale data.
*/
if (thread->vfpstate.hard.cpu != cpu)
last_VFP_context[cpu] = NULL;
#endif
/*
* Always disable VFP so we can lazily save/restore the
* old state.
*/
fmxr(FPEXC, fpexc & ~FPEXC_EN);
return NOTIFY_DONE;
}
vfp = &thread->vfpstate;
if (cmd == THREAD_NOTIFY_FLUSH) {
/*
* Per-thread VFP initialisation.
*/
memset(vfp, 0, sizeof(union vfp_state));
vfp->hard.fpexc = FPEXC_EN;
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
/*
* Disable VFP to ensure we initialise it first.
*/
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}
/* flush and release case: Per-thread VFP cleanup. */
if (last_VFP_context[cpu] == vfp)
last_VFP_context[cpu] = NULL;
return NOTIFY_DONE;
}
static struct notifier_block vfp_notifier_block = {
.notifier_call = vfp_notifier,
};
/*
* Raise a SIGFPE for the current process.
* sicode describes the signal being raised.
*/
void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
{
siginfo_t info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGFPE;
info.si_code = sicode;
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
/*
* This is the same as NWFPE, because it's not clear what
* this is used for
*/
current->thread.error_code = 0;
current->thread.trap_no = 6;
send_sig_info(SIGFPE, &info, current);
}
static void vfp_panic(char *reason, u32 inst)
{
int i;
printk(KERN_ERR "VFP: Error: %s\n", reason);
printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
fmrx(FPEXC), fmrx(FPSCR), inst);
for (i = 0; i < 32; i += 2)
printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
}
/*
* Process bitmask of exception conditions.
*/
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
{
int si_code = 0;
pr_debug("VFP: raising exceptions %08x\n", exceptions);
if (exceptions == VFP_EXCEPTION_ERROR) {
vfp_panic("unhandled bounce", inst);
vfp_raise_sigfpe(0, regs);
return;
}
/*
* Update the FPSCR with the additional exception flags.
* Comparison instructions always return at least one of
* these flags set.
*/
fpscr |= exceptions;
fmxr(FPSCR, fpscr);
#define RAISE(stat,en,sig) \
if (exceptions & stat && fpscr & en) \
si_code = sig;
/*
* These are arranged in priority order, least to highest.
*/
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
if (si_code)
vfp_raise_sigfpe(si_code, regs);
}
/*
* Emulate a VFP instruction.
*/
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
{
u32 exceptions = VFP_EXCEPTION_ERROR;
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
if (INST_CPRTDO(inst)) {
if (!INST_CPRT(inst)) {
/*
* CPDO
*/
if (vfp_single(inst)) {
exceptions = vfp_single_cpdo(inst, fpscr);
} else {
exceptions = vfp_double_cpdo(inst, fpscr);
}
} else {
/*
* A CPRT instruction can not appear in FPINST2, nor
* can it cause an exception. Therefore, we do not
* have to emulate it.
*/
}
} else {
/*
* A CPDT instruction can not appear in FPINST2, nor can
* it cause an exception. Therefore, we do not have to
* emulate it.
*/
}
return exceptions & ~VFP_NAN_FLAG;
}
/*
* Package up a bounce condition.
*/
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{
u32 fpscr, orig_fpscr, fpsid, exceptions;
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
/*
* At this point, FPEXC can have the following configuration:
*
* EX DEX IXE
* 0 1 x - synchronous exception
* 1 x 0 - asynchronous exception
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
* implementation), undefined otherwise
*
* Clear various bits and enable access to the VFP so we can
* handle the bounce.
*/
fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
fpsid = fmrx(FPSID);
orig_fpscr = fpscr = fmrx(FPSCR);
/*
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
*/
if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
&& (fpscr & FPSCR_IXE)) {
/*
* Synchronous exception, emulate the trigger instruction
*/
goto emulate;
}
if (fpexc & FPEXC_EX) {
#ifndef CONFIG_CPU_FEROCEON
/*
* Asynchronous exception. The instruction is read from FPINST
* and the interrupted instruction has to be restarted.
*/
trigger = fmrx(FPINST);
regs->ARM_pc -= 4;
#endif
} else if (!(fpexc & FPEXC_DEX)) {
/*
* Illegal combination of bits. It can be caused by an
* unallocated VFP instruction but with FPSCR.IXE set and not
* on VFP subarch 1.
*/
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
goto exit;
}
/*
* Modify fpscr to indicate the number of iterations remaining.
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
* whether FPEXC.VECITR or FPSCR.LEN is used.
*/
if (fpexc & (FPEXC_EX | FPEXC_VV)) {
u32 len;
len = fpexc + (1 << FPEXC_LENGTH_BIT);
fpscr &= ~FPSCR_LENGTH_MASK;
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
}
/*
* Handle the first FP instruction. We used to take note of the
* FPEXC bounce reason, but this appears to be unreliable.
* Emulate the bounced instruction instead.
*/
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
/*
* If there isn't a second FP instruction, exit now. Note that
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/
if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
goto exit;
/*
* The barrier() here prevents fpinst2 being read
* before the condition above.
*/
barrier();
trigger = fmrx(FPINST2);
emulate:
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
exit:
preempt_enable();
}
static void vfp_enable(void *unused)
{
u32 access = get_copro_access();
/*
* Enable full access to VFP (cp10 and cp11)
*/
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
}
#ifdef CONFIG_PM
#include <linux/sysdev.h>
static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
{
struct thread_info *ti = current_thread_info();
u32 fpexc = fmrx(FPEXC);
/* if vfp is on, then save state for resumption */
if (fpexc & FPEXC_EN) {
printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
vfp_save_state(&ti->vfpstate, fpexc);
/* disable, just in case */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}
/* clear any information we had about last context state */
memset(last_VFP_context, 0, sizeof(last_VFP_context));
return 0;
}
static int vfp_pm_resume(struct sys_device *dev)
{
/* ensure we have access to the vfp */
vfp_enable(NULL);
/* and disable it to ensure the next usage restores the state */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
return 0;
}
static struct sysdev_class vfp_pm_sysclass = {
.name = "vfp",
.suspend = vfp_pm_suspend,
.resume = vfp_pm_resume,
};
static struct sys_device vfp_pm_sysdev = {
.cls = &vfp_pm_sysclass,
};
static void vfp_pm_init(void)
{
sysdev_class_register(&vfp_pm_sysclass);
sysdev_register(&vfp_pm_sysdev);
}
#else
static inline void vfp_pm_init(void) { }
#endif /* CONFIG_PM */
/*
* Synchronise the hardware VFP state of a thread other than current with the
* saved one. This function is used by the ptrace mechanism.
*/
#ifdef CONFIG_SMP
void vfp_sync_state(struct thread_info *thread)
{
/*
* On SMP systems, the VFP state is automatically saved at every
* context switch. We mark the thread VFP state as belonging to a
* non-existent CPU so that the saved one will be reloaded when
* needed.
*/
thread->vfpstate.hard.cpu = NR_CPUS;
}
#else
void vfp_sync_state(struct thread_info *thread)
{
unsigned int cpu = get_cpu();
u32 fpexc = fmrx(FPEXC);
/*
* If VFP is enabled, the previous state was already saved and
* last_VFP_context updated.
*/
if (fpexc & FPEXC_EN)
goto out;
if (!last_VFP_context[cpu])
goto out;
/*
* Save the last VFP state on this CPU.
*/
fmxr(FPEXC, fpexc | FPEXC_EN);
vfp_save_state(last_VFP_context[cpu], fpexc);
fmxr(FPEXC, fpexc);
/*
* Set the context to NULL to force a reload the next time the thread
* uses the VFP.
*/
last_VFP_context[cpu] = NULL;
out:
put_cpu();
}
#endif
#include <linux/smp.h>
/*
* VFP support code initialisation.
*/
static int __init vfp_init(void)
{
unsigned int vfpsid;
unsigned int cpu_arch = cpu_architecture();
if (cpu_arch >= CPU_ARCH_ARMv6)
vfp_enable(NULL);
/*
* First check that there is a VFP that we can use.
* The handler is already setup to just log calls, so
* we just need to read the VFPSID register.
*/
vfp_vector = vfp_testing_entry;
barrier();
vfpsid = fmrx(FPSID);
barrier();
vfp_vector = vfp_null_entry;
printk(KERN_INFO "VFP support v0.3: ");
if (VFP_arch)
printk("not present\n");
else if (vfpsid & FPSID_NODOUBLE) {
printk("no double precision support\n");
} else {
smp_call_function(vfp_enable, NULL, 1);
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
vfp_vector = vfp_support_entry;
thread_register_notifier(&vfp_notifier_block);
vfp_pm_init();
/*
* We detected VFP, and the support code is
* in place; report VFP support to userspace.
*/
elf_hwcap |= HWCAP_VFP;
#ifdef CONFIG_VFPv3
if (VFP_arch >= 3) {
elf_hwcap |= HWCAP_VFPv3;
/*
* Check for VFPv3 D16. CPUs in this configuration
* only have 16 x 64bit registers.
*/
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
elf_hwcap |= HWCAP_VFPv3D16;
}
#endif
#ifdef CONFIG_NEON
/*
* Check for the presence of the Advanced SIMD
* load/store instructions, integer and single
* precision floating point operations.
*/
if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
elf_hwcap |= HWCAP_NEON;
#endif
}
return 0;
}
late_initcall(vfp_init);

File diff suppressed because it is too large Load Diff