add idl4k kernel firmware version 1.13.0.105

This commit is contained in:
Jaroslav Kysela
2015-03-26 17:22:37 +01:00
parent 5194d2792e
commit e9070cdc77
31064 changed files with 12769984 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
#
# Makefile for key management
#
obj-y := \
gc.o \
key.o \
keyring.o \
keyctl.o \
permission.o \
process_keys.o \
request_key.o \
request_key_auth.o \
user_defined.o
obj-$(CONFIG_KEYS_COMPAT) += compat.o
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_SYSCTL) += sysctl.o

View File

@@ -0,0 +1,92 @@
/* compat.c: 32-bit compatibility syscall for 64-bit systems
*
* Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/syscalls.h>
#include <linux/keyctl.h>
#include <linux/compat.h>
#include "internal.h"
/*****************************************************************************/
/*
* the key control system call, 32-bit compatibility version for 64-bit archs
* - this should only be called if the 64-bit arch uses weird pointers in
* 32-bit mode or doesn't guarantee that the top 32-bits of the argument
* registers on taking a 32-bit syscall are zero
* - if you can, you should call sys_keyctl directly
*/
asmlinkage long compat_sys_keyctl(u32 option,
u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
switch (option) {
case KEYCTL_GET_KEYRING_ID:
return keyctl_get_keyring_ID(arg2, arg3);
case KEYCTL_JOIN_SESSION_KEYRING:
return keyctl_join_session_keyring(compat_ptr(arg2));
case KEYCTL_UPDATE:
return keyctl_update_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_REVOKE:
return keyctl_revoke_key(arg2);
case KEYCTL_DESCRIBE:
return keyctl_describe_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_CLEAR:
return keyctl_keyring_clear(arg2);
case KEYCTL_LINK:
return keyctl_keyring_link(arg2, arg3);
case KEYCTL_UNLINK:
return keyctl_keyring_unlink(arg2, arg3);
case KEYCTL_SEARCH:
return keyctl_keyring_search(arg2, compat_ptr(arg3),
compat_ptr(arg4), arg5);
case KEYCTL_READ:
return keyctl_read_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_CHOWN:
return keyctl_chown_key(arg2, arg3, arg4);
case KEYCTL_SETPERM:
return keyctl_setperm_key(arg2, arg3);
case KEYCTL_INSTANTIATE:
return keyctl_instantiate_key(arg2, compat_ptr(arg3), arg4,
arg5);
case KEYCTL_NEGATE:
return keyctl_negate_key(arg2, arg3, arg4);
case KEYCTL_SET_REQKEY_KEYRING:
return keyctl_set_reqkey_keyring(arg2);
case KEYCTL_SET_TIMEOUT:
return keyctl_set_timeout(arg2, arg3);
case KEYCTL_ASSUME_AUTHORITY:
return keyctl_assume_authority(arg2);
case KEYCTL_GET_SECURITY:
return keyctl_get_security(arg2, compat_ptr(arg3), arg4);
case KEYCTL_SESSION_TO_PARENT:
return keyctl_session_to_parent();
default:
return -EOPNOTSUPP;
}
} /* end compat_sys_keyctl() */

218
kernel/security/keys/gc.c Normal file
View File

@@ -0,0 +1,218 @@
/* Key garbage collector
*
* Copyright (C) 2009 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/module.h>
#include <keys/keyring-type.h>
#include "internal.h"
/*
* Delay between key revocation/expiry in seconds
*/
unsigned key_gc_delay = 5 * 60;
/*
* Reaper
*/
static void key_gc_timer_func(unsigned long);
static void key_garbage_collector(struct work_struct *);
static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
static DECLARE_WORK(key_gc_work, key_garbage_collector);
static key_serial_t key_gc_cursor; /* the last key the gc considered */
static bool key_gc_again;
static unsigned long key_gc_executing;
static time_t key_gc_next_run = LONG_MAX;
static time_t key_gc_new_timer;
/*
* Schedule a garbage collection run
* - precision isn't particularly important
*/
void key_schedule_gc(time_t gc_at)
{
unsigned long expires;
time_t now = current_kernel_time().tv_sec;
kenter("%ld", gc_at - now);
if (gc_at <= now) {
schedule_work(&key_gc_work);
} else if (gc_at < key_gc_next_run) {
expires = jiffies + (gc_at - now) * HZ;
mod_timer(&key_gc_timer, expires);
}
}
/*
* The garbage collector timer kicked off
*/
static void key_gc_timer_func(unsigned long data)
{
kenter("");
key_gc_next_run = LONG_MAX;
schedule_work(&key_gc_work);
}
/*
* Garbage collect pointers from a keyring
* - return true if we altered the keyring
*/
static bool key_gc_keyring(struct key *keyring, time_t limit)
__releases(key_serial_lock)
{
struct keyring_list *klist;
struct key *key;
int loop;
kenter("%x", key_serial(keyring));
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
goto dont_gc;
/* scan the keyring looking for dead keys */
klist = rcu_dereference(keyring->payload.subscriptions);
if (!klist)
goto dont_gc;
for (loop = klist->nkeys - 1; loop >= 0; loop--) {
key = klist->keys[loop];
if (test_bit(KEY_FLAG_DEAD, &key->flags) ||
(key->expiry > 0 && key->expiry <= limit))
goto do_gc;
}
dont_gc:
kleave(" = false");
return false;
do_gc:
key_gc_cursor = keyring->serial;
key_get(keyring);
spin_unlock(&key_serial_lock);
keyring_gc(keyring, limit);
key_put(keyring);
kleave(" = true");
return true;
}
/*
* Garbage collector for keys
* - this involves scanning the keyrings for dead, expired and revoked keys
* that have overstayed their welcome
*/
static void key_garbage_collector(struct work_struct *work)
{
struct rb_node *rb;
key_serial_t cursor;
struct key *key, *xkey;
time_t new_timer = LONG_MAX, limit, now;
now = current_kernel_time().tv_sec;
kenter("[%x,%ld]", key_gc_cursor, key_gc_new_timer - now);
if (test_and_set_bit(0, &key_gc_executing)) {
key_schedule_gc(current_kernel_time().tv_sec + 1);
kleave(" [busy; deferring]");
return;
}
limit = now;
if (limit > key_gc_delay)
limit -= key_gc_delay;
else
limit = key_gc_delay;
spin_lock(&key_serial_lock);
if (unlikely(RB_EMPTY_ROOT(&key_serial_tree))) {
spin_unlock(&key_serial_lock);
clear_bit(0, &key_gc_executing);
return;
}
cursor = key_gc_cursor;
if (cursor < 0)
cursor = 0;
if (cursor > 0)
new_timer = key_gc_new_timer;
else
key_gc_again = false;
/* find the first key above the cursor */
key = NULL;
rb = key_serial_tree.rb_node;
while (rb) {
xkey = rb_entry(rb, struct key, serial_node);
if (cursor < xkey->serial) {
key = xkey;
rb = rb->rb_left;
} else if (cursor > xkey->serial) {
rb = rb->rb_right;
} else {
rb = rb_next(rb);
if (!rb)
goto reached_the_end;
key = rb_entry(rb, struct key, serial_node);
break;
}
}
if (!key)
goto reached_the_end;
/* trawl through the keys looking for keyrings */
for (;;) {
if (key->expiry > limit && key->expiry < new_timer) {
kdebug("will expire %x in %ld",
key_serial(key), key->expiry - limit);
new_timer = key->expiry;
}
if (key->type == &key_type_keyring &&
key_gc_keyring(key, limit))
/* the gc had to release our lock so that the keyring
* could be modified, so we have to get it again */
goto gc_released_our_lock;
rb = rb_next(&key->serial_node);
if (!rb)
goto reached_the_end;
key = rb_entry(rb, struct key, serial_node);
}
gc_released_our_lock:
kdebug("gc_released_our_lock");
key_gc_new_timer = new_timer;
key_gc_again = true;
clear_bit(0, &key_gc_executing);
schedule_work(&key_gc_work);
kleave(" [continue]");
return;
/* when we reach the end of the run, we set the timer for the next one */
reached_the_end:
kdebug("reached_the_end");
spin_unlock(&key_serial_lock);
key_gc_new_timer = new_timer;
key_gc_cursor = 0;
clear_bit(0, &key_gc_executing);
if (key_gc_again) {
/* there may have been a key that expired whilst we were
* scanning, so if we discarded any links we should do another
* scan */
new_timer = now + 1;
key_schedule_gc(new_timer);
} else if (new_timer < LONG_MAX) {
new_timer += key_gc_delay;
key_schedule_gc(new_timer);
}
kleave(" [end]");
}

View File

@@ -0,0 +1,224 @@
/* internal.h: authentication token and access key management internal defs
*
* Copyright (C) 2003-5, 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _INTERNAL_H
#define _INTERNAL_H
#include <linux/sched.h>
#include <linux/key-type.h>
static inline __attribute__((format(printf, 1, 2)))
void no_printk(const char *fmt, ...)
{
}
#ifdef __KDEBUG
#define kenter(FMT, ...) \
printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
#define kleave(FMT, ...) \
printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
#define kdebug(FMT, ...) \
printk(KERN_DEBUG " "FMT"\n", ##__VA_ARGS__)
#else
#define kenter(FMT, ...) \
no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
#define kleave(FMT, ...) \
no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
#define kdebug(FMT, ...) \
no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
#endif
extern struct key_type key_type_user;
/*****************************************************************************/
/*
* keep track of keys for a user
* - this needs to be separate to user_struct to avoid a refcount-loop
* (user_struct pins some keyrings which pin this struct)
* - this also keeps track of keys under request from userspace for this UID
*/
struct key_user {
struct rb_node node;
struct mutex cons_lock; /* construction initiation lock */
spinlock_t lock;
atomic_t usage; /* for accessing qnkeys & qnbytes */
atomic_t nkeys; /* number of keys */
atomic_t nikeys; /* number of instantiated keys */
uid_t uid;
struct user_namespace *user_ns;
int qnkeys; /* number of keys allocated to this user */
int qnbytes; /* number of bytes allocated to this user */
};
extern struct rb_root key_user_tree;
extern spinlock_t key_user_lock;
extern struct key_user root_key_user;
extern struct key_user *key_user_lookup(uid_t uid,
struct user_namespace *user_ns);
extern void key_user_put(struct key_user *user);
/*
* key quota limits
* - root has its own separate limits to everyone else
*/
extern unsigned key_quota_root_maxkeys;
extern unsigned key_quota_root_maxbytes;
extern unsigned key_quota_maxkeys;
extern unsigned key_quota_maxbytes;
#define KEYQUOTA_LINK_BYTES 4 /* a link in a keyring is worth 4 bytes */
extern struct rb_root key_serial_tree;
extern spinlock_t key_serial_lock;
extern struct mutex key_construction_mutex;
extern wait_queue_head_t request_key_conswq;
extern struct key_type *key_type_lookup(const char *type);
extern void key_type_put(struct key_type *ktype);
extern int __key_link(struct key *keyring, struct key *key);
extern key_ref_t __keyring_search_one(key_ref_t keyring_ref,
const struct key_type *type,
const char *description,
key_perm_t perm);
extern struct key *keyring_search_instkey(struct key *keyring,
key_serial_t target_id);
typedef int (*key_match_func_t)(const struct key *, const void *);
extern key_ref_t keyring_search_aux(key_ref_t keyring_ref,
const struct cred *cred,
struct key_type *type,
const void *description,
key_match_func_t match);
extern key_ref_t search_process_keyrings(struct key_type *type,
const void *description,
key_match_func_t match,
const struct cred *cred);
extern struct key *find_keyring_by_name(const char *name, bool skip_perm_check);
extern int install_user_keyrings(void);
extern int install_thread_keyring_to_cred(struct cred *);
extern int install_process_keyring_to_cred(struct cred *);
extern struct key *request_key_and_link(struct key_type *type,
const char *description,
const void *callout_info,
size_t callout_len,
void *aux,
struct key *dest_keyring,
unsigned long flags);
extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags,
key_perm_t perm);
#define KEY_LOOKUP_CREATE 0x01
#define KEY_LOOKUP_PARTIAL 0x02
#define KEY_LOOKUP_FOR_UNLINK 0x04
extern long join_session_keyring(const char *name);
extern unsigned key_gc_delay;
extern void keyring_gc(struct key *keyring, time_t limit);
extern void key_schedule_gc(time_t expiry_at);
/*
* check to see whether permission is granted to use a key in the desired way
*/
extern int key_task_permission(const key_ref_t key_ref,
const struct cred *cred,
key_perm_t perm);
static inline int key_permission(const key_ref_t key_ref, key_perm_t perm)
{
return key_task_permission(key_ref, current_cred(), perm);
}
/* required permissions */
#define KEY_VIEW 0x01 /* require permission to view attributes */
#define KEY_READ 0x02 /* require permission to read content */
#define KEY_WRITE 0x04 /* require permission to update / modify */
#define KEY_SEARCH 0x08 /* require permission to search (keyring) or find (key) */
#define KEY_LINK 0x10 /* require permission to link */
#define KEY_SETATTR 0x20 /* require permission to change attributes */
#define KEY_ALL 0x3f /* all the above permissions */
/*
* request_key authorisation
*/
struct request_key_auth {
struct key *target_key;
struct key *dest_keyring;
const struct cred *cred;
void *callout_info;
size_t callout_len;
pid_t pid;
};
extern struct key_type key_type_request_key_auth;
extern struct key *request_key_auth_new(struct key *target,
const void *callout_info,
size_t callout_len,
struct key *dest_keyring);
extern struct key *key_get_instantiation_authkey(key_serial_t target_id);
/*
* keyctl functions
*/
extern long keyctl_get_keyring_ID(key_serial_t, int);
extern long keyctl_join_session_keyring(const char __user *);
extern long keyctl_update_key(key_serial_t, const void __user *, size_t);
extern long keyctl_revoke_key(key_serial_t);
extern long keyctl_keyring_clear(key_serial_t);
extern long keyctl_keyring_link(key_serial_t, key_serial_t);
extern long keyctl_keyring_unlink(key_serial_t, key_serial_t);
extern long keyctl_describe_key(key_serial_t, char __user *, size_t);
extern long keyctl_keyring_search(key_serial_t, const char __user *,
const char __user *, key_serial_t);
extern long keyctl_read_key(key_serial_t, char __user *, size_t);
extern long keyctl_chown_key(key_serial_t, uid_t, gid_t);
extern long keyctl_setperm_key(key_serial_t, key_perm_t);
extern long keyctl_instantiate_key(key_serial_t, const void __user *,
size_t, key_serial_t);
extern long keyctl_negate_key(key_serial_t, unsigned, key_serial_t);
extern long keyctl_set_reqkey_keyring(int);
extern long keyctl_set_timeout(key_serial_t, unsigned);
extern long keyctl_assume_authority(key_serial_t);
extern long keyctl_get_security(key_serial_t keyid, char __user *buffer,
size_t buflen);
extern long keyctl_session_to_parent(void);
/*
* debugging key validation
*/
#ifdef KEY_DEBUGGING
extern void __key_check(const struct key *);
static inline void key_check(const struct key *key)
{
if (key && (IS_ERR(key) || key->magic != KEY_DEBUG_MAGIC))
__key_check(key);
}
#else
#define key_check(key) do {} while(0)
#endif
#endif /* _INTERNAL_H */

1028
kernel/security/keys/key.c Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,117 @@
/* permission.c: key permission determination
*
* Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/security.h>
#include "internal.h"
/*****************************************************************************/
/**
* key_task_permission - Check a key can be used
* @key_ref: The key to check
* @cred: The credentials to use
* @perm: The permissions to check for
*
* Check to see whether permission is granted to use a key in the desired way,
* but permit the security modules to override.
*
* The caller must hold either a ref on cred or must hold the RCU readlock or a
* spinlock.
*/
int key_task_permission(const key_ref_t key_ref, const struct cred *cred,
key_perm_t perm)
{
struct key *key;
key_perm_t kperm;
int ret;
key = key_ref_to_ptr(key_ref);
if (key->user->user_ns != cred->user->user_ns)
goto use_other_perms;
/* use the second 8-bits of permissions for keys the caller owns */
if (key->uid == cred->fsuid) {
kperm = key->perm >> 16;
goto use_these_perms;
}
/* use the third 8-bits of permissions for keys the caller has a group
* membership in common with */
if (key->gid != -1 && key->perm & KEY_GRP_ALL) {
if (key->gid == cred->fsgid) {
kperm = key->perm >> 8;
goto use_these_perms;
}
ret = groups_search(cred->group_info, key->gid);
if (ret) {
kperm = key->perm >> 8;
goto use_these_perms;
}
}
use_other_perms:
/* otherwise use the least-significant 8-bits */
kperm = key->perm;
use_these_perms:
/* use the top 8-bits of permissions for keys the caller possesses
* - possessor permissions are additive with other permissions
*/
if (is_key_possessed(key_ref))
kperm |= key->perm >> 24;
kperm = kperm & perm & KEY_ALL;
if (kperm != perm)
return -EACCES;
/* let LSM be the final arbiter */
return security_key_permission(key_ref, cred, perm);
} /* end key_task_permission() */
EXPORT_SYMBOL(key_task_permission);
/*****************************************************************************/
/*
* validate a key
*/
int key_validate(struct key *key)
{
struct timespec now;
int ret = 0;
if (key) {
/* check it's still accessible */
ret = -EKEYREVOKED;
if (test_bit(KEY_FLAG_REVOKED, &key->flags) ||
test_bit(KEY_FLAG_DEAD, &key->flags))
goto error;
/* check it hasn't expired */
ret = 0;
if (key->expiry) {
now = current_kernel_time();
if (now.tv_sec >= key->expiry)
ret = -EKEYEXPIRED;
}
}
error:
return ret;
} /* end key_validate() */
EXPORT_SYMBOL(key_validate);

340
kernel/security/keys/proc.c Normal file
View File

@@ -0,0 +1,340 @@
/* proc.c: proc files for key database enumeration
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/errno.h>
#include "internal.h"
#ifdef CONFIG_KEYS_DEBUG_PROC_KEYS
static int proc_keys_open(struct inode *inode, struct file *file);
static void *proc_keys_start(struct seq_file *p, loff_t *_pos);
static void *proc_keys_next(struct seq_file *p, void *v, loff_t *_pos);
static void proc_keys_stop(struct seq_file *p, void *v);
static int proc_keys_show(struct seq_file *m, void *v);
static const struct seq_operations proc_keys_ops = {
.start = proc_keys_start,
.next = proc_keys_next,
.stop = proc_keys_stop,
.show = proc_keys_show,
};
static const struct file_operations proc_keys_fops = {
.open = proc_keys_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
static int proc_key_users_open(struct inode *inode, struct file *file);
static void *proc_key_users_start(struct seq_file *p, loff_t *_pos);
static void *proc_key_users_next(struct seq_file *p, void *v, loff_t *_pos);
static void proc_key_users_stop(struct seq_file *p, void *v);
static int proc_key_users_show(struct seq_file *m, void *v);
static const struct seq_operations proc_key_users_ops = {
.start = proc_key_users_start,
.next = proc_key_users_next,
.stop = proc_key_users_stop,
.show = proc_key_users_show,
};
static const struct file_operations proc_key_users_fops = {
.open = proc_key_users_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
/*****************************************************************************/
/*
* declare the /proc files
*/
static int __init key_proc_init(void)
{
struct proc_dir_entry *p;
#ifdef CONFIG_KEYS_DEBUG_PROC_KEYS
p = proc_create("keys", 0, NULL, &proc_keys_fops);
if (!p)
panic("Cannot create /proc/keys\n");
#endif
p = proc_create("key-users", 0, NULL, &proc_key_users_fops);
if (!p)
panic("Cannot create /proc/key-users\n");
return 0;
} /* end key_proc_init() */
__initcall(key_proc_init);
/*****************************************************************************/
/*
* implement "/proc/keys" to provides a list of the keys on the system
*/
#ifdef CONFIG_KEYS_DEBUG_PROC_KEYS
static struct rb_node *key_serial_next(struct rb_node *n)
{
struct user_namespace *user_ns = current_user_ns();
n = rb_next(n);
while (n) {
struct key *key = rb_entry(n, struct key, serial_node);
if (key->user->user_ns == user_ns)
break;
n = rb_next(n);
}
return n;
}
static int proc_keys_open(struct inode *inode, struct file *file)
{
return seq_open(file, &proc_keys_ops);
}
static struct key *find_ge_key(key_serial_t id)
{
struct user_namespace *user_ns = current_user_ns();
struct rb_node *n = key_serial_tree.rb_node;
struct key *minkey = NULL;
while (n) {
struct key *key = rb_entry(n, struct key, serial_node);
if (id < key->serial) {
if (!minkey || minkey->serial > key->serial)
minkey = key;
n = n->rb_left;
} else if (id > key->serial) {
n = n->rb_right;
} else {
minkey = key;
break;
}
key = NULL;
}
if (!minkey)
return NULL;
for (;;) {
if (minkey->user->user_ns == user_ns)
return minkey;
n = rb_next(&minkey->serial_node);
if (!n)
return NULL;
minkey = rb_entry(n, struct key, serial_node);
}
}
static void *proc_keys_start(struct seq_file *p, loff_t *_pos)
__acquires(key_serial_lock)
{
key_serial_t pos = *_pos;
struct key *key;
spin_lock(&key_serial_lock);
if (*_pos > INT_MAX)
return NULL;
key = find_ge_key(pos);
if (!key)
return NULL;
*_pos = key->serial;
return &key->serial_node;
}
static inline key_serial_t key_node_serial(struct rb_node *n)
{
struct key *key = rb_entry(n, struct key, serial_node);
return key->serial;
}
static void *proc_keys_next(struct seq_file *p, void *v, loff_t *_pos)
{
struct rb_node *n;
n = key_serial_next(v);
if (n)
*_pos = key_node_serial(n);
return n;
}
static void proc_keys_stop(struct seq_file *p, void *v)
__releases(key_serial_lock)
{
spin_unlock(&key_serial_lock);
}
static int proc_keys_show(struct seq_file *m, void *v)
{
struct rb_node *_p = v;
struct key *key = rb_entry(_p, struct key, serial_node);
struct timespec now;
unsigned long timo;
char xbuf[12];
int rc;
/* check whether the current task is allowed to view the key (assuming
* non-possession)
* - the caller holds a spinlock, and thus the RCU read lock, making our
* access to __current_cred() safe
*/
rc = key_task_permission(make_key_ref(key, 0), current_cred(),
KEY_VIEW);
if (rc < 0)
return 0;
now = current_kernel_time();
rcu_read_lock();
/* come up with a suitable timeout value */
if (key->expiry == 0) {
memcpy(xbuf, "perm", 5);
} else if (now.tv_sec >= key->expiry) {
memcpy(xbuf, "expd", 5);
} else {
timo = key->expiry - now.tv_sec;
if (timo < 60)
sprintf(xbuf, "%lus", timo);
else if (timo < 60*60)
sprintf(xbuf, "%lum", timo / 60);
else if (timo < 60*60*24)
sprintf(xbuf, "%luh", timo / (60*60));
else if (timo < 60*60*24*7)
sprintf(xbuf, "%lud", timo / (60*60*24));
else
sprintf(xbuf, "%luw", timo / (60*60*24*7));
}
#define showflag(KEY, LETTER, FLAG) \
(test_bit(FLAG, &(KEY)->flags) ? LETTER : '-')
seq_printf(m, "%08x %c%c%c%c%c%c %5d %4s %08x %5d %5d %-9.9s ",
key->serial,
showflag(key, 'I', KEY_FLAG_INSTANTIATED),
showflag(key, 'R', KEY_FLAG_REVOKED),
showflag(key, 'D', KEY_FLAG_DEAD),
showflag(key, 'Q', KEY_FLAG_IN_QUOTA),
showflag(key, 'U', KEY_FLAG_USER_CONSTRUCT),
showflag(key, 'N', KEY_FLAG_NEGATIVE),
atomic_read(&key->usage),
xbuf,
key->perm,
key->uid,
key->gid,
key->type->name);
#undef showflag
if (key->type->describe)
key->type->describe(key, m);
seq_putc(m, '\n');
rcu_read_unlock();
return 0;
}
#endif /* CONFIG_KEYS_DEBUG_PROC_KEYS */
static struct rb_node *__key_user_next(struct rb_node *n)
{
while (n) {
struct key_user *user = rb_entry(n, struct key_user, node);
if (user->user_ns == current_user_ns())
break;
n = rb_next(n);
}
return n;
}
static struct rb_node *key_user_next(struct rb_node *n)
{
return __key_user_next(rb_next(n));
}
static struct rb_node *key_user_first(struct rb_root *r)
{
struct rb_node *n = rb_first(r);
return __key_user_next(n);
}
/*****************************************************************************/
/*
* implement "/proc/key-users" to provides a list of the key users
*/
static int proc_key_users_open(struct inode *inode, struct file *file)
{
return seq_open(file, &proc_key_users_ops);
}
static void *proc_key_users_start(struct seq_file *p, loff_t *_pos)
__acquires(key_user_lock)
{
struct rb_node *_p;
loff_t pos = *_pos;
spin_lock(&key_user_lock);
_p = key_user_first(&key_user_tree);
while (pos > 0 && _p) {
pos--;
_p = key_user_next(_p);
}
return _p;
}
static void *proc_key_users_next(struct seq_file *p, void *v, loff_t *_pos)
{
(*_pos)++;
return key_user_next((struct rb_node *) v);
}
static void proc_key_users_stop(struct seq_file *p, void *v)
__releases(key_user_lock)
{
spin_unlock(&key_user_lock);
}
static int proc_key_users_show(struct seq_file *m, void *v)
{
struct rb_node *_p = v;
struct key_user *user = rb_entry(_p, struct key_user, node);
unsigned maxkeys = (user->uid == 0) ?
key_quota_root_maxkeys : key_quota_maxkeys;
unsigned maxbytes = (user->uid == 0) ?
key_quota_root_maxbytes : key_quota_maxbytes;
seq_printf(m, "%5u: %5d %d/%d %d/%d %d/%d\n",
user->uid,
atomic_read(&user->usage),
atomic_read(&user->nkeys),
atomic_read(&user->nikeys),
user->qnkeys,
maxkeys,
user->qnbytes,
maxbytes);
return 0;
}

View File

@@ -0,0 +1,819 @@
/* Management of a process's keyrings
*
* Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/keyctl.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/security.h>
#include <linux/user_namespace.h>
#include <asm/uaccess.h>
#include "internal.h"
/* session keyring create vs join semaphore */
static DEFINE_MUTEX(key_session_mutex);
/* user keyring creation semaphore */
static DEFINE_MUTEX(key_user_keyring_mutex);
/* the root user's tracking struct */
struct key_user root_key_user = {
.usage = ATOMIC_INIT(3),
.cons_lock = __MUTEX_INITIALIZER(root_key_user.cons_lock),
.lock = __SPIN_LOCK_UNLOCKED(root_key_user.lock),
.nkeys = ATOMIC_INIT(2),
.nikeys = ATOMIC_INIT(2),
.uid = 0,
.user_ns = &init_user_ns,
};
/*****************************************************************************/
/*
* install user and user session keyrings for a particular UID
*/
int install_user_keyrings(void)
{
struct user_struct *user;
const struct cred *cred;
struct key *uid_keyring, *session_keyring;
char buf[20];
int ret;
cred = current_cred();
user = cred->user;
kenter("%p{%u}", user, user->uid);
if (user->uid_keyring) {
kleave(" = 0 [exist]");
return 0;
}
mutex_lock(&key_user_keyring_mutex);
ret = 0;
if (!user->uid_keyring) {
/* get the UID-specific keyring
* - there may be one in existence already as it may have been
* pinned by a session, but the user_struct pointing to it
* may have been destroyed by setuid */
sprintf(buf, "_uid.%u", user->uid);
uid_keyring = find_keyring_by_name(buf, true);
if (IS_ERR(uid_keyring)) {
uid_keyring = keyring_alloc(buf, user->uid, (gid_t) -1,
cred, KEY_ALLOC_IN_QUOTA,
NULL);
if (IS_ERR(uid_keyring)) {
ret = PTR_ERR(uid_keyring);
goto error;
}
}
/* get a default session keyring (which might also exist
* already) */
sprintf(buf, "_uid_ses.%u", user->uid);
session_keyring = find_keyring_by_name(buf, true);
if (IS_ERR(session_keyring)) {
session_keyring =
keyring_alloc(buf, user->uid, (gid_t) -1,
cred, KEY_ALLOC_IN_QUOTA, NULL);
if (IS_ERR(session_keyring)) {
ret = PTR_ERR(session_keyring);
goto error_release;
}
/* we install a link from the user session keyring to
* the user keyring */
ret = key_link(session_keyring, uid_keyring);
if (ret < 0)
goto error_release_both;
}
/* install the keyrings */
user->uid_keyring = uid_keyring;
user->session_keyring = session_keyring;
}
mutex_unlock(&key_user_keyring_mutex);
kleave(" = 0");
return 0;
error_release_both:
key_put(session_keyring);
error_release:
key_put(uid_keyring);
error:
mutex_unlock(&key_user_keyring_mutex);
kleave(" = %d", ret);
return ret;
}
/*
* install a fresh thread keyring directly to new credentials
*/
int install_thread_keyring_to_cred(struct cred *new)
{
struct key *keyring;
keyring = keyring_alloc("_tid", new->uid, new->gid, new,
KEY_ALLOC_QUOTA_OVERRUN, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
new->thread_keyring = keyring;
return 0;
}
/*
* install a fresh thread keyring, discarding the old one
*/
static int install_thread_keyring(void)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
BUG_ON(new->thread_keyring);
ret = install_thread_keyring_to_cred(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
}
/*
* install a process keyring directly to a credentials struct
* - returns -EEXIST if there was already a process keyring, 0 if one installed,
* and other -ve on any other error
*/
int install_process_keyring_to_cred(struct cred *new)
{
struct key *keyring;
int ret;
if (new->tgcred->process_keyring)
return -EEXIST;
keyring = keyring_alloc("_pid", new->uid, new->gid,
new, KEY_ALLOC_QUOTA_OVERRUN, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
spin_lock_irq(&new->tgcred->lock);
if (!new->tgcred->process_keyring) {
new->tgcred->process_keyring = keyring;
keyring = NULL;
ret = 0;
} else {
ret = -EEXIST;
}
spin_unlock_irq(&new->tgcred->lock);
key_put(keyring);
return ret;
}
/*
* make sure a process keyring is installed
* - we
*/
static int install_process_keyring(void)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = install_process_keyring_to_cred(new);
if (ret < 0) {
abort_creds(new);
return ret != -EEXIST ?: 0;
}
return commit_creds(new);
}
/*
* install a session keyring directly to a credentials struct
*/
static int install_session_keyring_to_cred(struct cred *cred,
struct key *keyring)
{
unsigned long flags;
struct key *old;
might_sleep();
/* create an empty session keyring */
if (!keyring) {
flags = KEY_ALLOC_QUOTA_OVERRUN;
if (cred->tgcred->session_keyring)
flags = KEY_ALLOC_IN_QUOTA;
keyring = keyring_alloc("_ses", cred->uid, cred->gid,
cred, flags, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
} else {
atomic_inc(&keyring->usage);
}
/* install the keyring */
spin_lock_irq(&cred->tgcred->lock);
old = cred->tgcred->session_keyring;
rcu_assign_pointer(cred->tgcred->session_keyring, keyring);
spin_unlock_irq(&cred->tgcred->lock);
/* we're using RCU on the pointer, but there's no point synchronising
* on it if it didn't previously point to anything */
if (old) {
synchronize_rcu();
key_put(old);
}
return 0;
}
/*
* install a session keyring, discarding the old one
* - if a keyring is not supplied, an empty one is invented
*/
static int install_session_keyring(struct key *keyring)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = install_session_keyring_to_cred(new, NULL);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
}
/*****************************************************************************/
/*
* the filesystem user ID changed
*/
void key_fsuid_changed(struct task_struct *tsk)
{
/* update the ownership of the thread keyring */
BUG_ON(!tsk->cred);
if (tsk->cred->thread_keyring) {
down_write(&tsk->cred->thread_keyring->sem);
tsk->cred->thread_keyring->uid = tsk->cred->fsuid;
up_write(&tsk->cred->thread_keyring->sem);
}
} /* end key_fsuid_changed() */
/*****************************************************************************/
/*
* the filesystem group ID changed
*/
void key_fsgid_changed(struct task_struct *tsk)
{
/* update the ownership of the thread keyring */
BUG_ON(!tsk->cred);
if (tsk->cred->thread_keyring) {
down_write(&tsk->cred->thread_keyring->sem);
tsk->cred->thread_keyring->gid = tsk->cred->fsgid;
up_write(&tsk->cred->thread_keyring->sem);
}
} /* end key_fsgid_changed() */
/*****************************************************************************/
/*
* search the process keyrings for the first matching key
* - we use the supplied match function to see if the description (or other
* feature of interest) matches
* - we return -EAGAIN if we didn't find any matching key
* - we return -ENOKEY if we found only negative matching keys
*/
key_ref_t search_process_keyrings(struct key_type *type,
const void *description,
key_match_func_t match,
const struct cred *cred)
{
struct request_key_auth *rka;
key_ref_t key_ref, ret, err;
might_sleep();
/* we want to return -EAGAIN or -ENOKEY if any of the keyrings were
* searchable, but we failed to find a key or we found a negative key;
* otherwise we want to return a sample error (probably -EACCES) if
* none of the keyrings were searchable
*
* in terms of priority: success > -ENOKEY > -EAGAIN > other error
*/
key_ref = NULL;
ret = NULL;
err = ERR_PTR(-EAGAIN);
/* search the thread keyring first */
if (cred->thread_keyring) {
key_ref = keyring_search_aux(
make_key_ref(cred->thread_keyring, 1),
cred, type, description, match);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* search the process keyring second */
if (cred->tgcred->process_keyring) {
key_ref = keyring_search_aux(
make_key_ref(cred->tgcred->process_keyring, 1),
cred, type, description, match);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* search the session keyring */
if (cred->tgcred->session_keyring) {
rcu_read_lock();
key_ref = keyring_search_aux(
make_key_ref(rcu_dereference(
cred->tgcred->session_keyring),
1),
cred, type, description, match);
rcu_read_unlock();
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* or search the user-session keyring */
else if (cred->user->session_keyring) {
key_ref = keyring_search_aux(
make_key_ref(cred->user->session_keyring, 1),
cred, type, description, match);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* if this process has an instantiation authorisation key, then we also
* search the keyrings of the process mentioned there
* - we don't permit access to request_key auth keys via this method
*/
if (cred->request_key_auth &&
cred == current_cred() &&
type != &key_type_request_key_auth
) {
/* defend against the auth key being revoked */
down_read(&cred->request_key_auth->sem);
if (key_validate(cred->request_key_auth) == 0) {
rka = cred->request_key_auth->payload.data;
key_ref = search_process_keyrings(type, description,
match, rka->cred);
up_read(&cred->request_key_auth->sem);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
} else {
up_read(&cred->request_key_auth->sem);
}
}
/* no key - decide on the error we're going to go for */
key_ref = ret ? ret : err;
found:
return key_ref;
} /* end search_process_keyrings() */
/*****************************************************************************/
/*
* see if the key we're looking at is the target key
*/
static int lookup_user_key_possessed(const struct key *key, const void *target)
{
return key == target;
} /* end lookup_user_key_possessed() */
/*****************************************************************************/
/*
* lookup a key given a key ID from userspace with a given permissions mask
* - don't create special keyrings unless so requested
* - partially constructed keys aren't found unless requested
*/
key_ref_t lookup_user_key(key_serial_t id, unsigned long lflags,
key_perm_t perm)
{
struct request_key_auth *rka;
const struct cred *cred;
struct key *key;
key_ref_t key_ref, skey_ref;
int ret;
try_again:
cred = get_current_cred();
key_ref = ERR_PTR(-ENOKEY);
switch (id) {
case KEY_SPEC_THREAD_KEYRING:
if (!cred->thread_keyring) {
if (!(lflags & KEY_LOOKUP_CREATE))
goto error;
ret = install_thread_keyring();
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error;
}
goto reget_creds;
}
key = cred->thread_keyring;
atomic_inc(&key->usage);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_PROCESS_KEYRING:
if (!cred->tgcred->process_keyring) {
if (!(lflags & KEY_LOOKUP_CREATE))
goto error;
ret = install_process_keyring();
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error;
}
goto reget_creds;
}
key = cred->tgcred->process_keyring;
atomic_inc(&key->usage);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_SESSION_KEYRING:
if (!cred->tgcred->session_keyring) {
/* always install a session keyring upon access if one
* doesn't exist yet */
ret = install_user_keyrings();
if (ret < 0)
goto error;
ret = install_session_keyring(
cred->user->session_keyring);
if (ret < 0)
goto error;
goto reget_creds;
}
rcu_read_lock();
key = rcu_dereference(cred->tgcred->session_keyring);
atomic_inc(&key->usage);
rcu_read_unlock();
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_USER_KEYRING:
if (!cred->user->uid_keyring) {
ret = install_user_keyrings();
if (ret < 0)
goto error;
}
key = cred->user->uid_keyring;
atomic_inc(&key->usage);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_USER_SESSION_KEYRING:
if (!cred->user->session_keyring) {
ret = install_user_keyrings();
if (ret < 0)
goto error;
}
key = cred->user->session_keyring;
atomic_inc(&key->usage);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_GROUP_KEYRING:
/* group keyrings are not yet supported */
key_ref = ERR_PTR(-EINVAL);
goto error;
case KEY_SPEC_REQKEY_AUTH_KEY:
key = cred->request_key_auth;
if (!key)
goto error;
atomic_inc(&key->usage);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_REQUESTOR_KEYRING:
if (!cred->request_key_auth)
goto error;
down_read(&cred->request_key_auth->sem);
if (cred->request_key_auth->flags & KEY_FLAG_REVOKED) {
key_ref = ERR_PTR(-EKEYREVOKED);
key = NULL;
} else {
rka = cred->request_key_auth->payload.data;
key = rka->dest_keyring;
atomic_inc(&key->usage);
}
up_read(&cred->request_key_auth->sem);
if (!key)
goto error;
key_ref = make_key_ref(key, 1);
break;
default:
key_ref = ERR_PTR(-EINVAL);
if (id < 1)
goto error;
key = key_lookup(id);
if (IS_ERR(key)) {
key_ref = ERR_CAST(key);
goto error;
}
key_ref = make_key_ref(key, 0);
/* check to see if we possess the key */
skey_ref = search_process_keyrings(key->type, key,
lookup_user_key_possessed,
cred);
if (!IS_ERR(skey_ref)) {
key_put(key);
key_ref = skey_ref;
}
break;
}
/* unlink does not use the nominated key in any way, so can skip all
* the permission checks as it is only concerned with the keyring */
if (lflags & KEY_LOOKUP_FOR_UNLINK) {
ret = 0;
goto error;
}
if (!(lflags & KEY_LOOKUP_PARTIAL)) {
ret = wait_for_key_construction(key, true);
switch (ret) {
case -ERESTARTSYS:
goto invalid_key;
default:
if (perm)
goto invalid_key;
case 0:
break;
}
} else if (perm) {
ret = key_validate(key);
if (ret < 0)
goto invalid_key;
}
ret = -EIO;
if (!(lflags & KEY_LOOKUP_PARTIAL) &&
!test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
goto invalid_key;
/* check the permissions */
ret = key_task_permission(key_ref, cred, perm);
if (ret < 0)
goto invalid_key;
error:
put_cred(cred);
return key_ref;
invalid_key:
key_ref_put(key_ref);
key_ref = ERR_PTR(ret);
goto error;
/* if we attempted to install a keyring, then it may have caused new
* creds to be installed */
reget_creds:
put_cred(cred);
goto try_again;
} /* end lookup_user_key() */
/*****************************************************************************/
/*
* join the named keyring as the session keyring if possible, or attempt to
* create a new one of that name if not
* - if the name is NULL, an empty anonymous keyring is installed instead
* - named session keyring joining is done with a semaphore held
*/
long join_session_keyring(const char *name)
{
const struct cred *old;
struct cred *new;
struct key *keyring;
long ret, serial;
/* only permit this if there's a single thread in the thread group -
* this avoids us having to adjust the creds on all threads and risking
* ENOMEM */
if (!current_is_single_threaded())
return -EMLINK;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
/* if no name is provided, install an anonymous keyring */
if (!name) {
ret = install_session_keyring_to_cred(new, NULL);
if (ret < 0)
goto error;
serial = new->tgcred->session_keyring->serial;
ret = commit_creds(new);
if (ret == 0)
ret = serial;
goto okay;
}
/* allow the user to join or create a named keyring */
mutex_lock(&key_session_mutex);
/* look for an existing keyring of this name */
keyring = find_keyring_by_name(name, false);
if (PTR_ERR(keyring) == -ENOKEY) {
/* not found - try and create a new one */
keyring = keyring_alloc(name, old->uid, old->gid, old,
KEY_ALLOC_IN_QUOTA, NULL);
if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
}
} else if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
}
/* we've got a keyring - now to install it */
ret = install_session_keyring_to_cred(new, keyring);
if (ret < 0)
goto error2;
commit_creds(new);
mutex_unlock(&key_session_mutex);
ret = keyring->serial;
key_put(keyring);
okay:
return ret;
error2:
mutex_unlock(&key_session_mutex);
error:
abort_creds(new);
return ret;
}
/*
* Replace a process's session keyring when that process resumes userspace on
* behalf of one of its children
*/
void key_replace_session_keyring(void)
{
const struct cred *old;
struct cred *new;
if (!current->replacement_session_keyring)
return;
write_lock_irq(&tasklist_lock);
new = current->replacement_session_keyring;
current->replacement_session_keyring = NULL;
write_unlock_irq(&tasklist_lock);
if (!new)
return;
old = current_cred();
new-> uid = old-> uid;
new-> euid = old-> euid;
new-> suid = old-> suid;
new->fsuid = old->fsuid;
new-> gid = old-> gid;
new-> egid = old-> egid;
new-> sgid = old-> sgid;
new->fsgid = old->fsgid;
new->user = get_uid(old->user);
new->group_info = get_group_info(old->group_info);
new->securebits = old->securebits;
new->cap_inheritable = old->cap_inheritable;
new->cap_permitted = old->cap_permitted;
new->cap_effective = old->cap_effective;
new->cap_bset = old->cap_bset;
new->jit_keyring = old->jit_keyring;
new->thread_keyring = key_get(old->thread_keyring);
new->tgcred->tgid = old->tgcred->tgid;
new->tgcred->process_keyring = key_get(old->tgcred->process_keyring);
security_transfer_creds(new, old);
commit_creds(new);
}

View File

@@ -0,0 +1,564 @@
/* Request a key from userspace
*
* Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* See Documentation/keys-request-key.txt
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/err.h>
#include <linux/keyctl.h>
#include <linux/slab.h>
#include "internal.h"
#define key_negative_timeout 60 /* default timeout on a negative key's existence */
/*
* wait_on_bit() sleep function for uninterruptible waiting
*/
static int key_wait_bit(void *flags)
{
schedule();
return 0;
}
/*
* wait_on_bit() sleep function for interruptible waiting
*/
static int key_wait_bit_intr(void *flags)
{
schedule();
return signal_pending(current) ? -ERESTARTSYS : 0;
}
/*
* call to complete the construction of a key
*/
void complete_request_key(struct key_construction *cons, int error)
{
kenter("{%d,%d},%d", cons->key->serial, cons->authkey->serial, error);
if (error < 0)
key_negate_and_link(cons->key, key_negative_timeout, NULL,
cons->authkey);
else
key_revoke(cons->authkey);
key_put(cons->key);
key_put(cons->authkey);
kfree(cons);
}
EXPORT_SYMBOL(complete_request_key);
/*
* request userspace finish the construction of a key
* - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>"
*/
static int call_sbin_request_key(struct key_construction *cons,
const char *op,
void *aux)
{
const struct cred *cred = current_cred();
key_serial_t prkey, sskey;
struct key *key = cons->key, *authkey = cons->authkey, *keyring;
char *argv[9], *envp[3], uid_str[12], gid_str[12];
char key_str[12], keyring_str[3][12];
char desc[20];
int ret, i;
kenter("{%d},{%d},%s", key->serial, authkey->serial, op);
ret = install_user_keyrings();
if (ret < 0)
goto error_alloc;
/* allocate a new session keyring */
sprintf(desc, "_req.%u", key->serial);
cred = get_current_cred();
keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred,
KEY_ALLOC_QUOTA_OVERRUN, NULL);
put_cred(cred);
if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error_alloc;
}
/* attach the auth key to the session keyring */
ret = __key_link(keyring, authkey);
if (ret < 0)
goto error_link;
/* record the UID and GID */
sprintf(uid_str, "%d", cred->fsuid);
sprintf(gid_str, "%d", cred->fsgid);
/* we say which key is under construction */
sprintf(key_str, "%d", key->serial);
/* we specify the process's default keyrings */
sprintf(keyring_str[0], "%d",
cred->thread_keyring ? cred->thread_keyring->serial : 0);
prkey = 0;
if (cred->tgcred->process_keyring)
prkey = cred->tgcred->process_keyring->serial;
if (cred->tgcred->session_keyring)
sskey = rcu_dereference(cred->tgcred->session_keyring)->serial;
else
sskey = cred->user->session_keyring->serial;
sprintf(keyring_str[2], "%d", sskey);
/* set up a minimal environment */
i = 0;
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[i] = NULL;
/* set up the argument list */
i = 0;
argv[i++] = "/sbin/request-key";
argv[i++] = (char *) op;
argv[i++] = key_str;
argv[i++] = uid_str;
argv[i++] = gid_str;
argv[i++] = keyring_str[0];
argv[i++] = keyring_str[1];
argv[i++] = keyring_str[2];
argv[i] = NULL;
/* do it */
ret = call_usermodehelper_keys(argv[0], argv, envp, keyring,
UMH_WAIT_PROC);
kdebug("usermode -> 0x%x", ret);
if (ret >= 0) {
/* ret is the exit/wait code */
if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) ||
key_validate(key) < 0)
ret = -ENOKEY;
else
/* ignore any errors from userspace if the key was
* instantiated */
ret = 0;
}
error_link:
key_put(keyring);
error_alloc:
complete_request_key(cons, ret);
kleave(" = %d", ret);
return ret;
}
/*
* call out to userspace for key construction
* - we ignore program failure and go on key status instead
*/
static int construct_key(struct key *key, const void *callout_info,
size_t callout_len, void *aux,
struct key *dest_keyring)
{
struct key_construction *cons;
request_key_actor_t actor;
struct key *authkey;
int ret;
kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);
cons = kmalloc(sizeof(*cons), GFP_KERNEL);
if (!cons)
return -ENOMEM;
/* allocate an authorisation key */
authkey = request_key_auth_new(key, callout_info, callout_len,
dest_keyring);
if (IS_ERR(authkey)) {
kfree(cons);
ret = PTR_ERR(authkey);
authkey = NULL;
} else {
cons->authkey = key_get(authkey);
cons->key = key_get(key);
/* make the call */
actor = call_sbin_request_key;
if (key->type->request_key)
actor = key->type->request_key;
ret = actor(cons, "create", aux);
/* check that the actor called complete_request_key() prior to
* returning an error */
WARN_ON(ret < 0 &&
!test_bit(KEY_FLAG_REVOKED, &authkey->flags));
key_put(authkey);
}
kleave(" = %d", ret);
return ret;
}
/*
* get the appropriate destination keyring for the request
* - we return whatever keyring we select with an extra reference upon it which
* the caller must release
*/
static void construct_get_dest_keyring(struct key **_dest_keyring)
{
struct request_key_auth *rka;
const struct cred *cred = current_cred();
struct key *dest_keyring = *_dest_keyring, *authkey;
kenter("%p", dest_keyring);
/* find the appropriate keyring */
if (dest_keyring) {
/* the caller supplied one */
key_get(dest_keyring);
} else {
/* use a default keyring; falling through the cases until we
* find one that we actually have */
switch (cred->jit_keyring) {
case KEY_REQKEY_DEFL_DEFAULT:
case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
if (cred->request_key_auth) {
authkey = cred->request_key_auth;
down_read(&authkey->sem);
rka = authkey->payload.data;
if (!test_bit(KEY_FLAG_REVOKED,
&authkey->flags))
dest_keyring =
key_get(rka->dest_keyring);
up_read(&authkey->sem);
if (dest_keyring)
break;
}
case KEY_REQKEY_DEFL_THREAD_KEYRING:
dest_keyring = key_get(cred->thread_keyring);
if (dest_keyring)
break;
case KEY_REQKEY_DEFL_PROCESS_KEYRING:
dest_keyring = key_get(cred->tgcred->process_keyring);
if (dest_keyring)
break;
case KEY_REQKEY_DEFL_SESSION_KEYRING:
rcu_read_lock();
dest_keyring = key_get(
rcu_dereference(cred->tgcred->session_keyring));
rcu_read_unlock();
if (dest_keyring)
break;
case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
dest_keyring =
key_get(cred->user->session_keyring);
break;
case KEY_REQKEY_DEFL_USER_KEYRING:
dest_keyring = key_get(cred->user->uid_keyring);
break;
case KEY_REQKEY_DEFL_GROUP_KEYRING:
default:
BUG();
}
}
*_dest_keyring = dest_keyring;
kleave(" [dk %d]", key_serial(dest_keyring));
return;
}
/*
* allocate a new key in under-construction state and attempt to link it in to
* the requested place
* - may return a key that's already under construction instead
*/
static int construct_alloc_key(struct key_type *type,
const char *description,
struct key *dest_keyring,
unsigned long flags,
struct key_user *user,
struct key **_key)
{
const struct cred *cred = current_cred();
struct key *key;
key_ref_t key_ref;
kenter("%s,%s,,,", type->name, description);
mutex_lock(&user->cons_lock);
key = key_alloc(type, description, cred->fsuid, cred->fsgid, cred,
KEY_POS_ALL, flags);
if (IS_ERR(key))
goto alloc_failed;
set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags);
if (dest_keyring)
down_write(&dest_keyring->sem);
/* attach the key to the destination keyring under lock, but we do need
* to do another check just in case someone beat us to it whilst we
* waited for locks */
mutex_lock(&key_construction_mutex);
key_ref = search_process_keyrings(type, description, type->match, cred);
if (!IS_ERR(key_ref))
goto key_already_present;
if (dest_keyring)
__key_link(dest_keyring, key);
mutex_unlock(&key_construction_mutex);
if (dest_keyring)
up_write(&dest_keyring->sem);
mutex_unlock(&user->cons_lock);
*_key = key;
kleave(" = 0 [%d]", key_serial(key));
return 0;
key_already_present:
mutex_unlock(&key_construction_mutex);
if (dest_keyring) {
__key_link(dest_keyring, key_ref_to_ptr(key_ref));
up_write(&dest_keyring->sem);
}
mutex_unlock(&user->cons_lock);
key_put(key);
*_key = key = key_ref_to_ptr(key_ref);
kleave(" = -EINPROGRESS [%d]", key_serial(key));
return -EINPROGRESS;
alloc_failed:
mutex_unlock(&user->cons_lock);
*_key = NULL;
kleave(" = %ld", PTR_ERR(key));
return PTR_ERR(key);
}
/*
* commence key construction
*/
static struct key *construct_key_and_link(struct key_type *type,
const char *description,
const char *callout_info,
size_t callout_len,
void *aux,
struct key *dest_keyring,
unsigned long flags)
{
struct key_user *user;
struct key *key;
int ret;
kenter("");
user = key_user_lookup(current_fsuid(), current_user_ns());
if (!user)
return ERR_PTR(-ENOMEM);
construct_get_dest_keyring(&dest_keyring);
ret = construct_alloc_key(type, description, dest_keyring, flags, user,
&key);
key_user_put(user);
if (ret == 0) {
ret = construct_key(key, callout_info, callout_len, aux,
dest_keyring);
if (ret < 0) {
kdebug("cons failed");
goto construction_failed;
}
}
key_put(dest_keyring);
kleave(" = key %d", key_serial(key));
return key;
construction_failed:
key_negate_and_link(key, key_negative_timeout, NULL, NULL);
key_put(key);
key_put(dest_keyring);
kleave(" = %d", ret);
return ERR_PTR(ret);
}
/*
* request a key
* - search the process's keyrings
* - check the list of keys being created or updated
* - call out to userspace for a key if supplementary info was provided
* - cache the key in an appropriate keyring
*/
struct key *request_key_and_link(struct key_type *type,
const char *description,
const void *callout_info,
size_t callout_len,
void *aux,
struct key *dest_keyring,
unsigned long flags)
{
const struct cred *cred = current_cred();
struct key *key;
key_ref_t key_ref;
kenter("%s,%s,%p,%zu,%p,%p,%lx",
type->name, description, callout_info, callout_len, aux,
dest_keyring, flags);
/* search all the process keyrings for a key */
key_ref = search_process_keyrings(type, description, type->match,
cred);
if (!IS_ERR(key_ref)) {
key = key_ref_to_ptr(key_ref);
if (dest_keyring) {
construct_get_dest_keyring(&dest_keyring);
key_link(dest_keyring, key);
key_put(dest_keyring);
}
} else if (PTR_ERR(key_ref) != -EAGAIN) {
key = ERR_CAST(key_ref);
} else {
/* the search failed, but the keyrings were searchable, so we
* should consult userspace if we can */
key = ERR_PTR(-ENOKEY);
if (!callout_info)
goto error;
key = construct_key_and_link(type, description, callout_info,
callout_len, aux, dest_keyring,
flags);
}
error:
kleave(" = %p", key);
return key;
}
/*
* wait for construction of a key to complete
*/
int wait_for_key_construction(struct key *key, bool intr)
{
int ret;
ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT,
intr ? key_wait_bit_intr : key_wait_bit,
intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
if (ret < 0)
return ret;
return key_validate(key);
}
EXPORT_SYMBOL(wait_for_key_construction);
/*
* request a key
* - search the process's keyrings
* - check the list of keys being created or updated
* - call out to userspace for a key if supplementary info was provided
* - waits uninterruptible for creation to complete
*/
struct key *request_key(struct key_type *type,
const char *description,
const char *callout_info)
{
struct key *key;
size_t callout_len = 0;
int ret;
if (callout_info)
callout_len = strlen(callout_info);
key = request_key_and_link(type, description, callout_info, callout_len,
NULL, NULL, KEY_ALLOC_IN_QUOTA);
if (!IS_ERR(key)) {
ret = wait_for_key_construction(key, false);
if (ret < 0) {
key_put(key);
return ERR_PTR(ret);
}
}
return key;
}
EXPORT_SYMBOL(request_key);
/*
* request a key with auxiliary data for the upcaller
* - search the process's keyrings
* - check the list of keys being created or updated
* - call out to userspace for a key if supplementary info was provided
* - waits uninterruptible for creation to complete
*/
struct key *request_key_with_auxdata(struct key_type *type,
const char *description,
const void *callout_info,
size_t callout_len,
void *aux)
{
struct key *key;
int ret;
key = request_key_and_link(type, description, callout_info, callout_len,
aux, NULL, KEY_ALLOC_IN_QUOTA);
if (!IS_ERR(key)) {
ret = wait_for_key_construction(key, false);
if (ret < 0) {
key_put(key);
return ERR_PTR(ret);
}
}
return key;
}
EXPORT_SYMBOL(request_key_with_auxdata);
/*
* request a key (allow async construction)
* - search the process's keyrings
* - check the list of keys being created or updated
* - call out to userspace for a key if supplementary info was provided
*/
struct key *request_key_async(struct key_type *type,
const char *description,
const void *callout_info,
size_t callout_len)
{
return request_key_and_link(type, description, callout_info,
callout_len, NULL, NULL,
KEY_ALLOC_IN_QUOTA);
}
EXPORT_SYMBOL(request_key_async);
/*
* request a key with auxiliary data for the upcaller (allow async construction)
* - search the process's keyrings
* - check the list of keys being created or updated
* - call out to userspace for a key if supplementary info was provided
*/
struct key *request_key_async_with_auxdata(struct key_type *type,
const char *description,
const void *callout_info,
size_t callout_len,
void *aux)
{
return request_key_and_link(type, description, callout_info,
callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA);
}
EXPORT_SYMBOL(request_key_async_with_auxdata);

View File

@@ -0,0 +1,282 @@
/* request_key_auth.c: request key authorisation controlling key def
*
* Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* See Documentation/keys-request-key.txt
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include "internal.h"
static int request_key_auth_instantiate(struct key *, const void *, size_t);
static void request_key_auth_describe(const struct key *, struct seq_file *);
static void request_key_auth_revoke(struct key *);
static void request_key_auth_destroy(struct key *);
static long request_key_auth_read(const struct key *, char __user *, size_t);
/*
* the request-key authorisation key type definition
*/
struct key_type key_type_request_key_auth = {
.name = ".request_key_auth",
.def_datalen = sizeof(struct request_key_auth),
.instantiate = request_key_auth_instantiate,
.describe = request_key_auth_describe,
.revoke = request_key_auth_revoke,
.destroy = request_key_auth_destroy,
.read = request_key_auth_read,
};
/*****************************************************************************/
/*
* instantiate a request-key authorisation key
*/
static int request_key_auth_instantiate(struct key *key,
const void *data,
size_t datalen)
{
key->payload.data = (struct request_key_auth *) data;
return 0;
} /* end request_key_auth_instantiate() */
/*****************************************************************************/
/*
* reading a request-key authorisation key retrieves the callout information
*/
static void request_key_auth_describe(const struct key *key,
struct seq_file *m)
{
struct request_key_auth *rka = key->payload.data;
seq_puts(m, "key:");
seq_puts(m, key->description);
seq_printf(m, " pid:%d ci:%zu", rka->pid, rka->callout_len);
} /* end request_key_auth_describe() */
/*****************************************************************************/
/*
* read the callout_info data
* - the key's semaphore is read-locked
*/
static long request_key_auth_read(const struct key *key,
char __user *buffer, size_t buflen)
{
struct request_key_auth *rka = key->payload.data;
size_t datalen;
long ret;
datalen = rka->callout_len;
ret = datalen;
/* we can return the data as is */
if (buffer && buflen > 0) {
if (buflen > datalen)
buflen = datalen;
if (copy_to_user(buffer, rka->callout_info, buflen) != 0)
ret = -EFAULT;
}
return ret;
} /* end request_key_auth_read() */
/*****************************************************************************/
/*
* handle revocation of an authorisation token key
* - called with the key sem write-locked
*/
static void request_key_auth_revoke(struct key *key)
{
struct request_key_auth *rka = key->payload.data;
kenter("{%d}", key->serial);
if (rka->cred) {
put_cred(rka->cred);
rka->cred = NULL;
}
} /* end request_key_auth_revoke() */
/*****************************************************************************/
/*
* destroy an instantiation authorisation token key
*/
static void request_key_auth_destroy(struct key *key)
{
struct request_key_auth *rka = key->payload.data;
kenter("{%d}", key->serial);
if (rka->cred) {
put_cred(rka->cred);
rka->cred = NULL;
}
key_put(rka->target_key);
key_put(rka->dest_keyring);
kfree(rka->callout_info);
kfree(rka);
} /* end request_key_auth_destroy() */
/*****************************************************************************/
/*
* create an authorisation token for /sbin/request-key or whoever to gain
* access to the caller's security data
*/
struct key *request_key_auth_new(struct key *target, const void *callout_info,
size_t callout_len, struct key *dest_keyring)
{
struct request_key_auth *rka, *irka;
const struct cred *cred = current->cred;
struct key *authkey = NULL;
char desc[20];
int ret;
kenter("%d,", target->serial);
/* allocate a auth record */
rka = kmalloc(sizeof(*rka), GFP_KERNEL);
if (!rka) {
kleave(" = -ENOMEM");
return ERR_PTR(-ENOMEM);
}
rka->callout_info = kmalloc(callout_len, GFP_KERNEL);
if (!rka->callout_info) {
kleave(" = -ENOMEM");
kfree(rka);
return ERR_PTR(-ENOMEM);
}
/* see if the calling process is already servicing the key request of
* another process */
if (cred->request_key_auth) {
/* it is - use that instantiation context here too */
down_read(&cred->request_key_auth->sem);
/* if the auth key has been revoked, then the key we're
* servicing is already instantiated */
if (test_bit(KEY_FLAG_REVOKED, &cred->request_key_auth->flags))
goto auth_key_revoked;
irka = cred->request_key_auth->payload.data;
rka->cred = get_cred(irka->cred);
rka->pid = irka->pid;
up_read(&cred->request_key_auth->sem);
}
else {
/* it isn't - use this process as the context */
rka->cred = get_cred(cred);
rka->pid = current->pid;
}
rka->target_key = key_get(target);
rka->dest_keyring = key_get(dest_keyring);
memcpy(rka->callout_info, callout_info, callout_len);
rka->callout_len = callout_len;
/* allocate the auth key */
sprintf(desc, "%x", target->serial);
authkey = key_alloc(&key_type_request_key_auth, desc,
cred->fsuid, cred->fsgid, cred,
KEY_POS_VIEW | KEY_POS_READ | KEY_POS_SEARCH |
KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA);
if (IS_ERR(authkey)) {
ret = PTR_ERR(authkey);
goto error_alloc;
}
/* construct the auth key */
ret = key_instantiate_and_link(authkey, rka, 0, NULL, NULL);
if (ret < 0)
goto error_inst;
kleave(" = {%d,%d}", authkey->serial, atomic_read(&authkey->usage));
return authkey;
auth_key_revoked:
up_read(&cred->request_key_auth->sem);
kfree(rka->callout_info);
kfree(rka);
kleave("= -EKEYREVOKED");
return ERR_PTR(-EKEYREVOKED);
error_inst:
key_revoke(authkey);
key_put(authkey);
error_alloc:
key_put(rka->target_key);
key_put(rka->dest_keyring);
kfree(rka->callout_info);
kfree(rka);
kleave("= %d", ret);
return ERR_PTR(ret);
} /* end request_key_auth_new() */
/*****************************************************************************/
/*
* see if an authorisation key is associated with a particular key
*/
static int key_get_instantiation_authkey_match(const struct key *key,
const void *_id)
{
struct request_key_auth *rka = key->payload.data;
key_serial_t id = (key_serial_t)(unsigned long) _id;
return rka->target_key->serial == id;
} /* end key_get_instantiation_authkey_match() */
/*****************************************************************************/
/*
* get the authorisation key for instantiation of a specific key if attached to
* the current process's keyrings
* - this key is inserted into a keyring and that is set as /sbin/request-key's
* session keyring
* - a target_id of zero specifies any valid token
*/
struct key *key_get_instantiation_authkey(key_serial_t target_id)
{
const struct cred *cred = current_cred();
struct key *authkey;
key_ref_t authkey_ref;
authkey_ref = search_process_keyrings(
&key_type_request_key_auth,
(void *) (unsigned long) target_id,
key_get_instantiation_authkey_match,
cred);
if (IS_ERR(authkey_ref)) {
authkey = ERR_CAST(authkey_ref);
goto error;
}
authkey = key_ref_to_ptr(authkey_ref);
if (test_bit(KEY_FLAG_REVOKED, &authkey->flags)) {
key_put(authkey);
authkey = ERR_PTR(-EKEYREVOKED);
}
error:
return authkey;
} /* end key_get_instantiation_authkey() */

View File

@@ -0,0 +1,70 @@
/* Key management controls
*
* Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/key.h>
#include <linux/sysctl.h>
#include "internal.h"
static const int zero, one = 1, max = INT_MAX;
ctl_table key_sysctls[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "maxkeys",
.data = &key_quota_maxkeys,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &one,
.extra2 = (void *) &max,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "maxbytes",
.data = &key_quota_maxbytes,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &one,
.extra2 = (void *) &max,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "root_maxkeys",
.data = &key_quota_root_maxkeys,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &one,
.extra2 = (void *) &max,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "root_maxbytes",
.data = &key_quota_root_maxbytes,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &one,
.extra2 = (void *) &max,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "gc_delay",
.data = &key_gc_delay,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.extra1 = (void *) &zero,
.extra2 = (void *) &max,
},
{ .ctl_name = 0 }
};

View File

@@ -0,0 +1,218 @@
/* user_defined.c: user defined key type
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <keys/user-type.h>
#include <asm/uaccess.h>
#include "internal.h"
/*
* user defined keys take an arbitrary string as the description and an
* arbitrary blob of data as the payload
*/
struct key_type key_type_user = {
.name = "user",
.instantiate = user_instantiate,
.update = user_update,
.match = user_match,
.revoke = user_revoke,
.destroy = user_destroy,
.describe = user_describe,
.read = user_read,
};
EXPORT_SYMBOL_GPL(key_type_user);
/*****************************************************************************/
/*
* instantiate a user defined key
*/
int user_instantiate(struct key *key, const void *data, size_t datalen)
{
struct user_key_payload *upayload;
int ret;
ret = -EINVAL;
if (datalen <= 0 || datalen > 32767 || !data)
goto error;
ret = key_payload_reserve(key, datalen);
if (ret < 0)
goto error;
ret = -ENOMEM;
upayload = kmalloc(sizeof(*upayload) + datalen, GFP_KERNEL);
if (!upayload)
goto error;
/* attach the data */
upayload->datalen = datalen;
memcpy(upayload->data, data, datalen);
rcu_assign_pointer(key->payload.data, upayload);
ret = 0;
error:
return ret;
} /* end user_instantiate() */
EXPORT_SYMBOL_GPL(user_instantiate);
/*****************************************************************************/
/*
* dispose of the old data from an updated user defined key
*/
static void user_update_rcu_disposal(struct rcu_head *rcu)
{
struct user_key_payload *upayload;
upayload = container_of(rcu, struct user_key_payload, rcu);
kfree(upayload);
} /* end user_update_rcu_disposal() */
/*****************************************************************************/
/*
* update a user defined key
* - the key's semaphore is write-locked
*/
int user_update(struct key *key, const void *data, size_t datalen)
{
struct user_key_payload *upayload, *zap;
int ret;
ret = -EINVAL;
if (datalen <= 0 || datalen > 32767 || !data)
goto error;
/* construct a replacement payload */
ret = -ENOMEM;
upayload = kmalloc(sizeof(*upayload) + datalen, GFP_KERNEL);
if (!upayload)
goto error;
upayload->datalen = datalen;
memcpy(upayload->data, data, datalen);
/* check the quota and attach the new data */
zap = upayload;
ret = key_payload_reserve(key, datalen);
if (ret == 0) {
/* attach the new data, displacing the old */
zap = key->payload.data;
rcu_assign_pointer(key->payload.data, upayload);
key->expiry = 0;
}
call_rcu(&zap->rcu, user_update_rcu_disposal);
error:
return ret;
} /* end user_update() */
EXPORT_SYMBOL_GPL(user_update);
/*****************************************************************************/
/*
* match users on their name
*/
int user_match(const struct key *key, const void *description)
{
return strcmp(key->description, description) == 0;
} /* end user_match() */
EXPORT_SYMBOL_GPL(user_match);
/*****************************************************************************/
/*
* dispose of the links from a revoked keyring
* - called with the key sem write-locked
*/
void user_revoke(struct key *key)
{
struct user_key_payload *upayload = key->payload.data;
/* clear the quota */
key_payload_reserve(key, 0);
if (upayload) {
rcu_assign_pointer(key->payload.data, NULL);
call_rcu(&upayload->rcu, user_update_rcu_disposal);
}
} /* end user_revoke() */
EXPORT_SYMBOL(user_revoke);
/*****************************************************************************/
/*
* dispose of the data dangling from the corpse of a user key
*/
void user_destroy(struct key *key)
{
struct user_key_payload *upayload = key->payload.data;
kfree(upayload);
} /* end user_destroy() */
EXPORT_SYMBOL_GPL(user_destroy);
/*****************************************************************************/
/*
* describe the user key
*/
void user_describe(const struct key *key, struct seq_file *m)
{
seq_puts(m, key->description);
seq_printf(m, ": %u", key->datalen);
} /* end user_describe() */
EXPORT_SYMBOL_GPL(user_describe);
/*****************************************************************************/
/*
* read the key data
* - the key's semaphore is read-locked
*/
long user_read(const struct key *key, char __user *buffer, size_t buflen)
{
struct user_key_payload *upayload;
long ret;
upayload = rcu_dereference(key->payload.data);
ret = upayload->datalen;
/* we can return the data as is */
if (buffer && buflen > 0) {
if (buflen > upayload->datalen)
buflen = upayload->datalen;
if (copy_to_user(buffer, upayload->data, buflen) != 0)
ret = -EFAULT;
}
return ret;
} /* end user_read() */
EXPORT_SYMBOL_GPL(user_read);