/* * linux/drivers/net/irda/pxaficp_ir.c * * Based on sa1100_ir.c by Russell King * * Changes copyright (C) 2003-2005 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Infra-red driver (SIR/FIR) for the PXA2xx embedded microprocessor * */ #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/gpio.h> #include <net/irda/irda.h> #include <net/irda/irmod.h> #include <net/irda/wrapper.h> #include <net/irda/irda_device.h> #include <mach/dma.h> #include <mach/irda.h> #include <mach/regs-uart.h> #include <mach/regs-ost.h> #define FICP __REG(0x40800000) /* Start of FICP area */ #define ICCR0 __REG(0x40800000) /* ICP Control Register 0 */ #define ICCR1 __REG(0x40800004) /* ICP Control Register 1 */ #define ICCR2 __REG(0x40800008) /* ICP Control Register 2 */ #define ICDR __REG(0x4080000c) /* ICP Data Register */ #define ICSR0 __REG(0x40800014) /* ICP Status Register 0 */ #define ICSR1 __REG(0x40800018) /* ICP Status Register 1 */ #define ICCR0_AME (1 << 7) /* Address match enable */ #define ICCR0_TIE (1 << 6) /* Transmit FIFO interrupt enable */ #define ICCR0_RIE (1 << 5) /* Recieve FIFO interrupt enable */ #define ICCR0_RXE (1 << 4) /* Receive enable */ #define ICCR0_TXE (1 << 3) /* Transmit enable */ #define ICCR0_TUS (1 << 2) /* Transmit FIFO underrun select */ #define ICCR0_LBM (1 << 1) /* Loopback mode */ #define ICCR0_ITR (1 << 0) /* IrDA transmission */ #define ICCR2_RXP (1 << 3) /* Receive Pin Polarity select */ #define ICCR2_TXP (1 << 2) /* Transmit Pin Polarity select */ #define ICCR2_TRIG (3 << 0) /* Receive FIFO Trigger threshold */ #define ICCR2_TRIG_8 (0 << 0) /* >= 8 bytes */ #define ICCR2_TRIG_16 (1 << 0) /* >= 16 bytes */ #define ICCR2_TRIG_32 (2 << 0) /* >= 32 bytes */ #ifdef CONFIG_PXA27x #define ICSR0_EOC (1 << 6) /* DMA End of Descriptor Chain */ #endif #define ICSR0_FRE (1 << 5) /* Framing error */ #define ICSR0_RFS (1 << 4) /* Receive FIFO service request */ #define ICSR0_TFS (1 << 3) /* Transnit FIFO service request */ #define ICSR0_RAB (1 << 2) /* Receiver abort */ #define ICSR0_TUR (1 << 1) /* Trunsmit FIFO underun */ #define ICSR0_EIF (1 << 0) /* End/Error in FIFO */ #define ICSR1_ROR (1 << 6) /* Receiver FIFO underrun */ #define ICSR1_CRE (1 << 5) /* CRC error */ #define ICSR1_EOF (1 << 4) /* End of frame */ #define ICSR1_TNF (1 << 3) /* Transmit FIFO not full */ #define ICSR1_RNE (1 << 2) /* Receive FIFO not empty */ #define ICSR1_TBY (1 << 1) /* Tramsmiter busy flag */ #define ICSR1_RSY (1 << 0) /* Recevier synchronized flag */ #define IrSR_RXPL_NEG_IS_ZERO (1<<4) #define IrSR_RXPL_POS_IS_ZERO 0x0 #define IrSR_TXPL_NEG_IS_ZERO (1<<3) #define IrSR_TXPL_POS_IS_ZERO 0x0 #define IrSR_XMODE_PULSE_1_6 (1<<2) #define IrSR_XMODE_PULSE_3_16 0x0 #define IrSR_RCVEIR_IR_MODE (1<<1) #define IrSR_RCVEIR_UART_MODE 0x0 #define IrSR_XMITIR_IR_MODE (1<<0) #define IrSR_XMITIR_UART_MODE 0x0 #define IrSR_IR_RECEIVE_ON (\ IrSR_RXPL_NEG_IS_ZERO | \ IrSR_TXPL_POS_IS_ZERO | \ IrSR_XMODE_PULSE_3_16 | \ IrSR_RCVEIR_IR_MODE | \ IrSR_XMITIR_UART_MODE) #define IrSR_IR_TRANSMIT_ON (\ IrSR_RXPL_NEG_IS_ZERO | \ IrSR_TXPL_POS_IS_ZERO | \ IrSR_XMODE_PULSE_3_16 | \ IrSR_RCVEIR_UART_MODE | \ IrSR_XMITIR_IR_MODE) struct pxa_irda { int speed; int newspeed; unsigned long last_oscr; unsigned char *dma_rx_buff; unsigned char *dma_tx_buff; dma_addr_t dma_rx_buff_phy; dma_addr_t dma_tx_buff_phy; unsigned int dma_tx_buff_len; int txdma; int rxdma; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff; struct device *dev; struct pxaficp_platform_data *pdata; struct clk *fir_clk; struct clk *sir_clk; struct clk *cur_clk; }; static inline void pxa_irda_disable_clk(struct pxa_irda *si) { if (si->cur_clk) clk_disable(si->cur_clk); si->cur_clk = NULL; } static inline void pxa_irda_enable_firclk(struct pxa_irda *si) { si->cur_clk = si->fir_clk; clk_enable(si->fir_clk); } static inline void pxa_irda_enable_sirclk(struct pxa_irda *si) { si->cur_clk = si->sir_clk; clk_enable(si->sir_clk); } #define IS_FIR(si) ((si)->speed >= 4000000) #define IRDA_FRAME_SIZE_LIMIT 2047 inline static void pxa_irda_fir_dma_rx_start(struct pxa_irda *si) { DCSR(si->rxdma) = DCSR_NODESC; DSADR(si->rxdma) = __PREG(ICDR); DTADR(si->rxdma) = si->dma_rx_buff_phy; DCMD(si->rxdma) = DCMD_INCTRGADDR | DCMD_FLOWSRC | DCMD_WIDTH1 | DCMD_BURST32 | IRDA_FRAME_SIZE_LIMIT; DCSR(si->rxdma) |= DCSR_RUN; } inline static void pxa_irda_fir_dma_tx_start(struct pxa_irda *si) { DCSR(si->txdma) = DCSR_NODESC; DSADR(si->txdma) = si->dma_tx_buff_phy; DTADR(si->txdma) = __PREG(ICDR); DCMD(si->txdma) = DCMD_INCSRCADDR | DCMD_FLOWTRG | DCMD_ENDIRQEN | DCMD_WIDTH1 | DCMD_BURST32 | si->dma_tx_buff_len; DCSR(si->txdma) |= DCSR_RUN; } /* * Set the IrDA communications mode. */ static void pxa_irda_set_mode(struct pxa_irda *si, int mode) { if (si->pdata->transceiver_mode) si->pdata->transceiver_mode(si->dev, mode); else { if (gpio_is_valid(si->pdata->gpio_pwdown)) gpio_set_value(si->pdata->gpio_pwdown, !(mode & IR_OFF) ^ !si->pdata->gpio_pwdown_inverted); pxa2xx_transceiver_mode(si->dev, mode); } } /* * Set the IrDA communications speed. */ static int pxa_irda_set_speed(struct pxa_irda *si, int speed) { unsigned long flags; unsigned int divisor; switch (speed) { case 9600: case 19200: case 38400: case 57600: case 115200: /* refer to PXA250/210 Developer's Manual 10-7 */ /* BaudRate = 14.7456 MHz / (16*Divisor) */ divisor = 14745600 / (16 * speed); local_irq_save(flags); if (IS_FIR(si)) { /* stop RX DMA */ DCSR(si->rxdma) &= ~DCSR_RUN; /* disable FICP */ ICCR0 = 0; pxa_irda_disable_clk(si); /* set board transceiver to SIR mode */ pxa_irda_set_mode(si, IR_SIRMODE); /* enable the STUART clock */ pxa_irda_enable_sirclk(si); } /* disable STUART first */ STIER = 0; /* access DLL & DLH */ STLCR |= LCR_DLAB; STDLL = divisor & 0xff; STDLH = divisor >> 8; STLCR &= ~LCR_DLAB; si->speed = speed; STISR = IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6; STIER = IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE; local_irq_restore(flags); break; case 4000000: local_irq_save(flags); /* disable STUART */ STIER = 0; STISR = 0; pxa_irda_disable_clk(si); /* disable FICP first */ ICCR0 = 0; /* set board transceiver to FIR mode */ pxa_irda_set_mode(si, IR_FIRMODE); /* enable the FICP clock */ pxa_irda_enable_firclk(si); si->speed = speed; pxa_irda_fir_dma_rx_start(si); ICCR0 = ICCR0_ITR | ICCR0_RXE; local_irq_restore(flags); break; default: return -EINVAL; } return 0; } /* SIR interrupt service routine. */ static irqreturn_t pxa_irda_sir_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct pxa_irda *si = netdev_priv(dev); int iir, lsr, data; iir = STIIR; switch (iir & 0x0F) { case 0x06: /* Receiver Line Status */ lsr = STLSR; while (lsr & LSR_FIFOE) { data = STRBR; if (lsr & (LSR_OE | LSR_PE | LSR_FE | LSR_BI)) { printk(KERN_DEBUG "pxa_ir: sir receiving error\n"); dev->stats.rx_errors++; if (lsr & LSR_FE) dev->stats.rx_frame_errors++; if (lsr & LSR_OE) dev->stats.rx_fifo_errors++; } else { dev->stats.rx_bytes++; async_unwrap_char(dev, &dev->stats, &si->rx_buff, data); } lsr = STLSR; } si->last_oscr = OSCR; break; case 0x04: /* Received Data Available */ /* forth through */ case 0x0C: /* Character Timeout Indication */ do { dev->stats.rx_bytes++; async_unwrap_char(dev, &dev->stats, &si->rx_buff, STRBR); } while (STLSR & LSR_DR); si->last_oscr = OSCR; break; case 0x02: /* Transmit FIFO Data Request */ while ((si->tx_buff.len) && (STLSR & LSR_TDRQ)) { STTHR = *si->tx_buff.data++; si->tx_buff.len -= 1; } if (si->tx_buff.len == 0) { dev->stats.tx_packets++; dev->stats.tx_bytes += si->tx_buff.data - si->tx_buff.head; /* We need to ensure that the transmitter has finished. */ while ((STLSR & LSR_TEMT) == 0) cpu_relax(); si->last_oscr = OSCR; /* * Ok, we've finished transmitting. Now enable * the receiver. Sometimes we get a receive IRQ * immediately after a transmit... */ if (si->newspeed) { pxa_irda_set_speed(si, si->newspeed); si->newspeed = 0; } else { /* enable IR Receiver, disable IR Transmitter */ STISR = IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6; /* enable STUART and receive interrupts */ STIER = IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE; } /* I'm hungry! */ netif_wake_queue(dev); } break; } return IRQ_HANDLED; } /* FIR Receive DMA interrupt handler */ static void pxa_irda_fir_dma_rx_irq(int channel, void *data) { int dcsr = DCSR(channel); DCSR(channel) = dcsr & ~DCSR_RUN; printk(KERN_DEBUG "pxa_ir: fir rx dma bus error %#x\n", dcsr); } /* FIR Transmit DMA interrupt handler */ static void pxa_irda_fir_dma_tx_irq(int channel, void *data) { struct net_device *dev = data; struct pxa_irda *si = netdev_priv(dev); int dcsr; dcsr = DCSR(channel); DCSR(channel) = dcsr & ~DCSR_RUN; if (dcsr & DCSR_ENDINTR) { dev->stats.tx_packets++; dev->stats.tx_bytes += si->dma_tx_buff_len; } else { dev->stats.tx_errors++; } while (ICSR1 & ICSR1_TBY) cpu_relax(); si->last_oscr = OSCR; /* * HACK: It looks like the TBY bit is dropped too soon. * Without this delay things break. */ udelay(120); if (si->newspeed) { pxa_irda_set_speed(si, si->newspeed); si->newspeed = 0; } else { int i = 64; ICCR0 = 0; pxa_irda_fir_dma_rx_start(si); while ((ICSR1 & ICSR1_RNE) && i--) (void)ICDR; ICCR0 = ICCR0_ITR | ICCR0_RXE; if (i < 0) printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n"); } netif_wake_queue(dev); } /* EIF(Error in FIFO/End in Frame) handler for FIR */ static void pxa_irda_fir_irq_eif(struct pxa_irda *si, struct net_device *dev, int icsr0) { unsigned int len, stat, data; /* Get the current data position. */ len = DTADR(si->rxdma) - si->dma_rx_buff_phy; do { /* Read Status, and then Data. */ stat = ICSR1; rmb(); data = ICDR; if (stat & (ICSR1_CRE | ICSR1_ROR)) { dev->stats.rx_errors++; if (stat & ICSR1_CRE) { printk(KERN_DEBUG "pxa_ir: fir receive CRC error\n"); dev->stats.rx_crc_errors++; } if (stat & ICSR1_ROR) { printk(KERN_DEBUG "pxa_ir: fir receive overrun\n"); dev->stats.rx_over_errors++; } } else { si->dma_rx_buff[len++] = data; } /* If we hit the end of frame, there's no point in continuing. */ if (stat & ICSR1_EOF) break; } while (ICSR0 & ICSR0_EIF); if (stat & ICSR1_EOF) { /* end of frame. */ struct sk_buff *skb; if (icsr0 & ICSR0_FRE) { printk(KERN_ERR "pxa_ir: dropping erroneous frame\n"); dev->stats.rx_dropped++; return; } skb = alloc_skb(len+1,GFP_ATOMIC); if (!skb) { printk(KERN_ERR "pxa_ir: fir out of memory for receive skb\n"); dev->stats.rx_dropped++; return; } /* Align IP header to 20 bytes */ skb_reserve(skb, 1); skb_copy_to_linear_data(skb, si->dma_rx_buff, len); skb_put(skb, len); /* Feed it to IrLAP */ skb->dev = dev; skb_reset_mac_header(skb); skb->protocol = htons(ETH_P_IRDA); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += len; } } /* FIR interrupt handler */ static irqreturn_t pxa_irda_fir_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct pxa_irda *si = netdev_priv(dev); int icsr0, i = 64; /* stop RX DMA */ DCSR(si->rxdma) &= ~DCSR_RUN; si->last_oscr = OSCR; icsr0 = ICSR0; if (icsr0 & (ICSR0_FRE | ICSR0_RAB)) { if (icsr0 & ICSR0_FRE) { printk(KERN_DEBUG "pxa_ir: fir receive frame error\n"); dev->stats.rx_frame_errors++; } else { printk(KERN_DEBUG "pxa_ir: fir receive abort\n"); dev->stats.rx_errors++; } ICSR0 = icsr0 & (ICSR0_FRE | ICSR0_RAB); } if (icsr0 & ICSR0_EIF) { /* An error in FIFO occured, or there is a end of frame */ pxa_irda_fir_irq_eif(si, dev, icsr0); } ICCR0 = 0; pxa_irda_fir_dma_rx_start(si); while ((ICSR1 & ICSR1_RNE) && i--) (void)ICDR; ICCR0 = ICCR0_ITR | ICCR0_RXE; if (i < 0) printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n"); return IRQ_HANDLED; } /* hard_xmit interface of irda device */ static int pxa_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); int speed = irda_get_next_speed(skb); /* * Does this packet contain a request to change the interface * speed? If so, remember it until we complete the transmission * of this frame. */ if (speed != si->speed && speed != -1) si->newspeed = speed; /* * If this is an empty frame, we can bypass a lot. */ if (skb->len == 0) { if (si->newspeed) { si->newspeed = 0; pxa_irda_set_speed(si, speed); } dev_kfree_skb(skb); return NETDEV_TX_OK; } netif_stop_queue(dev); if (!IS_FIR(si)) { si->tx_buff.data = si->tx_buff.head; si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, si->tx_buff.truesize); /* Disable STUART interrupts and switch to transmit mode. */ STIER = 0; STISR = IrSR_IR_TRANSMIT_ON | IrSR_XMODE_PULSE_1_6; /* enable STUART and transmit interrupts */ STIER = IER_UUE | IER_TIE; } else { unsigned long mtt = irda_get_mtt(skb); si->dma_tx_buff_len = skb->len; skb_copy_from_linear_data(skb, si->dma_tx_buff, skb->len); if (mtt) while ((unsigned)(OSCR - si->last_oscr)/4 < mtt) cpu_relax(); /* stop RX DMA, disable FICP */ DCSR(si->rxdma) &= ~DCSR_RUN; ICCR0 = 0; pxa_irda_fir_dma_tx_start(si); ICCR0 = ICCR0_ITR | ICCR0_TXE; } dev_kfree_skb(skb); dev->trans_start = jiffies; return NETDEV_TX_OK; } static int pxa_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) { struct if_irda_req *rq = (struct if_irda_req *)ifreq; struct pxa_irda *si = netdev_priv(dev); int ret; switch (cmd) { case SIOCSBANDWIDTH: ret = -EPERM; if (capable(CAP_NET_ADMIN)) { /* * We are unable to set the speed if the * device is not running. */ if (netif_running(dev)) { ret = pxa_irda_set_speed(si, rq->ifr_baudrate); } else { printk(KERN_INFO "pxa_ir: SIOCSBANDWIDTH: !netif_running\n"); ret = 0; } } break; case SIOCSMEDIABUSY: ret = -EPERM; if (capable(CAP_NET_ADMIN)) { irda_device_set_media_busy(dev, TRUE); ret = 0; } break; case SIOCGRECEIVING: ret = 0; rq->ifr_receiving = IS_FIR(si) ? 0 : si->rx_buff.state != OUTSIDE_FRAME; break; default: ret = -EOPNOTSUPP; break; } return ret; } static void pxa_irda_startup(struct pxa_irda *si) { /* Disable STUART interrupts */ STIER = 0; /* enable STUART interrupt to the processor */ STMCR = MCR_OUT2; /* configure SIR frame format: StartBit - Data 7 ... Data 0 - Stop Bit */ STLCR = LCR_WLS0 | LCR_WLS1; /* enable FIFO, we use FIFO to improve performance */ STFCR = FCR_TRFIFOE | FCR_ITL_32; /* disable FICP */ ICCR0 = 0; /* configure FICP ICCR2 */ ICCR2 = ICCR2_TXP | ICCR2_TRIG_32; /* configure DMAC */ DRCMR(17) = si->rxdma | DRCMR_MAPVLD; DRCMR(18) = si->txdma | DRCMR_MAPVLD; /* force SIR reinitialization */ si->speed = 4000000; pxa_irda_set_speed(si, 9600); printk(KERN_DEBUG "pxa_ir: irda startup\n"); } static void pxa_irda_shutdown(struct pxa_irda *si) { unsigned long flags; local_irq_save(flags); /* disable STUART and interrupt */ STIER = 0; /* disable STUART SIR mode */ STISR = 0; /* disable DMA */ DCSR(si->txdma) &= ~DCSR_RUN; DCSR(si->rxdma) &= ~DCSR_RUN; /* disable FICP */ ICCR0 = 0; /* disable the STUART or FICP clocks */ pxa_irda_disable_clk(si); DRCMR(17) = 0; DRCMR(18) = 0; local_irq_restore(flags); /* power off board transceiver */ pxa_irda_set_mode(si, IR_OFF); printk(KERN_DEBUG "pxa_ir: irda shutdown\n"); } static int pxa_irda_start(struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); int err; si->speed = 9600; err = request_irq(IRQ_STUART, pxa_irda_sir_irq, 0, dev->name, dev); if (err) goto err_irq1; err = request_irq(IRQ_ICP, pxa_irda_fir_irq, 0, dev->name, dev); if (err) goto err_irq2; /* * The interrupt must remain disabled for now. */ disable_irq(IRQ_STUART); disable_irq(IRQ_ICP); err = -EBUSY; si->rxdma = pxa_request_dma("FICP_RX",DMA_PRIO_LOW, pxa_irda_fir_dma_rx_irq, dev); if (si->rxdma < 0) goto err_rx_dma; si->txdma = pxa_request_dma("FICP_TX",DMA_PRIO_LOW, pxa_irda_fir_dma_tx_irq, dev); if (si->txdma < 0) goto err_tx_dma; err = -ENOMEM; si->dma_rx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, &si->dma_rx_buff_phy, GFP_KERNEL ); if (!si->dma_rx_buff) goto err_dma_rx_buff; si->dma_tx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, &si->dma_tx_buff_phy, GFP_KERNEL ); if (!si->dma_tx_buff) goto err_dma_tx_buff; /* Setup the serial port for the initial speed. */ pxa_irda_startup(si); /* * Open a new IrLAP layer instance. */ si->irlap = irlap_open(dev, &si->qos, "pxa"); err = -ENOMEM; if (!si->irlap) goto err_irlap; /* * Now enable the interrupt and start the queue */ enable_irq(IRQ_STUART); enable_irq(IRQ_ICP); netif_start_queue(dev); printk(KERN_DEBUG "pxa_ir: irda driver opened\n"); return 0; err_irlap: pxa_irda_shutdown(si); dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy); err_dma_tx_buff: dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy); err_dma_rx_buff: pxa_free_dma(si->txdma); err_tx_dma: pxa_free_dma(si->rxdma); err_rx_dma: free_irq(IRQ_ICP, dev); err_irq2: free_irq(IRQ_STUART, dev); err_irq1: return err; } static int pxa_irda_stop(struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); netif_stop_queue(dev); pxa_irda_shutdown(si); /* Stop IrLAP */ if (si->irlap) { irlap_close(si->irlap); si->irlap = NULL; } free_irq(IRQ_STUART, dev); free_irq(IRQ_ICP, dev); pxa_free_dma(si->rxdma); pxa_free_dma(si->txdma); if (si->dma_rx_buff) dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy); if (si->dma_tx_buff) dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy); printk(KERN_DEBUG "pxa_ir: irda driver closed\n"); return 0; } static int pxa_irda_suspend(struct platform_device *_dev, pm_message_t state) { struct net_device *dev = platform_get_drvdata(_dev); struct pxa_irda *si; if (dev && netif_running(dev)) { si = netdev_priv(dev); netif_device_detach(dev); pxa_irda_shutdown(si); } return 0; } static int pxa_irda_resume(struct platform_device *_dev) { struct net_device *dev = platform_get_drvdata(_dev); struct pxa_irda *si; if (dev && netif_running(dev)) { si = netdev_priv(dev); pxa_irda_startup(si); netif_device_attach(dev); netif_wake_queue(dev); } return 0; } static int pxa_irda_init_iobuf(iobuff_t *io, int size) { io->head = kmalloc(size, GFP_KERNEL | GFP_DMA); if (io->head != NULL) { io->truesize = size; io->in_frame = FALSE; io->state = OUTSIDE_FRAME; io->data = io->head; } return io->head ? 0 : -ENOMEM; } static const struct net_device_ops pxa_irda_netdev_ops = { .ndo_open = pxa_irda_start, .ndo_stop = pxa_irda_stop, .ndo_start_xmit = pxa_irda_hard_xmit, .ndo_do_ioctl = pxa_irda_ioctl, }; static int pxa_irda_probe(struct platform_device *pdev) { struct net_device *dev; struct pxa_irda *si; unsigned int baudrate_mask; int err; if (!pdev->dev.platform_data) return -ENODEV; err = request_mem_region(__PREG(STUART), 0x24, "IrDA") ? 0 : -EBUSY; if (err) goto err_mem_1; err = request_mem_region(__PREG(FICP), 0x1c, "IrDA") ? 0 : -EBUSY; if (err) goto err_mem_2; dev = alloc_irdadev(sizeof(struct pxa_irda)); if (!dev) goto err_mem_3; SET_NETDEV_DEV(dev, &pdev->dev); si = netdev_priv(dev); si->dev = &pdev->dev; si->pdata = pdev->dev.platform_data; si->sir_clk = clk_get(&pdev->dev, "UARTCLK"); si->fir_clk = clk_get(&pdev->dev, "FICPCLK"); if (IS_ERR(si->sir_clk) || IS_ERR(si->fir_clk)) { err = PTR_ERR(IS_ERR(si->sir_clk) ? si->sir_clk : si->fir_clk); goto err_mem_4; } /* * Initialise the SIR buffers */ err = pxa_irda_init_iobuf(&si->rx_buff, 14384); if (err) goto err_mem_4; err = pxa_irda_init_iobuf(&si->tx_buff, 4000); if (err) goto err_mem_5; if (gpio_is_valid(si->pdata->gpio_pwdown)) { err = gpio_request(si->pdata->gpio_pwdown, "IrDA switch"); if (err) goto err_startup; err = gpio_direction_output(si->pdata->gpio_pwdown, !si->pdata->gpio_pwdown_inverted); if (err) { gpio_free(si->pdata->gpio_pwdown); goto err_startup; } } if (si->pdata->startup) { err = si->pdata->startup(si->dev); if (err) goto err_startup; } if (gpio_is_valid(si->pdata->gpio_pwdown) && si->pdata->startup) dev_warn(si->dev, "gpio_pwdown and startup() both defined!\n"); dev->netdev_ops = &pxa_irda_netdev_ops; irda_init_max_qos_capabilies(&si->qos); baudrate_mask = 0; if (si->pdata->transceiver_cap & IR_SIRMODE) baudrate_mask |= IR_9600|IR_19200|IR_38400|IR_57600|IR_115200; if (si->pdata->transceiver_cap & IR_FIRMODE) baudrate_mask |= IR_4000000 << 8; si->qos.baud_rate.bits &= baudrate_mask; si->qos.min_turn_time.bits = 7; /* 1ms or more */ irda_qos_bits_to_value(&si->qos); err = register_netdev(dev); if (err == 0) dev_set_drvdata(&pdev->dev, dev); if (err) { if (si->pdata->shutdown) si->pdata->shutdown(si->dev); err_startup: kfree(si->tx_buff.head); err_mem_5: kfree(si->rx_buff.head); err_mem_4: if (si->sir_clk && !IS_ERR(si->sir_clk)) clk_put(si->sir_clk); if (si->fir_clk && !IS_ERR(si->fir_clk)) clk_put(si->fir_clk); free_netdev(dev); err_mem_3: release_mem_region(__PREG(FICP), 0x1c); err_mem_2: release_mem_region(__PREG(STUART), 0x24); } err_mem_1: return err; } static int pxa_irda_remove(struct platform_device *_dev) { struct net_device *dev = platform_get_drvdata(_dev); if (dev) { struct pxa_irda *si = netdev_priv(dev); unregister_netdev(dev); if (gpio_is_valid(si->pdata->gpio_pwdown)) gpio_free(si->pdata->gpio_pwdown); if (si->pdata->shutdown) si->pdata->shutdown(si->dev); kfree(si->tx_buff.head); kfree(si->rx_buff.head); clk_put(si->fir_clk); clk_put(si->sir_clk); free_netdev(dev); } release_mem_region(__PREG(STUART), 0x24); release_mem_region(__PREG(FICP), 0x1c); return 0; } static struct platform_driver pxa_ir_driver = { .driver = { .name = "pxa2xx-ir", .owner = THIS_MODULE, }, .probe = pxa_irda_probe, .remove = pxa_irda_remove, .suspend = pxa_irda_suspend, .resume = pxa_irda_resume, }; static int __init pxa_irda_init(void) { return platform_driver_register(&pxa_ir_driver); } static void __exit pxa_irda_exit(void) { platform_driver_unregister(&pxa_ir_driver); } module_init(pxa_irda_init); module_exit(pxa_irda_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa2xx-ir");