/* * arch/sh/mm/ioremap.c * * Re-map IO memory to kernel address space so that we can access it. * This is needed for high PCI addresses that aren't mapped in the * 640k-1MB IO memory area on PC's * * (C) Copyright 1995 1996 Linus Torvalds * (C) Copyright 2005, 2006 Paul Mundt * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. */ #include #include #include #include #include #include #include #include #include #include #include /* * Remap an arbitrary physical address space into the kernel virtual * address space. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */ static void __iomem *__ioremap_prot(unsigned long phys_addr, unsigned long size, pgprot_t pgprot) { struct vm_struct * area; unsigned long offset, last_addr, addr; int simple = (pgprot_val(pgprot) == pgprot_val(PAGE_KERNEL)) || (pgprot_val(pgprot) == pgprot_val(PAGE_KERNEL_NOCACHE)); int cached = pgprot_val(pgprot) & _PAGE_CACHABLE; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; /* * If we're in the fixed PCI memory range, mapping through page * tables is not only pointless, but also fundamentally broken. * Just return the physical address instead. * * For boards that map a small PCI memory aperture somewhere in * P1/P2 space, ioremap() will already do the right thing, * and we'll never get this far. */ if (is_pci_memory_fixed_range(phys_addr, size)) return (void __iomem *)phys_addr; /* * Don't allow anybody to remap normal RAM that we're using.. */ if ((phys_addr >= __pa(memory_start)) && (last_addr < __pa(memory_end))) { char *t_addr, *t_end; struct page *page; t_addr = __va(phys_addr); t_end = t_addr + (size - 1); for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++) if(!PageReserved(page)) return NULL; } /* P4 uncached addresses are permanently mapped */ if ((PXSEG(phys_addr) == P4SEG) && simple && !cached) return (void __iomem *)phys_addr; /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr+1) - phys_addr; #ifdef CONFIG_PMB addr = pmb_remap(phys_addr, size, cached ? _PAGE_CACHABLE : 0); if (addr) return (void __iomem *)(offset + (char *)addr); #endif area = get_vm_area(size, VM_IOREMAP); if (!area) return NULL; area->phys_addr = phys_addr; addr = (unsigned long)area->addr; if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) { vunmap((void *)addr); return NULL; } return (void __iomem *)(offset + (char *)addr); } void __iomem *__ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) { pgprot_t pgprot; if (unlikely(flags & _PAGE_CACHABLE)) pgprot = PAGE_KERNEL; else pgprot = PAGE_KERNEL_NOCACHE; return __ioremap_prot(phys_addr, size, pgprot); } EXPORT_SYMBOL(__ioremap); void __iounmap(void __iomem *addr) { unsigned long vaddr = (unsigned long __force)addr; unsigned long seg = PXSEG(vaddr); struct vm_struct *p; if (seg == P4SEG || is_pci_memory_fixed_range(vaddr, 0)) return; #ifdef CONFIG_29BIT if (seg < P3SEG) return; #endif #ifdef CONFIG_PMB if (pmb_unmap(vaddr)) return; #endif p = remove_vm_area((void *)(vaddr & PAGE_MASK)); if (!p) { printk(KERN_ERR "%s: bad address %p\n", __func__, addr); return; } kfree(p); } EXPORT_SYMBOL(__iounmap);