/* * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /*************************************\ * EEPROM access functions and helpers * \*************************************/ #include "ath5k.h" #include "reg.h" #include "debug.h" #include "base.h" /* * Read from eeprom */ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) { u32 status, timeout; ATH5K_TRACE(ah->ah_sc); /* * Initialize EEPROM access */ if (ah->ah_version == AR5K_AR5210) { AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE); (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset)); } else { ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE); AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD, AR5K_EEPROM_CMD_READ); } for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) { status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS); if (status & AR5K_EEPROM_STAT_RDDONE) { if (status & AR5K_EEPROM_STAT_RDERR) return -EIO; *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) & 0xffff); return 0; } udelay(15); } return -ETIMEDOUT; } /* * Translate binary channel representation in EEPROM to frequency */ static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin, unsigned int mode) { u16 val; if (bin == AR5K_EEPROM_CHANNEL_DIS) return bin; if (mode == AR5K_EEPROM_MODE_11A) { if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) val = (5 * bin) + 4800; else val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : (bin * 10) + 5100; } else { if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) val = bin + 2300; else val = bin + 2400; } return val; } /* * Initialize eeprom & capabilities structs */ static int ath5k_eeprom_init_header(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int ret; u16 val; u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX; /* * Read values from EEPROM and store them in the capability structure */ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); /* Return if we have an old EEPROM */ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0) return 0; /* * Validate the checksum of the EEPROM date. There are some * devices with invalid EEPROMs. */ AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val); if (val) { eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) << AR5K_EEPROM_SIZE_ENDLOC_SHIFT; AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val); eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE; /* * Fail safe check to prevent stupid loops due * to busted EEPROMs. XXX: This value is likely too * big still, waiting on a better value. */ if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) { ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: " "%d (0x%04x) max expected: %d (0x%04x)\n", eep_max, eep_max, 3 * AR5K_EEPROM_INFO_MAX, 3 * AR5K_EEPROM_INFO_MAX); return -EIO; } } for (cksum = 0, offset = 0; offset < eep_max; offset++) { AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); cksum ^= val; } if (cksum != AR5K_EEPROM_INFO_CKSUM) { ATH5K_ERR(ah->ah_sc, "Invalid EEPROM " "checksum: 0x%04x eep_max: 0x%04x (%s)\n", cksum, eep_max, eep_max == AR5K_EEPROM_INFO_MAX ? "default size" : "custom size"); return -EIO; } AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), ee_ant_gain); if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); /* XXX: Don't know which versions include these two */ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2); if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3); if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) { AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6); } } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7; ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7; AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; } AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val); if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val) ee->ee_is_hb63 = true; else ee->ee_is_hb63 = false; AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val); ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL); ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false; /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION * and enable serdes programming if needed. * * XXX: Serdes values seem to be fixed so * no need to read them here, we write them * during ath5k_hw_attach */ AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val); ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ? true : false; return 0; } /* * Read antenna infos from eeprom */ static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 o = *offset; u16 val; int ret, i = 0; AR5K_EEPROM_READ(o++, val); ee->ee_switch_settling[mode] = (val >> 8) & 0x7f; ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f; ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; ee->ee_ant_control[mode][i++] = val & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f; ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f; ee->ee_ant_control[mode][i] = (val << 2) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3; ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f; ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f; ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; ee->ee_ant_control[mode][i++] = val & 0x3f; /* Get antenna switch tables */ ah->ah_ant_ctl[mode][AR5K_ANT_CTL] = (ee->ee_ant_control[mode][0] << 4); ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] = ee->ee_ant_control[mode][1] | (ee->ee_ant_control[mode][2] << 6) | (ee->ee_ant_control[mode][3] << 12) | (ee->ee_ant_control[mode][4] << 18) | (ee->ee_ant_control[mode][5] << 24); ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] = ee->ee_ant_control[mode][6] | (ee->ee_ant_control[mode][7] << 6) | (ee->ee_ant_control[mode][8] << 12) | (ee->ee_ant_control[mode][9] << 18) | (ee->ee_ant_control[mode][10] << 24); /* return new offset */ *offset = o; return 0; } /* * Read supported modes and some mode-specific calibration data * from eeprom */ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 o = *offset; u16 val; int ret; ee->ee_n_piers[mode] = 0; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); switch(mode) { case AR5K_EEPROM_MODE_11A: ee->ee_ob[mode][3] = (val >> 5) & 0x7; ee->ee_db[mode][3] = (val >> 2) & 0x7; ee->ee_ob[mode][2] = (val << 1) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_ob[mode][2] |= (val >> 15) & 0x1; ee->ee_db[mode][2] = (val >> 12) & 0x7; ee->ee_ob[mode][1] = (val >> 9) & 0x7; ee->ee_db[mode][1] = (val >> 6) & 0x7; ee->ee_ob[mode][0] = (val >> 3) & 0x7; ee->ee_db[mode][0] = val & 0x7; break; case AR5K_EEPROM_MODE_11G: case AR5K_EEPROM_MODE_11B: ee->ee_ob[mode][1] = (val >> 4) & 0x7; ee->ee_db[mode][1] = val & 0x7; break; } AR5K_EEPROM_READ(o++, val); ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff; ee->ee_thr_62[mode] = val & 0xff; if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28; AR5K_EEPROM_READ(o++, val); ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff; ee->ee_tx_frm2xpa_enable[mode] = val & 0xff; AR5K_EEPROM_READ(o++, val); ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff; if ((val & 0xff) & 0x80) ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1); else ee->ee_noise_floor_thr[mode] = val & 0xff; if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) ee->ee_noise_floor_thr[mode] = mode == AR5K_EEPROM_MODE_11A ? -54 : -1; AR5K_EEPROM_READ(o++, val); ee->ee_xlna_gain[mode] = (val >> 5) & 0xff; ee->ee_x_gain[mode] = (val >> 1) & 0xf; ee->ee_xpd[mode] = val & 0x1; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) ee->ee_fixed_bias[mode] = (val >> 13) & 0x1; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) { AR5K_EEPROM_READ(o++, val); ee->ee_false_detect[mode] = (val >> 6) & 0x7f; if (mode == AR5K_EEPROM_MODE_11A) ee->ee_xr_power[mode] = val & 0x3f; else { ee->ee_ob[mode][0] = val & 0x7; ee->ee_db[mode][0] = (val >> 3) & 0x7; } } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) { ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN; ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA; } else { ee->ee_i_gain[mode] = (val >> 13) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_i_gain[mode] |= (val << 3) & 0x38; if (mode == AR5K_EEPROM_MODE_11G) { ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6) ee->ee_scaled_cck_delta = (val >> 11) & 0x1f; } } if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && mode == AR5K_EEPROM_MODE_11A) { ee->ee_i_cal[mode] = (val >> 8) & 0x3f; ee->ee_q_cal[mode] = (val >> 3) & 0x1f; } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0) goto done; /* Note: >= v5 have bg freq piers on another location * so these freq piers are ignored for >= v5 (should be 0xff * anyway) */ switch(mode) { case AR5K_EEPROM_MODE_11A: if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1) break; AR5K_EEPROM_READ(o++, val); ee->ee_margin_tx_rx[mode] = val & 0x3f; break; case AR5K_EEPROM_MODE_11B: AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_b[0].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; ee->ee_pwr_cal_b[1].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_b[2].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; break; case AR5K_EEPROM_MODE_11G: AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_g[0].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; ee->ee_pwr_cal_g[1].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; AR5K_EEPROM_READ(o++, val); ee->ee_turbo_max_power[mode] = val & 0x7f; ee->ee_xr_power[mode] = (val >> 7) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_g[2].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_i_cal[mode] = (val >> 8) & 0x3f; ee->ee_q_cal[mode] = (val >> 3) & 0x1f; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) { AR5K_EEPROM_READ(o++, val); ee->ee_cck_ofdm_gain_delta = val & 0xff; } break; } /* * Read turbo mode information on newer EEPROM versions */ if (ee->ee_version < AR5K_EEPROM_VERSION_5_0) goto done; switch (mode){ case AR5K_EEPROM_MODE_11A: ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f; ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3; ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f; ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7; ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff; if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2) ee->ee_pd_gain_overlap = (val >> 9) & 0xf; break; case AR5K_EEPROM_MODE_11G: ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f; ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1; ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f; ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5; ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff; break; } done: /* return new offset */ *offset = o; return 0; } /* Read mode-specific data (except power calibration data) */ static int ath5k_eeprom_init_modes(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 mode_offset[3]; unsigned int mode; u32 offset; int ret; /* * Get values for all modes */ mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { offset = mode_offset[mode]; ret = ath5k_eeprom_read_ants(ah, &offset, mode); if (ret) return ret; ret = ath5k_eeprom_read_modes(ah, &offset, mode); if (ret) return ret; } /* override for older eeprom versions for better performance */ if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) { ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15; ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28; ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28; } return 0; } /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff * frequency mask) */ static inline int ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, struct ath5k_chan_pcal_info *pc, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int o = *offset; int i = 0; u8 freq1, freq2; int ret; u16 val; ee->ee_n_piers[mode] = 0; while(i < max) { AR5K_EEPROM_READ(o++, val); freq1 = val & 0xff; if (!freq1) break; pc[i++].freq = ath5k_eeprom_bin2freq(ee, freq1, mode); ee->ee_n_piers[mode]++; freq2 = (val >> 8) & 0xff; if (!freq2) break; pc[i++].freq = ath5k_eeprom_bin2freq(ee, freq2, mode); ee->ee_n_piers[mode]++; } /* return new offset */ *offset = o; return 0; } /* Read frequency piers for 802.11a */ static int ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a; int i, ret; u16 val; u8 mask; if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { ath5k_eeprom_read_freq_list(ah, &offset, AR5K_EEPROM_N_5GHZ_CHAN, pcal, AR5K_EEPROM_MODE_11A); } else { mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version); AR5K_EEPROM_READ(offset++, val); pcal[0].freq = (val >> 9) & mask; pcal[1].freq = (val >> 2) & mask; pcal[2].freq = (val << 5) & mask; AR5K_EEPROM_READ(offset++, val); pcal[2].freq |= (val >> 11) & 0x1f; pcal[3].freq = (val >> 4) & mask; pcal[4].freq = (val << 3) & mask; AR5K_EEPROM_READ(offset++, val); pcal[4].freq |= (val >> 13) & 0x7; pcal[5].freq = (val >> 6) & mask; pcal[6].freq = (val << 1) & mask; AR5K_EEPROM_READ(offset++, val); pcal[6].freq |= (val >> 15) & 0x1; pcal[7].freq = (val >> 8) & mask; pcal[8].freq = (val >> 1) & mask; pcal[9].freq = (val << 6) & mask; AR5K_EEPROM_READ(offset++, val); pcal[9].freq |= (val >> 10) & 0x3f; /* Fixed number of piers */ ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10; for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) { pcal[i].freq = ath5k_eeprom_bin2freq(ee, pcal[i].freq, AR5K_EEPROM_MODE_11A); } } return 0; } /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */ static inline int ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal; switch(mode) { case AR5K_EEPROM_MODE_11B: pcal = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: pcal = ee->ee_pwr_cal_g; break; default: return -EINVAL; } ath5k_eeprom_read_freq_list(ah, &offset, AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal, mode); return 0; } /* * Read power calibration for RF5111 chips * * For RF5111 we have an XPD -eXternal Power Detector- curve * for each calibrated channel. Each curve has 0,5dB Power steps * on x axis and PCDAC steps (offsets) on y axis and looks like an * exponential function. To recreate the curve we read 11 points * here and interpolate later. */ /* Used to match PCDAC steps with power values on RF5111 chips * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC * steps that match with the power values we read from eeprom. On * older eeprom versions (< 3.2) these steps are equaly spaced at * 10% of the pcdac curve -until the curve reaches it's maximum- * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) * these 11 steps are spaced in a different way. This function returns * the pcdac steps based on eeprom version and curve min/max so that we * can have pcdac/pwr points. */ static inline void ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) { static const u16 intercepts3[] = { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; static const u16 intercepts3_2[] = { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; const u16 *ip; int i; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) ip = intercepts3_2; else ip = intercepts3; for (i = 0; i < ARRAY_SIZE(intercepts3); i++) vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100; } /* Convert RF5111 specific data to generic raw data * used by interpolation code */ static int ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode, struct ath5k_chan_pcal_info *chinfo) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf5111 *pcinfo; struct ath5k_pdgain_info *pd; u8 pier, point, idx; u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; /* Fill raw data for each calibration pier */ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { pcinfo = &chinfo[pier].rf5111_info; /* Allocate pd_curves for this cal pier */ chinfo[pier].pd_curves = kcalloc(AR5K_EEPROM_N_PD_CURVES, sizeof(struct ath5k_pdgain_info), GFP_KERNEL); if (!chinfo[pier].pd_curves) return -ENOMEM; /* Only one curve for RF5111 * find out which one and place * in in pd_curves. * Note: ee_x_gain is reversed here */ for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) { if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) { pdgain_idx[0] = idx; break; } } ee->ee_pd_gains[mode] = 1; pd = &chinfo[pier].pd_curves[idx]; pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111; /* Allocate pd points for this curve */ pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8), GFP_KERNEL); if (!pd->pd_step) return -ENOMEM; pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16), GFP_KERNEL); if (!pd->pd_pwr) return -ENOMEM; /* Fill raw dataset * (convert power to 0.25dB units * for RF5112 combatibility) */ for (point = 0; point < pd->pd_points; point++) { /* Absolute values */ pd->pd_pwr[point] = 2 * pcinfo->pwr[point]; /* Already sorted */ pd->pd_step[point] = pcinfo->pcdac[point]; } /* Set min/max pwr */ chinfo[pier].min_pwr = pd->pd_pwr[0]; chinfo[pier].max_pwr = pd->pd_pwr[10]; } return 0; } /* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal; int offset, ret; int i; u16 val; offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); switch(mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) return 0; ret = ath5k_eeprom_init_11a_pcal_freq(ah, offset + AR5K_EEPROM_GROUP1_OFFSET); if (ret < 0) return ret; offset += AR5K_EEPROM_GROUP2_OFFSET; pcal = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header) && !AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; pcal = ee->ee_pwr_cal_b; offset += AR5K_EEPROM_GROUP3_OFFSET; /* fixed piers */ pcal[0].freq = 2412; pcal[1].freq = 2447; pcal[2].freq = 2484; ee->ee_n_piers[mode] = 3; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; pcal = ee->ee_pwr_cal_g; offset += AR5K_EEPROM_GROUP4_OFFSET; /* fixed piers */ pcal[0].freq = 2312; pcal[1].freq = 2412; pcal[2].freq = 2484; ee->ee_n_piers[mode] = 3; break; default: return -EINVAL; } for (i = 0; i < ee->ee_n_piers[mode]; i++) { struct ath5k_chan_pcal_info_rf5111 *cdata = &pcal[i].rf5111_info; AR5K_EEPROM_READ(offset++, val); cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M); cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M); cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[0] |= ((val >> 14) & 0x3); cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M); cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M); cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[3] |= ((val >> 12) & 0xf); cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M); cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M); cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M); cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[8] |= ((val >> 14) & 0x3); cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M); cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M); ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min, cdata->pcdac_max, cdata->pcdac); } return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal); } /* * Read power calibration for RF5112 chips * * For RF5112 we have 4 XPD -eXternal Power Detector- curves * for each calibrated channel on 0, -6, -12 and -18dbm but we only * use the higher (3) and the lower (0) curves. Each curve has 0.5dB * power steps on x axis and PCDAC steps on y axis and looks like a * linear function. To recreate the curve and pass the power values * on hw, we read 4 points for xpd 0 (lower gain -> max power) * and 3 points for xpd 3 (higher gain -> lower power) here and * interpolate later. * * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. */ /* Convert RF5112 specific data to generic raw data * used by interpolation code */ static int ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode, struct ath5k_chan_pcal_info *chinfo) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf5112 *pcinfo; u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; unsigned int pier, pdg, point; /* Fill raw data for each calibration pier */ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { pcinfo = &chinfo[pier].rf5112_info; /* Allocate pd_curves for this cal pier */ chinfo[pier].pd_curves = kcalloc(AR5K_EEPROM_N_PD_CURVES, sizeof(struct ath5k_pdgain_info), GFP_KERNEL); if (!chinfo[pier].pd_curves) return -ENOMEM; /* Fill pd_curves */ for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { u8 idx = pdgain_idx[pdg]; struct ath5k_pdgain_info *pd = &chinfo[pier].pd_curves[idx]; /* Lowest gain curve (max power) */ if (pdg == 0) { /* One more point for better accuracy */ pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS; /* Allocate pd points for this curve */ pd->pd_step = kcalloc(pd->pd_points, sizeof(u8), GFP_KERNEL); if (!pd->pd_step) return -ENOMEM; pd->pd_pwr = kcalloc(pd->pd_points, sizeof(s16), GFP_KERNEL); if (!pd->pd_pwr) return -ENOMEM; /* Fill raw dataset * (all power levels are in 0.25dB units) */ pd->pd_step[0] = pcinfo->pcdac_x0[0]; pd->pd_pwr[0] = pcinfo->pwr_x0[0]; for (point = 1; point < pd->pd_points; point++) { /* Absolute values */ pd->pd_pwr[point] = pcinfo->pwr_x0[point]; /* Deltas */ pd->pd_step[point] = pd->pd_step[point - 1] + pcinfo->pcdac_x0[point]; } /* Set min power for this frequency */ chinfo[pier].min_pwr = pd->pd_pwr[0]; /* Highest gain curve (min power) */ } else if (pdg == 1) { pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS; /* Allocate pd points for this curve */ pd->pd_step = kcalloc(pd->pd_points, sizeof(u8), GFP_KERNEL); if (!pd->pd_step) return -ENOMEM; pd->pd_pwr = kcalloc(pd->pd_points, sizeof(s16), GFP_KERNEL); if (!pd->pd_pwr) return -ENOMEM; /* Fill raw dataset * (all power levels are in 0.25dB units) */ for (point = 0; point < pd->pd_points; point++) { /* Absolute values */ pd->pd_pwr[point] = pcinfo->pwr_x3[point]; /* Fixed points */ pd->pd_step[point] = pcinfo->pcdac_x3[point]; } /* Since we have a higher gain curve * override min power */ chinfo[pier].min_pwr = pd->pd_pwr[0]; } } } return 0; } /* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; struct ath5k_chan_pcal_info *gen_chan_info; u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; u32 offset; u8 i, c; u16 val; int ret; u8 pd_gains = 0; /* Count how many curves we have and * identify them (which one of the 4 * available curves we have on each count). * Curves are stored from lower (x0) to * higher (x3) gain */ for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) { /* ee_x_gain[mode] is x gain mask */ if ((ee->ee_x_gain[mode] >> i) & 0x1) pdgain_idx[pd_gains++] = i; } ee->ee_pd_gains[mode] = pd_gains; if (pd_gains == 0 || pd_gains > 2) return -EINVAL; switch (mode) { case AR5K_EEPROM_MODE_11A: /* * Read 5GHz EEPROM channels */ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); ath5k_eeprom_init_11a_pcal_freq(ah, offset); offset += AR5K_EEPROM_GROUP2_OFFSET; gen_chan_info = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += AR5K_EEPROM_GROUP3_OFFSET; /* NB: frequency piers parsed during mode init */ gen_chan_info = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += AR5K_EEPROM_GROUP4_OFFSET; else if (AR5K_EEPROM_HDR_11B(ee->ee_header)) offset += AR5K_EEPROM_GROUP2_OFFSET; /* NB: frequency piers parsed during mode init */ gen_chan_info = ee->ee_pwr_cal_g; break; default: return -EINVAL; } for (i = 0; i < ee->ee_n_piers[mode]; i++) { chan_pcal_info = &gen_chan_info[i].rf5112_info; /* Power values in quarter dB * for the lower xpd gain curve * (0 dBm -> higher output power) */ for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff); chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff); } /* PCDAC steps * corresponding to the above power * measurements */ AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pcdac_x0[1] = (val & 0x1f); chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); /* Power values in quarter dB * for the higher xpd gain curve * (18 dBm -> lower output power) */ AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff); chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff); AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x3[2] = (val & 0xff); /* PCDAC steps * corresponding to the above power * measurements (fixed) */ chan_pcal_info->pcdac_x3[0] = 20; chan_pcal_info->pcdac_x3[1] = 35; chan_pcal_info->pcdac_x3[2] = 63; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f); /* Last xpd0 power level is also channel maximum */ gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; } else { chan_pcal_info->pcdac_x0[0] = 1; gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff); } } return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info); } /* * Read power calibration for RF2413 chips * * For RF2413 we have a Power to PDDAC table (Power Detector) * instead of a PCDAC and 4 pd gain curves for each calibrated channel. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y * axis and looks like an exponential function like the RF5111 curve. * * To recreate the curves we read here the points and interpolate * later. Note that in most cases only 2 (higher and lower) curves are * used (like RF5112) but vendors have the oportunity to include all * 4 curves on eeprom. The final curve (higher power) has an extra * point for better accuracy like RF5112. */ /* For RF2413 power calibration data doesn't start on a fixed location and * if a mode is not supported, it's section is missing -not zeroed-. * So we need to calculate the starting offset for each section by using * these two functions */ /* Return the size of each section based on the mode and the number of pd * gains available (maximum 4). */ static inline unsigned int ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode) { static const unsigned int pdgains_size[] = { 4, 6, 9, 12 }; unsigned int sz; sz = pdgains_size[ee->ee_pd_gains[mode] - 1]; sz *= ee->ee_n_piers[mode]; return sz; } /* Return the starting offset for a section based on the modes supported * and each section's size. */ static unsigned int ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) { u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4); switch(mode) { case AR5K_EEPROM_MODE_11G: if (AR5K_EEPROM_HDR_11B(ee->ee_header)) offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; /* fall through */ case AR5K_EEPROM_MODE_11B: if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + AR5K_EEPROM_N_5GHZ_CHAN / 2; /* fall through */ case AR5K_EEPROM_MODE_11A: break; default: break; } return offset; } /* Convert RF2413 specific data to generic raw data * used by interpolation code */ static int ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode, struct ath5k_chan_pcal_info *chinfo) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf2413 *pcinfo; u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; unsigned int pier, pdg, point; /* Fill raw data for each calibration pier */ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { pcinfo = &chinfo[pier].rf2413_info; /* Allocate pd_curves for this cal pier */ chinfo[pier].pd_curves = kcalloc(AR5K_EEPROM_N_PD_CURVES, sizeof(struct ath5k_pdgain_info), GFP_KERNEL); if (!chinfo[pier].pd_curves) return -ENOMEM; /* Fill pd_curves */ for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { u8 idx = pdgain_idx[pdg]; struct ath5k_pdgain_info *pd = &chinfo[pier].pd_curves[idx]; /* One more point for the highest power * curve (lowest gain) */ if (pdg == ee->ee_pd_gains[mode] - 1) pd->pd_points = AR5K_EEPROM_N_PD_POINTS; else pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1; /* Allocate pd points for this curve */ pd->pd_step = kcalloc(pd->pd_points, sizeof(u8), GFP_KERNEL); if (!pd->pd_step) return -ENOMEM; pd->pd_pwr = kcalloc(pd->pd_points, sizeof(s16), GFP_KERNEL); if (!pd->pd_pwr) return -ENOMEM; /* Fill raw dataset * convert all pwr levels to * quarter dB for RF5112 combatibility */ pd->pd_step[0] = pcinfo->pddac_i[pdg]; pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg]; for (point = 1; point < pd->pd_points; point++) { pd->pd_pwr[point] = pd->pd_pwr[point - 1] + 2 * pcinfo->pwr[pdg][point - 1]; pd->pd_step[point] = pd->pd_step[point - 1] + pcinfo->pddac[pdg][point - 1]; } /* Highest gain curve -> min power */ if (pdg == 0) chinfo[pier].min_pwr = pd->pd_pwr[0]; /* Lowest gain curve -> max power */ if (pdg == ee->ee_pd_gains[mode] - 1) chinfo[pier].max_pwr = pd->pd_pwr[pd->pd_points - 1]; } } return 0; } /* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf2413 *pcinfo; struct ath5k_chan_pcal_info *chinfo; u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; u32 offset; int idx, i, ret; u16 val; u8 pd_gains = 0; /* Count how many curves we have and * identify them (which one of the 4 * available curves we have on each count). * Curves are stored from higher to * lower gain so we go backwards */ for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) { /* ee_x_gain[mode] is x gain mask */ if ((ee->ee_x_gain[mode] >> idx) & 0x1) pdgain_idx[pd_gains++] = idx; } ee->ee_pd_gains[mode] = pd_gains; if (pd_gains == 0) return -EINVAL; offset = ath5k_cal_data_offset_2413(ee, mode); switch (mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) return 0; ath5k_eeprom_init_11a_pcal_freq(ah, offset); offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; chinfo = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) return 0; ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; chinfo = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; chinfo = ee->ee_pwr_cal_g; break; default: return -EINVAL; } for (i = 0; i < ee->ee_n_piers[mode]; i++) { pcinfo = &chinfo[i].rf2413_info; /* * Read pwr_i, pddac_i and the first * 2 pd points (pwr, pddac) */ AR5K_EEPROM_READ(offset++, val); pcinfo->pwr_i[0] = val & 0x1f; pcinfo->pddac_i[0] = (val >> 5) & 0x7f; pcinfo->pwr[0][0] = (val >> 12) & 0xf; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[0][0] = val & 0x3f; pcinfo->pwr[0][1] = (val >> 6) & 0xf; pcinfo->pddac[0][1] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr[0][2] = val & 0xf; pcinfo->pddac[0][2] = (val >> 4) & 0x3f; pcinfo->pwr[0][3] = 0; pcinfo->pddac[0][3] = 0; if (pd_gains > 1) { /* * Pd gain 0 is not the last pd gain * so it only has 2 pd points. * Continue wih pd gain 1. */ pcinfo->pwr_i[1] = (val >> 10) & 0x1f; pcinfo->pddac_i[1] = (val >> 15) & 0x1; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac_i[1] |= (val & 0x3F) << 1; pcinfo->pwr[1][0] = (val >> 6) & 0xf; pcinfo->pddac[1][0] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr[1][1] = val & 0xf; pcinfo->pddac[1][1] = (val >> 4) & 0x3f; pcinfo->pwr[1][2] = (val >> 10) & 0xf; pcinfo->pddac[1][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[1][2] |= (val & 0xF) << 2; pcinfo->pwr[1][3] = 0; pcinfo->pddac[1][3] = 0; } else if (pd_gains == 1) { /* * Pd gain 0 is the last one so * read the extra point. */ pcinfo->pwr[0][3] = (val >> 10) & 0xf; pcinfo->pddac[0][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[0][3] |= (val & 0xF) << 2; } /* * Proceed with the other pd_gains * as above. */ if (pd_gains > 2) { pcinfo->pwr_i[2] = (val >> 4) & 0x1f; pcinfo->pddac_i[2] = (val >> 9) & 0x7f; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr[2][0] = (val >> 0) & 0xf; pcinfo->pddac[2][0] = (val >> 4) & 0x3f; pcinfo->pwr[2][1] = (val >> 10) & 0xf; pcinfo->pddac[2][1] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[2][1] |= (val & 0xF) << 2; pcinfo->pwr[2][2] = (val >> 4) & 0xf; pcinfo->pddac[2][2] = (val >> 8) & 0x3f; pcinfo->pwr[2][3] = 0; pcinfo->pddac[2][3] = 0; } else if (pd_gains == 2) { pcinfo->pwr[1][3] = (val >> 4) & 0xf; pcinfo->pddac[1][3] = (val >> 8) & 0x3f; } if (pd_gains > 3) { pcinfo->pwr_i[3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2; pcinfo->pddac_i[3] = (val >> 3) & 0x7f; pcinfo->pwr[3][0] = (val >> 10) & 0xf; pcinfo->pddac[3][0] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[3][0] |= (val & 0xF) << 2; pcinfo->pwr[3][1] = (val >> 4) & 0xf; pcinfo->pddac[3][1] = (val >> 8) & 0x3f; pcinfo->pwr[3][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2; pcinfo->pddac[3][2] = (val >> 2) & 0x3f; pcinfo->pwr[3][3] = (val >> 8) & 0xf; pcinfo->pddac[3][3] = (val >> 12) & 0xF; AR5K_EEPROM_READ(offset++, val); pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4; } else if (pd_gains == 3) { pcinfo->pwr[2][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2; pcinfo->pddac[2][3] = (val >> 2) & 0x3f; } } return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo); } /* * Read per rate target power (this is the maximum tx power * supported by the card). This info is used when setting * tx power, no matter the channel. * * This also works for v5 EEPROMs. */ static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_rate_pcal_info *rate_pcal_info; u8 *rate_target_pwr_num; u32 offset; u16 val; int ret, i; offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1); rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode]; switch (mode) { case AR5K_EEPROM_MODE_11A: offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_a; ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN; break; case AR5K_EEPROM_MODE_11B: offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_b; ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */ break; case AR5K_EEPROM_MODE_11G: offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_g; ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN; break; default: return -EINVAL; } /* Different freq mask for older eeproms (<= v3.2) */ if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) { for (i = 0; i < (*rate_target_pwr_num); i++) { AR5K_EEPROM_READ(offset++, val); rate_pcal_info[i].freq = ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode); rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f); rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f; AR5K_EEPROM_READ(offset++, val); if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || val == 0) { (*rate_target_pwr_num) = i; break; } rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7); rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f); rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f); } } else { for (i = 0; i < (*rate_target_pwr_num); i++) { AR5K_EEPROM_READ(offset++, val); rate_pcal_info[i].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f); rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f; AR5K_EEPROM_READ(offset++, val); if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || val == 0) { (*rate_target_pwr_num) = i; break; } rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf; rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f); rate_pcal_info[i].target_power_54 = (val & 0x3f); } } return 0; } /* * Read per channel calibration info from EEPROM * * This info is used to calibrate the baseband power table. Imagine * that for each channel there is a power curve that's hw specific * (depends on amplifier etc) and we try to "correct" this curve using * offests we pass on to phy chip (baseband -> before amplifier) so that * it can use accurate power values when setting tx power (takes amplifier's * performance on each channel into account). * * EEPROM provides us with the offsets for some pre-calibrated channels * and we have to interpolate to create the full table for these channels and * also the table for any channel. */ static int ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int (*read_pcal)(struct ath5k_hw *hw, int mode); int mode; int err; if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) && (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1)) read_pcal = ath5k_eeprom_read_pcal_info_5112; else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) && (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2)) read_pcal = ath5k_eeprom_read_pcal_info_2413; else read_pcal = ath5k_eeprom_read_pcal_info_5111; for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { err = read_pcal(ah, mode); if (err) return err; err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode); if (err < 0) return err; } return 0; } static int ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *chinfo; u8 pier, pdg; switch (mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) return 0; chinfo = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) return 0; chinfo = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; chinfo = ee->ee_pwr_cal_g; break; default: return -EINVAL; } for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { if (!chinfo[pier].pd_curves) continue; for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { struct ath5k_pdgain_info *pd = &chinfo[pier].pd_curves[pdg]; if (pd != NULL) { kfree(pd->pd_step); kfree(pd->pd_pwr); } } kfree(chinfo[pier].pd_curves); } return 0; } void ath5k_eeprom_detach(struct ath5k_hw *ah) { u8 mode; for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) ath5k_eeprom_free_pcal_info(ah, mode); } /* Read conformance test limits used for regulatory control */ static int ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_edge_power *rep; unsigned int fmask, pmask; unsigned int ctl_mode; int ret, i, j; u32 offset; u16 val; pmask = AR5K_EEPROM_POWER_M; fmask = AR5K_EEPROM_FREQ_M(ee->ee_version); offset = AR5K_EEPROM_CTL(ee->ee_version); ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version); for (i = 0; i < ee->ee_ctls; i += 2) { AR5K_EEPROM_READ(offset++, val); ee->ee_ctl[i] = (val >> 8) & 0xff; ee->ee_ctl[i + 1] = val & 0xff; } offset = AR5K_EEPROM_GROUP8_OFFSET; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0) offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) - AR5K_EEPROM_GROUP5_OFFSET; else offset += AR5K_EEPROM_GROUPS_START(ee->ee_version); rep = ee->ee_ctl_pwr; for(i = 0; i < ee->ee_ctls; i++) { switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) { case AR5K_CTL_11A: case AR5K_CTL_TURBO: ctl_mode = AR5K_EEPROM_MODE_11A; break; default: ctl_mode = AR5K_EEPROM_MODE_11G; break; } if (ee->ee_ctl[i] == 0) { if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) offset += 8; else offset += 7; rep += AR5K_EEPROM_N_EDGES; continue; } if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { AR5K_EEPROM_READ(offset++, val); rep[j].freq = (val >> 8) & fmask; rep[j + 1].freq = val & fmask; } for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { AR5K_EEPROM_READ(offset++, val); rep[j].edge = (val >> 8) & pmask; rep[j].flag = (val >> 14) & 1; rep[j + 1].edge = val & pmask; rep[j + 1].flag = (val >> 6) & 1; } } else { AR5K_EEPROM_READ(offset++, val); rep[0].freq = (val >> 9) & fmask; rep[1].freq = (val >> 2) & fmask; rep[2].freq = (val << 5) & fmask; AR5K_EEPROM_READ(offset++, val); rep[2].freq |= (val >> 11) & 0x1f; rep[3].freq = (val >> 4) & fmask; rep[4].freq = (val << 3) & fmask; AR5K_EEPROM_READ(offset++, val); rep[4].freq |= (val >> 13) & 0x7; rep[5].freq = (val >> 6) & fmask; rep[6].freq = (val << 1) & fmask; AR5K_EEPROM_READ(offset++, val); rep[6].freq |= (val >> 15) & 0x1; rep[7].freq = (val >> 8) & fmask; rep[0].edge = (val >> 2) & pmask; rep[1].edge = (val << 4) & pmask; AR5K_EEPROM_READ(offset++, val); rep[1].edge |= (val >> 12) & 0xf; rep[2].edge = (val >> 6) & pmask; rep[3].edge = val & pmask; AR5K_EEPROM_READ(offset++, val); rep[4].edge = (val >> 10) & pmask; rep[5].edge = (val >> 4) & pmask; rep[6].edge = (val << 2) & pmask; AR5K_EEPROM_READ(offset++, val); rep[6].edge |= (val >> 14) & 0x3; rep[7].edge = (val >> 8) & pmask; } for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) { rep[j].freq = ath5k_eeprom_bin2freq(ee, rep[j].freq, ctl_mode); } rep += AR5K_EEPROM_N_EDGES; } return 0; } static int ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 offset; u16 val; int ret = 0, i; offset = AR5K_EEPROM_CTL(ee->ee_version) + AR5K_EEPROM_N_CTLS(ee->ee_version); if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) { /* No spur info for 5GHz */ ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR; /* 2 channels for 2GHz (2464/2420) */ ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1; ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2; ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR; } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) { for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { AR5K_EEPROM_READ(offset, val); ee->ee_spur_chans[i][0] = val; AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS, val); ee->ee_spur_chans[i][1] = val; offset++; } } return ret; } /* * Initialize eeprom data structure */ int ath5k_eeprom_init(struct ath5k_hw *ah) { int err; err = ath5k_eeprom_init_header(ah); if (err < 0) return err; err = ath5k_eeprom_init_modes(ah); if (err < 0) return err; err = ath5k_eeprom_read_pcal_info(ah); if (err < 0) return err; err = ath5k_eeprom_read_ctl_info(ah); if (err < 0) return err; err = ath5k_eeprom_read_spur_chans(ah); if (err < 0) return err; return 0; } /* * Read the MAC address from eeprom */ int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac) { u8 mac_d[ETH_ALEN] = {}; u32 total, offset; u16 data; int octet, ret; ret = ath5k_hw_eeprom_read(ah, 0x20, &data); if (ret) return ret; for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) { ret = ath5k_hw_eeprom_read(ah, offset, &data); if (ret) return ret; total += data; mac_d[octet + 1] = data & 0xff; mac_d[octet] = data >> 8; octet += 2; } if (!total || total == 3 * 0xffff) return -EINVAL; memcpy(mac, mac_d, ETH_ALEN); return 0; }